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ON SPECTRA AND AFFINE STRICT POLYNOMIAL
FUNCTORS

by Marcin CHAŁUPNIK (*)

Abstract. — We compare derived categories of the category of strict polyno-
mial functors over a finite field and the category of ordinary endofunctors on the
category of vector spaces. We introduce two intermediate categories: the category
of ∞-affine strict polynomial functors and the category of spectra of strict polyno-
mial functors. They provide a conceptual framework for computational theorems
of Franjou–Friedlander–Scorichenko–Suslin and clarify the role of inverting the
Frobenius morphism in the comparison between rational and discrete cohomology.

Résumé. — Nous comparons des catégories dérivés de la catégorie des fonc-
teurs strictement polynomiaux sur un domaine et la catégorie des endofoncteurs
ordinaires sur la catégorie des espaces vectoriels. Nous introduisons deux catégo-
ries intermédiaires: la catégorie de foncteurs ∞-affines strictement polynomiaux et
la catégorie des spectres des foncteurs strictement polynomiaux. Ils fournissent un
cadre conceptuel pour les théorèmes de calcul de Franjou–Friedlander–Scorichenko–
Suslin et clarifient le rôle de l’inversion du morphisme de Frobenius dans la com-
paraison entre cohomologie rationnelle et discrète.

1. Introduction

The aim of the present paper is to better understand relationship between
derived categories of the category Pd of strict polynomial functors of degree
d over a finite field k and the category F of usual functors on the vector
spaces over k. It may be thought of as an instance of a fundamental problem
in algebraic geometry: comparing affine schemes with their sets of rational
points over small fields. In our context, the situation is well understood at
the level of abelian categories. Namely, it was shown [5, Proposition 1.4]
that if d ⩽ |k|, then the forgetful functor f : Pd → F is a full embedding.
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2 Marcin CHAŁUPNIK

Unfortunately, this is no longer true at the level of derived categories, as the
forgetful functors does not induce an isomorphism on Ext-groups. However,
as it was shown by Franjou–Friedlander–Scorichenko–Suslin, we still get an
isomorphism on Ext-groups when we take instead of given strict polynomial
functors F, G their large enough Frobenius twists F (ni), G(ni). To put it
more precisely: since f(F ) = f(F (ni)), f(G) = f(G(ni)) for |k| = pn, we
have the induced map

colimi Ext∗
Pdpni

(F (ni), G(ni)) −→ Ext∗
F (F, G),

and [5, Theorem 3.10] says that this map is an isomorphism provided that
d ⩽ |k|. This result has numerous nontrivial applications, since in many
cases the left hand side is much more computable. Unfortunately, neither
its applications nor its proof answers a natural question: why does twisting
make Pd and F closer to each other?

In our article we address this question by putting the above mentioned
phenomena into a wider categorical context (although it should be em-
phasized that our work does not provide new proofs of the results of [5],
since we use their computations in several places). Namely, we factorize
the (derived) forgetful functor f : DP d → DF through certain intermedi-
ate triangulated category whose Hom-spaces are (among others) colimits
of Ext-groups between twists of strict polynomial functors. In fact, we con-
struct two apparently quite different triangulated categories which have
this property.

The first construction which is described in Sections 2 and 3 uses a
concept of “affine strict polynomial functor” introduced in [3]. In fact our
situation resembles that considered in [3]. In both cases we would like to
extend a reflective full embedding of abelian categories to their derived
categories but we face an obstruction that the unit of our adjunction is
not an isomorphism. Nevertheless, this unit admits an explicit description
which gives us a hint how to enlarge the starting category to obtain a
reflective full embedding (in fact, as shown in [13] the full embedding f is a
part of recollement diagram of abelian categories, however in our situation,
similarly to [3], we do not get a full recollement due to appearance of
categories of infinite homological dimension). By applying this procedure
we get a DG functor category Paf∞

d and then its derived category DP af∞
d

together with a factorization of f as

DP d
z∗

−→ DP af∞
d

f af∞
−→ DF .

The important features of this factorization are that
Hom∗

DP af∞
d

(z∗(F ), z∗(G)) ≃ colimi Ext∗
Pdpi

(F (i), G(i))

ANNALES DE L’INSTITUT FOURIER



ON SPECTRA AND FUNCTORS 3

and that faf∞ (when restricted to the subcategory DP faf∞
d of finite objects

in DP af∞
d ) is a full embedding (Theorem 3.7). Thus we have achieved

our goal by a rather tautological construction, since the category DP af∞
d

is designed exactly in such a way that we obtain the desired colimits as
Ext-spaces. This being said, the fact that the construction works is highly
nontrivial because it utilizes in an essential way the formality phenomena
observed in [2, 3].

Then in Sections 4 and 5 we take quite a different approach, which is
perhaps more intuitive. It relies on an observation that an important dif-
ference between the categories P and F is that in the latter the Frobenius
twist operation is invertible. Hence if we formally invert the Frobenius twist
in P we should obtain a category closer to F . Moreover, when we think
of classical example of applying such a construction i.e. stable homotopy
category, we see how colimits enter our story: we should get them as an
analog of the known description of the homotopy classes of maps between
suspension spectra.

Technically, we introduce the category SP d of spectra of complexes of
strict polynomial functors and, following a general approach of Hovey [8],
we introduce a Quillen model structure on it. Then we put DSP d to be the
homotopy category with respect to this structure and we get a factorization
of f as

DP d
C∞

−→ DSP d
f st

−→ DF ,

where C∞ is a functor analogous to Σ∞ in topology. Then we have the
expected description of the maps between “suspension spectra”: (Theo-
rem 4.6):

Hom∗
DSP d

(C∞(F ), C∞(G)) ≃ colimi Ext∗
Pdpi

(F (i), G(i))

and, similarly to the first approach, f st when restricted to the category
DP st

d generated as triangulated category with direct summands by the
image of C∞, is a full embedding (Theorem 5.2).

Finally, in the last section we compare the two constructions. Namely, we
find a full embedding γ : DP af∞

d → DSP d which restricts to an equivalence
DP faf∞

d ≃ DP st
d (Theorem 6.2). This shows that the categories DP af∞

d

and DSP d are quite close, which is perhaps not obvious at a first sight.
As a sort of heuristic explanation we can offer the following observation.
Similarly to the classical context, in our category of spectra, the delooping
functor Θ∞ plays an important role. On the other hand, as it was observed
in [3], the category of affine strict polynomial functors is closely related to
the category of representations of the group of algebraic loops on GLn(k).

TOME 0 (0), FASCICULE 0



4 Marcin CHAŁUPNIK

Thus our category Paf∞
d should correspond to the infinite loops on GLn(k).

Hence some sort of relation to infinite loop spaces is a feature shared by
the both categories.

Now let us discuss the differences between DP af∞
d and DSP d. The fact

that DP af∞
d embeds into DSP d shows that the former category is closer

to DP d. This is not surprising, since we see in its very construction, that it
is a possibly closest to DP d triangulated category in which the colimits of
Exts of twists appear (we make no attempt to make this statement precise).
In particular, we see that it is not necessary to fully invert the Frobenius
twist to get these colimits. In fact, one can show that the Frobenius twist
gives a full embedding DP af∞

d ⊂ DP af∞
dp but not an equivalence.

Thus, one could think that the factorization through DSP d is something
less fundamental. On the other hand however, the functor f st : DSP d →
DF has a remarkable property that it preserves (at least some) fibrant
objects (Remark 5.3). This suggests that SP d (in contrast to just Pd)
encodes important information about injective objects in F .

Let us finally point our for a recent preprint [4], which extends the
Franjou–Friedlander–Scorichenko–Suslin Comparison Theorem to the case
of any perfect field (I am grateful to the referee for turning my attention
to that work). Assuming the results of [4], we would also have the results
of our article for any infinite perfect fields.

In order to help the reader navigating in the article I provide below the
list of main definitions and notations used in the paper.

Notation Section Meaning
k 2 ground field, since Section 3 finite
A∞ 2 graded algebra k[x1, x2, . . .]/(xp

1, xp
2, . . .)

V 2 category of finite-dimensional vector spaces over
k

V ′ 2 category of all vector spaces over k
Vgr 2 category of graded vector spaces over k finite-

dimensional
in each degree

Vgrf 2 category of totally finite-dimensional graded vec-
tor spaces over k

V ′gr 2 category of all graded vector spaces over k
VA∞ 2 subcategory of the category of free graded A∞-

modules
ΓdVgr 2 category of divided powers over Vgr

ANNALES DE L’INSTITUT FOURIER



ON SPECTRA AND FUNCTORS 5

Notation Section Meaning
ΓdVgrf 2 category of divided powers over Vgrf

ΓdVA∞ 2 category of divided powers over VA∞

Pd 2 category of strict polynomial functors over k of
degree d

Pgr
d 2 category of graded strict polynomial functors over

k of degree d

Paf∞
d 2 category of ∞-affine strict polynomial functors of

degree d

z∗ 2 functor from DP d to DP af∞
d induced by the for-

getting
t∗ 2 functor from DP af∞

d to DP d induced by the
scalar extension,
right adjoint to z∗

Γd,U 2 object in Pd represented by U ∈ ΓdV
hU⊗A∞ 2 object in Paf∞

d represented by U ⊗ A∞ ∈ ΓdVA∞

F 3 category of functors from V to V ′

f 3 forgetful functor from DP d to DF

DP faf∞
d 3 smallest triangulated subcategory of

DP af∞
d containing hU⊗A∞ and closed under iso-

morphisms and direct summands
C 4 Frobenius twist regarded as functor from DP d to

DP pd

P̂ 4 product category
∏

d>0 Pd

KPd 4 category of complexes over Pd

KP̂ 4 category of complexes over P̂
SP̂ 4 category of spectra over KP̂
SPd 4 category of spectra over KP d

KF 5 category of complexes over F
SF 5 category of spectra over KF

DSP st
d 5 smallest triangulated subcategory of DSP d con-

taining all
C∞(F ) and closed under isomorphisms and direct
summands

Pafi

d 6 category of i-affine strict polynomial functors of
degree d

TOME 0 (0), FASCICULE 0
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2. ∞-affine functors

In this section we introduce and establish basic properties of the category
Paf∞

d of ∞-affine strict polynomial functors. In the next section we relate
Paf∞

d to the categories Pd and F .
We shall frequently use graded categories and functors. There are several

possible choices of the setup here, we follow the one from [10] and we briefly
recall the basic definitions. We fix a ground field k. By a graded (k-linear)
category we mean a k-linear category C with Hom-spaces equipped with Z-
grading preserved by composition. By this we mean that for X, Y ∈ Ob(C),
we have

HomC(X, Y ) =
⊕
n∈Z

Homn
C(X, Y )

and if f ∈ Homn
C(X, Y ) and g ∈ Homk

C(Y, Z) then g ◦ f ∈ Homn+k
C (X, Z).

The basic example of graded k-linear category is the category V ′gr of Z-
graded vector spaces over k. We put decoration (−)′ because in the majority
of our constructions we will restrict to its subcategory Vgr consisting of
graded vector spaces finite dimensional in each degree. The Hom-spaces
are given as:

Homn
V′gr (V •, W •) :=

∏
j

Hom(V j , W j+n)

A graded functor between graded categories is a functor which preserves
the grading on Hom-spaces. Observe that for any graded k-linear category
A the graded functors from A to V ′gr form a k-linear graded category. In
order to define the graded Hom-spaces let us define for a graded functor
F from A to V ′gr its shift F [1] by F [1](A)n := F (A)n+1. Then we define
Homn(F, G) to be Nat(F, G[n]) (see [10, Section 1]).

The notion of ∞-affine strict polynomial functor is quite straightforward
generalization of that of the affine strict polynomial functor introduced

ANNALES DE L’INSTITUT FOURIER
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in [3]. The only difference is that instead the graded algebra A = k[x]/xp ≃
Ext∗

Pdp
(I(1), I(1)) we consider the graded algebra

A∞ := k[x1, x2, . . .]/(xp
1, xp

2, ...)

with |xi| = 2pi. The appearance of the algebra A∞ in our situation follows
from the fact known from [6] that if k is a finite field of characteristic p

then there is an isomorphism of graded algebras A∞ ≃ Ext∗
F (I, I).

Let V (resp. V ′) stands for the category of finite dimensional vector
spaces over k (resp. the category of all vector spaces over k). Next, let
VA∞ stand for the full subcategory of the category of graded free A∞-
modules consisting of the modules V ⊗ A∞ for V ∈ V. Then we consider
the category ΓdVA∞ of divided powers over VA∞ (see e.g. [7, Section 3]).
This is the graded k-linear category with the objects the same as those of
VA∞ , but the Hom-spaces are

HomΓdVA∞
(V ⊗ A∞, W ⊗ A∞) := Γd(HomA∞(V ⊗ A∞, W ⊗ A∞))

where Γd stands for the space of symmetric d-tensors over k. The grading
comes from that on A∞ and the standard grading on the tensor product:

|x1 ⊗ · · · ⊗ xd| :=
d∑

s=1
|xs|.

The composition law is given by the composition of the map:

Γd(HomA∞(V ⊗ A∞, W ⊗ A∞)) ⊗ Γd(HomA∞(W ⊗ A∞, U ⊗ A∞))

−→ Γd(HomA∞(V ⊗ A∞, W ⊗ A∞) ⊗ HomA∞(W ⊗ A∞, U ⊗ A∞))

coming from the natural map Γd(X) ⊗ Γd(Y ) → Γd(X ⊗ Y ) existing for
any vector spaces X, Y , with the map

Γd(HomA∞(V ⊗ A∞, W ⊗ A∞) ⊗ HomA∞(W ⊗ A∞, U ⊗ A∞))

−→ Γd(HomA∞(V ⊗ A∞, U ⊗ A∞))

coming from the composition in A∞-linear Homs.

Definition/Proposition 2.1. — An ∞-affine strict polynomial func-
tor F homogeneous of degree d is a graded k-linear functor

F : ΓdVA∞ −→ V ′gr.

The affine strict polynomial functors homogeneous of degree d with mor-
phisms being natural transformations (with shifted targets) form a graded
k-linear category Paf∞

d (see [3, p. 655-656]).

TOME 0 (0), FASCICULE 0



8 Marcin CHAŁUPNIK

The reader of [3] will find there a similar construction. In fact our cate-
gory Paf∞

d may be thought of as obtained by infinitely times applying the
construction producing Paf

d from [3]. However, we alert the reader that,
in contrast to [3] and also to the foundational paper on strict polynomial
functors [7], we do not impose any finiteness/finite generation assumptions
on values of functors.

Now we list some basic properties of the category Paf∞
d . The proofs of

respective facts on affine functors from [3] in most cases carry over to the
current context. Therefore we discuss more thoroughly these points only
when the infinite dimension of A∞ requires special attention. Also, the
reader interested in obtaining more motivation behind the construction of
affine functors is referred to [3].

Like in any functor category, for any U ∈ V we have the representable
functor hU⊗A∞ ∈ Paf∞

d given by the formula

V ⊗ A∞ 7−→ HomΓdVA∞
(U ⊗ A∞, V ⊗ A∞)

and the co-representable functor c∗
U⊗A∞

∈ Paf∞
d given by the formula

V ⊗ A∞ 7−→ HomΓdVA∞
(V ⊗ A∞, U ⊗ A∞)∗

where (−)∗ stands for the graded k-linear dual. We list the basic properties
of Paf∞

d .

Proposition 2.2.

(1) There are natural in U ⊗ A∞ isomorphisms

HomPaf∞
d

(hU⊗A∞ , F ) ≃ F (U ⊗ A∞)

HomPaf∞
d

(F, c∗
U⊗A∞

) ≃ (F (U ⊗ A∞))∗

for any F ∈ Paf∞
d .

(2) Moreover, the map Ψ : hU⊗A∞ ⊗F (U⊗A∞) → F adjoint to the map
FU⊗A∞,V ⊗A∞ giving the action of F on morphisms is surjective,
provided that dim(U) ⩾ d.

(3) If dim(U) ⩾ d then hU⊗A∞ is a generator of Paf∞
d , c∗

U⊗A∞
is a

cogenerator of Paf∞
d

The proofs of [3, Proposition 2.5, 2.6] carry over to the current situation.
Now we turn to comparing Paf∞

d with Pd (or rather its graded variant
Pgr

d which will be defined later) which, when compared to [3], is a bit more
delicate point due to infinite dimension of A∞. We have a pair of adjoint
functors between the source categories of our functor categories. The first

ANNALES DE L’INSTITUT FOURIER
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is just the forgetful functor:

z : ΓdVA∞ −→ ΓdVgr

(z comes from the polish word for forgetting which is zapominanie), where
ΓdVgr stands for the graded category whose objects are graded vector
spaces finite dimensional in each degree and

Hom•
ΓdVgr (V •, W •) := Γd(Hom(V •, W •)).

The second is the scalar extension functor:

t : ΓdVgr −→ ΓdVA∞

explicitly given on objects as tensoring over k with A∞: t(V ) := V ⊗ A∞.
Then we claim that precomposing with z can be extended to a functor

z∗ : Pgr
d −→ Paf∞

d

where Pgr
d is the category of Z-graded strict polynomial functors of degree

d (i.e. the category of graded functors from ΓdVgr to V ′gr). This can be
done in two steps. The first step was already used in [3, Section 2] (see
also [15, Section 2.5]). Let ΓdVgrf stands for the full subcategory of ΓdVgr

consisting of totally finite dimensional vector spaces. Then any F ∈ Pd can
be extended to a graded functor F grf : ΓdVgrf → V ′gr (see [3, p. 657]). In
the second step we shall extend F grf to the graded functor F gr defined on
the whole graded category ΓdVgr. For V • ∈ Vgr let V ⩽|j| :=

⊕
|s|⩽j V s.

Then we define F gr(V •) as colimj F grf (V ⩽|j|). Now we can correctly define
z∗ : Pgr

d → Paf∞
d by putting

z∗(F )(V ⊗ A∞) := F gr(V ⊗ A∞).

Analogously, precomposing with t produces the functor

t∗ : Paf∞
d −→ Pgr

d .

Considering here the category Pgr
d instead of Pd will be essential in the

next section where we will compare the derived categories of Pd and Paf∞
d .

We list the properties of z∗ and t∗:

Proposition 2.3.
(1) z∗ preserves representable objects i.e.

z∗(Γd,U ) = hU⊗A∞ .

where Γd,U ∈ Pd is defined as V 7→ HomΓdV(U, V ) = Γd(U∗ ⊗ V ).
(2) The functor t∗ is right adjoint to z∗.

TOME 0 (0), FASCICULE 0
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Again, the proof of [3, Proposition 2.4] carries over to the present situa-
tion.

Remark. — It is worth mentioning that, as pointed out by the referee,
all results of the present section hold for any non-negatively graded algebra
finite dimensional in each degree put instead of A∞. In fact we do consider
in Section 6 yet another (and much simpler) variant of this construction.
What is specific to A∞ is relation of Paf∞

d to Ppd at the level of derived
categories. We will discuss this relation in the next section.

3. Formality and ∞-affine algebraification

In the present section we factorize the derived functor of the forgetful
functor f : Pd → F through the derived category of Paf∞

d . Starting from
this section we assume that the ground field k is a finite field of character-
istic p. As we have mentioned in Introduction we closely follow the strategy
taken in [3].

To this end we regard ΓdVA∞ as DG category with trivial differentials.
Our main reference for general facts and terminology on DG categories is
still [10]. We consider the category Dif(ΓdVop

A∞
) consisting of DG functors

from ΓdVA∞ to the category of complexes of k-modules (our strange ter-
minology here is coherent with [10, Section 1.2], where the main focus was
on contravariant functors). We are ready to introduce our main object of
interest in the first part of the paper.

Definition 3.1. — Let DP af∞
d be the category obtained from

Dif(ΓdVop
A∞

) by localization with respect to the class of quasi-isomorphisms
(we recall again that we do not make any boundedness/finiteness assump-
tions).

Let Γd(I∗ ⊗ I) denote bifunctor given by the formula (V, W ) 7→ Γd(V ∗ ⊗
W ). We regard Γd(I∗ ⊗ I) as a contravariant strict polynomial functor of
degree d in V and just a naive functor in W . We shall denote the category
of such mixed bifunctors by Pd

F (we put decoration d as a superscript to
emphasize that our functors are contravariant with respect to the strict
polynomial variable). More formally, Pd

F is a full subcategory of the cate-
gory of functors from (ΓdV)op × V to V ′ consisting of functors which are
k-linear with respect to the first variable. Thus, the assignment

F 7−→ HomF (Γd(I∗ ⊗ I), F )

ANNALES DE L’INSTITUT FOURIER
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defines the functor a : F → Pd which we call the (right) algebraification.
Then it is easy to see that a is right adjoint to the forgetful functor f :
Pd → F (in fact, this adjunction is among those considered by Kuhn
in [13]). Next, since f is an exact functor between abelian categories, it
extends degreewise to a functor between unbounded derived categories

f : DP d −→ DF

which we shall denote by the same letter, though, formally it is the derived
functor of f . We shall abuse notation in such a manner in several further
places in the article, where functors between abelian categories thanks to
exactness simply factorize to derived category. On the other hand a is a left
exact functor between abelian categories, hence it gives rise to a derived
functor

Ra : DF −→ DP d.

Then it is a matter of routine verification that f and Ra remain adjoint
(compare [2, Theorem 2.2]). Our goal is to factorize this adjunction through
DP af∞

d .
A crucial tool for studying the formality phenomena in our context is

the following DG counterpart of the graded category ΓdVA∞ .

Definition 3.2. — Let X• be a projective resolution of Γd(I∗ ⊗ I) in
the category Pd

F . We introduce the DG category ΓdVop
X whose objects are

finite k-vector spaces and

Homn
ΓdVop

X
(V, V ′) := HomF (X•(V ′, −), X•(V, −)[n]),

where HomF stands for the Hom complex (ie. we do not require that the
maps preserve differentials). The composition law comes from the compo-
sition in Hom complexes.

The connection between Paf
d and ΓdVop

X over a field large enough essen-
tially follows from the classical Ext-computations of Franjou–Friedlander–
Scorichenko–Suslin:

Proposition 3.3. — Assume that |k| ⩾ d. Then the assignment V ⊗
A∞ 7→ V extends to a quasi-isomorphism of graded categories ΓdVA∞ ≃
H∗(ΓdVop

X ).

Proof. — We need to establish a natural in V, V ′ isomorphism of graded
spaces:

Ext∗
F (Γd,V ′

, Γd,V ) ≃ Γd(Hom(V, V ′) ⊗ A∞).
In fact, for V = V ′ = k it is just [5, Theorem 6.3.(3)]. The general case
may be obtained by a similar reasoning. Alternatively, we can also quickly

TOME 0 (0), FASCICULE 0



12 Marcin CHAŁUPNIK

derive Proposition 3.3 from “the derived Kan extension”. Namely, from [2,
Corollary 3.7] and the Yoneda lemma we get:

Ext∗
Pdpi (Γd(i),V ′

, Γd(i),V ) ≃ Γd(Hom(V, V ′) ⊗ A∞).

Then our assertion follows from [5, Theorem 3.10]. □

However, the much stronger fact, which generalizes [3, Theorem 4.2],
holds:

Theorem 3.4. — Assume that the ground field k has q ⩾ d elements.
Then the assignment V ⊗ A∞ 7→ V extends to a quasi-isomorphism of DG
categories ϕ : ΓdVA∞ ≃ ΓdVop

X .

The proof is conceptually similar to that of [3, Theorem 4.2], but since
there are some technical differences we present it in some detail. First of
all we need a certain generalization of Touzé universal classes [14, 16].

Lemma 3.5. — There exist classes

c[d](i) ∈ Ext2dpi−1

Pdpi

dpi

(Γdpi

(I∗ ⊗ I), Γd(I∗(i) ⊗ I(i)))

such that c[1](i) ̸= 0 for all i ⩾ 1, and are compatible with cup product i.e.

∆∗(c[d](i)) = (c[1](i))∪d

where ∆ : Γd → Id is the standard embedding.

Proof of Lemma 3.5. — For i = 1 we have the original Touzé classes,
but the proof carries over to this more general case. Indeed: it immediately
follows from the degeneracy of the twisting spectral sequence [16, Propo-
sition 17] and this degeneracy was showed also for multiple twists [16,
Theorem 4]. □

Let Γd(I∗ ⊗ I))A∞ stands for the graded bifunctor (V, W ) 7→ Γd(V ∗ ⊗
W ⊗ A∞) with grading coming from that on A∞ and Γd, regarded as
an object in the derived category of Pd

F . Now we get an F-analog of [2,
Proposition 3.3].

Lemma 3.6. — There exist classes

ẽd ∈ HomDP d
F

(Γd(I∗ ⊗ I), (Γd(I∗ ⊗ I))A∗
∞

)

satisfying:
(1) ẽ1 ∈ HomDP 1

F
(I∗ ⊗ I, I∗ ⊗ I ⊗ A∗

∞) is nontrivial in each degree.
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(2) ẽ⊗d
1 ◦ ∆ = ∆A∗

∞
◦ ẽd as elements of

HomDP d
F

(Γd(I ⊗ I∗), (Id(I ⊗ I∗))A∗
∞

),

where ∆ : Γd(I ⊗ I∗) → Id(I ⊗ I∗) is the natural embedding and

ẽ⊗d
1 ∈ HomDP d

F
(Id(I ⊗ I∗), (Id(I ⊗ I∗))A∗

∞
)

is the dth external power of ẽ1.

Proof of Lemma 3.6. — We obtain our classes from the classes c[d](i)

by applying a multitwist analog of [2, Lemma 3.4] and then pulling the
obtained elements to the category F . □

Proof of Theorem 3.4. — We will construct ϕ in two steps using the
intermediate DG category ΓdVop

X,A∞
. This is yet another category with

objects as in VA∞ and

Homn
ΓdVop

X,A∞
(V, V ′) := HomF (X•(V ′ ⊗ A∞, −), X•(V ⊗ A∞, −)[n]),

where we use the fact discussed in the previous section that strict poly-
nomial functors can be naturally extended to graded spaces of the form
V ⊗ A∞. The composition of morphisms is, like in ΓdVop

X , given by the
composition in Hom complexes.

We start with constructing the functor ρ : ΓdVA∞ → ΓdVop
X,A∞

being the
identity on the objects. Thus we need the family of maps:

ρV,V ′ : Γd(HomA∞(V ⊗ A∞, V ′ ⊗ A∞))
−→ HomF (X•(V ′ ⊗ A∞, −), X•(V ⊗ A∞, −))

compatible with the compositions. For this we observe that since X• is a
contravariant strict polynomial with respect to the first variable, we have
a k-linear map:

Γd(Hom(V ⊗A∞, V ′ ⊗A∞)) −→ Hom(X•(V ′ ⊗A∞, W ), X•(V ⊗A∞, W ))

for any W ∈ V. By the functoriality of X• with respect to W , these maps
amount to the map:

Γd(Hom(V ⊗A∞, V ′ ⊗A∞)) −→ HomF (X•(V ′ ⊗A∞, −), X•(V ⊗A∞, −)).

Then our map ρV,V ′ is the restriction of the above map to Γd(HomA∞(V ⊗
A∞, V ′ ⊗ A∞)). Now the compatibility of ρ with the compositions in the
source and target categories just boils down to the fact that the action of
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14 Marcin CHAŁUPNIK

a functor on the morphisms commutes with their composition. Let us also
observe that H0 ◦ ρV,V ′ can be factorized as the composite:

Γd(HomA∞(V ⊗ A∞, V ′ ⊗ A∞))

≃ Γd(HomA∞(V ′∗ ⊗ A∗
∞, V ∗ ⊗ A∗

∞)) ⊂ Γd(Hom(V ′∗ ⊗ A∗
∞, V ∗ ⊗ A∞))

≃ HomPd
(Γd(V ′∗ ⊗ A∗

∞ ⊗ −), Γd(V ∗ ⊗ A∗
∞−))

≃ HomF (Γd(V ′∗ ⊗ A∗
∞ ⊗ −), Γd(V ∗ ⊗ A∗

∞ ⊗ −))

≃ H0(HomF (X•(V ′ ⊗ A∞, −), X•(V ⊗ A∞, −))),

where the second isomorphism is the Yoneda lemma, the third one follows
from the fact that |k| ⩾ d. Thus our construction of ρ may be thought
of as providing liftings of certain maps between objects to their projective
resolutions in a canonical way (this interpretation was used in the proof
of [3, Theorem 4.2] where the whole construction was presented in a less
formal way).
Now we turn to constructing the functor

e : ΓdVop
X,A∞

−→ ΓdVop
X

again being the identity on the objects. For this we choose for the element
ẽd ∈ HomDP d

F
(Γd(I∗ ⊗ I), Γd(I∗ ⊗ A∗

∞ ⊗ I)) a representing cocycle ẽ′
d ∈

HomPd
F

(X•(−, −), X•(−⊗A∞, −)). Then precomposing with ẽ′
d evaluated

on the first variable gives for any V, V ′ the arrow

(ẽd)∗ : HomF (X•(V ′ ⊗ A∞, −), X•(V ⊗ A∞, −))
−→ HomF (X•(V ′, −), X•(V ⊗ A∞, −)).

Next, let
X(i) : X•(V ⊗ A∞, −) −→ X•(V, −)

stand for the transformation induced by the embedding k ⊂ A∞. Then we
define:

eV,V ′ := X(i) ◦ (ẽd)∗.

Again, although the choice of representative ẽ′
d is not unique, thanks to its

functoriality in the first variable, the precomposition with it (followed by
postcomposition with X(i)) is a functor from ΓdVop

X,A∞
to ΓdVop

X .
Finally we put ϕ to be e ◦ ρ.
It remains to show that ϕV,V ′ is a quasi-isomorphism for any V, V ′. The
argument follows closely the last part of the proof of [3, Theorem 4.2] (which
in turn was a reinterpretation of that of [2, Theorem 3.2]), hence we only
sketch it. It uses in a crucial way the assumption |k| ⩾ d, since it relies on
Proposition 3.3. We start with the case d = 1. Here the fact that ϕV,V ′ is a
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quasi-isomorphism follows from the first property of ẽd and Proposition 3.3
(for d = 1). For a greater d we observe that it follows from the Kunneth
formula and the second property of the classes ẽd that H∗(ϕV,V ′) is onto.
Then, since by Proposition 3.3 we know that the domain and codomain of
H∗(ϕV,V ′) have equal graded dimension, the assertion follows. □

This formality theorem, which is yet another incarnation of the phe-
nomena observed in [2, 3] allows us to perform “an ∞-affine extension” of
the {f , Ra} adjunction along the lines of [3, Section 3, 4]. We now outline
this construction, which will lead us to Theorem 3.7 (referring to [3] for
exhaustive details).

Let DP X be the derived category of the DG category Dif(ΓdVop
X ). Then

by by Theorem 3.4 we get an equivalence of triangulated categories

Rϕ∗ : DP X ≃ DP af∞
d .

Next, it is well known (see e.g. [13]) that F may be thought of as the cate-
gory of linear functors on the category kV (we recall that HomkV(V, W ) =
k[Homk(V, W )]). Thus, in terms of formalism of [10], X is a kV-ΓdVop

X bi-
module. Hence we can consider “the standard functors” [10, 3, Section 3]:

HX : Dif(kVop) −→ Dif(ΓdVop
X ), TX : Dif(ΓdVop

X ) −→ Dif(kVop)

and their derived functors

RHX : DF −→ DP X LTX : DP X −→ DF .

We recall, that since we do not have any boundedness conditions, DF

stands for the unbounded derived category.
Now we define “the ∞-affine forgetful functor”:

faf∞ : DP af∞
d −→ DF

as faf∞ := LTX ◦ (Rϕ∗)−1, and “the ∞-affine right algebraification”:

aaf∞ : DF −→ DP af∞
d

as aaf∞ := Rϕ∗ ◦ RHX .
The next theorem is the main result of the first part of the paper. It is

analogous to [3, Theorem 5.1], though slightly weaker. The reason is that,
in contrast to [3], X• is not bounded, hence is not a finite object in DF .
Then we have

Theorem 3.7. — Functors faf∞ , aaf∞ have the following properties:
(1) faf∞ ◦ z∗ ≃ f , t∗ ◦ aaf∞ ≃ Ra.
(2) aaf∞ is right adjoint to faf∞ .
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16 Marcin CHAŁUPNIK

(3) Let DP faf∞
d stand for the full subcategory of DP af∞

d consisting
of finite objects. Then when we restrict faf∞ to DP faf∞

d , we have
aaf∞ ◦ faf∞ ≃ IdDP faf∞

d
.

(4) faf∞ restricted to DP faf∞
d is fully faithful.

Proof. — In order to get the first isomorphism in the first part we eval-
uate faf∞ ◦ z∗ on the projective generator Γd,U of Pd. We obtain

faf∞ ◦ z∗(Γd,U ) = faf∞(hU⊗A∞) = X(U, −) ≃ Γd,U = f(Γd,U ),

hence we get a natural in V isomorphism faf∞ ◦ z∗(Γd,U ) ≃ f(Γd,U ). This,
since any object in DP d can be represented by a complex of coproducts
of Γd,U and the both functor commute with infinite coproducts, gives the
first isomorphism. To get the second isomorphism we observe that

t∗ ◦ aaf∞(F )(V ) = HomF (X(V, −), F ) = Ra(F )(V )

for any F ∈ DF .
The second part of the theorem follows from the {LTX , RHX} adjunction

and the fact that Rϕ∗ is an equivalence.
To get the third part of the theorem we first observe that by [10, Theo-

rem 5.3], DP faf∞
d coincides with the smallest full triangulated subcategory

of DP af∞
d containing representable functors and closed under isomorphisms

and direct summands. Then, since

aaf∞ ◦ faf∞(hU⊗A∞) ≃ hU⊗A∞

by the very definition of X, we conclude that the unit of the adjunction is
an isomorphism on the whole category DP faf∞

d .
(4) follows formally from (2), (3) (by e.g. [11, Proposition 2.3.1]). □

4. Spectra of strict polynomial functors

In this section we modify the category (of complexes over) P by for-
mally inverting the Frobenius twist operation. We achieve this goal by a
general construction, known from stable homotopy theory, i.e. we consider
spectra of complexes of strict polynomial functors. We follow a general ap-
proach of Hovey [8] who starts from a Quillen model category C with a left
Quillen endofunctor T and equips its category of spectra with an appropri-
ate Quillen model structure. In order to conform to this context we have
to slightly adjust our setup. Namely, although we are mainly interested
in Pd for a fixed d > 0, we should also allow strict polynomial functors of
other degrees to make the Frobenius twisting functor C into an endofunctor
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ON SPECTRA AND FUNCTORS 17

(of course it would suffice to consider degrees dpi). However, the category
P :=

⊕
d>0 Pd is not suitable for our purposes, since the forgetful functor

f : P → F does not possess the right adjoint. Hence we shall consider the
product category

P̂ :=
∏
d>0

Pd

and we recall again that we do not assume that the objects in Pd are func-
tors taking finite dimensional values. Then we consider the category KP̂
of unbounded complexes over P̂. KP̂ can be equipped with the projective
Quillen model structure. For the readers convenience we recall this struc-
ture. It is described in detail e.g. in [9] for the category of modules over
a ring but this description readily generalizes to any AB5 category with a
projective generator. In this structure all complexes are fibrant, while the
cofibrant ones are those satisfying the “property P” [10]. In our situation
the property P boils down to saying that a complex admits a filtration
{Mj}j⩾0 such that for any j ⩾ 0:

• embedding Mj ⊂ Mj+1 splits in A.
• Mj+1/Mj consists of projectives and has trivial differential.

The fibrations are the epimorphisms, the cofibrations are the monomor-
phims with cofibrant cokernels which split in the underlying abelian cat-
egory. The weak equivalences are the quasi-isomorphisms. Then we en-
counter another technical problem: since C does not preserve projective
objects, it is not a left Quillen functor with respect to the projective Quillen
structure on KP̂. The simplest way of overcoming this obstacle is by using
the following technical fact.

Proposition 4.1. — There exists a functor C′ : KP̂ → KP̂ such that
(1) C′ is left Quillen functor with respect to the projective model struc-

ture on KP̂.
(2) There is a natural isomorphism of total left derived functors LC′ ≃

LC.

Proof. — We can describe C′ by using an explicit construction from [3].
Namely we established in [3, Theorem 5.1(1)] an isomorphism of functors
C ≃ Caf ◦z∗ as functors from DP dp to DP d. We emphasize that z∗ stands
here for the functor appearing in [3] (we also remind that we stick to the
convention that for exact functors we denote their derived functors by the
same letter). Then we recall from [3, Sections 4, 5] that Caf is the derived
functor of the composite TX ◦ (ϕ∗)−1 of two left Quillen functors. Hence,
since readily z∗ is left Quillen functor, we can define C′ as the composite
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18 Marcin CHAŁUPNIK

TX ◦ ϕ−1 ◦ z∗. In order to obtain an equivalence LC′ ≃ LC we invoke
again [3, Theorem 5.1(1)]. Namely, in the proof of [3, Theorem 5.1] we
constructed a collection of quasi-isomorphisms

C′(Γd,U ) −→ C(Γd,U )

natural in U . This allows us to construct a transformation C′ → C of
functors defined on the full subcategory of KP d consisting of complexes
projective in each degree. Since the cofibrant objects in KP d are projective
in each degree, we obtain a natural isomorphism LC′ ≃ LC. Finally we
extend our construction degreewise to the whole product category KP̂. □

Let K′ : KP̂ → KP̂ be the right adjoint functor to C′. From now on we
consider the pair of adjoint functors {C′, K′} instead of the original adjoint
pair {C, K}. In fact, we will rarely refer to the specific construction of C′

given above. In most cases, the properties listed in Proposition 4.1 will be
sufficient for our purposes.

Now we apply the machinery of [8] to the category KP̂ equipped with
the projective model structure with the endofunctor C′. Namely, we form
the category of spectra over KP̂.

Definition 4.2. — We call a collection of complexes Fi ∈ KP̂ and
cochain maps τi : C′(Fi) → Fi+1 for all i ⩾ 0 a spectrum (of complexes
of strict polynomial functors). For spectra F•, G• we call a collection of
cochain maps ϕi : Fi → Gi a map of spectra if τi ◦ C′(ϕi) = ϕi+1 ◦ τi for
all i ⩾ 0.

Readily the spectra and maps of spectra inherit from KP̂ the structure
of DG category (ie. grading comes from the shift in KP̂ and not that in
spectra). We call this category the category of spectra (of complexes of
strict polynomial functors) and denote it by SP̂.

For any F ∈ KP̂ we have a spectrum C∞(F ) defined by the formula

C∞(F )i := C′i(F ),

where C′i is the ith iteration of C′. The assignment F 7→ C∞(F ) produces
the functor

C∞ : KP̂ −→ SP̂
which has the evaluation functor ev(F•) := F0 as right adjoint.

Definition 4.3. — We call a spectrum F• a C-spectrum if all the maps
τi : C′(Fi) → Fi+1 are quasi-isomorphisms. Similarly, we call a spectrum
F• a K-spectrum if all the maps ωi : Fi → K′(Fi+1) adjoint to τi are
quasi-isomorphisms.
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Of course, C∞(F ) is always a C-spectrum. Less trivially, for a Young
diagram λ, let pλ denote the Young diagram whose rows are those of λ

multiplied by p. Then by [2, Proposition 2.1], K′(Spλ) ≃ Sλ, hence the
collection {Spiλ}i⩾0 forms a K-spectrum denoted Sp•λ. More generally,
since by [2, Proposition 4.2], K(SFk(λ)[hk]) = Sλ, any Schur functor Sλ

gives rise to a K-spectrum {SF i
k

(λ)[hi
k]} (F i

k stands for certain combinatorial
operation which enlarges Young diagram, see [1]). In fact, any spectrum can
be turned into a K-spectrum by means of the “delooping functor”:

Θ∞ : SP̂ −→ SP̂

given by the formula:

Θ∞(F•)i := colimj K′j(Fi+j).

Then, as it is explained in [8, Section 1], for any model category with left
Quillen endofunctor one can endow its category of spectra with the obvi-
ous model structure, which is (somewhat unfortunately) also called “pro-
jective”. In order to avoid confusion with our projective model structure on
KP̂ we shall call this model structure “levelwise”. Our terminology is jus-
tified by the fact that a morphism of spectra ϕ• : F• → G• is a cofibration
(resp. a weak equivalence) if and only if all ϕi are cofibrations (resp. weak
equivalences). The class of fibrations is determined by the lifting property.
Then the final model structure on the category of spectra, called in [8] “the
stable model structure” is obtained from the levelwise model structure by
the Bousfield localization process with respect to certain class of morphisms
(see [8, Section 2]). We summarize below the basic properties of the stable
model Quillen structure on SP̂.

Proposition 4.4. — There exists a finitely generated model structure
on SP̂ with the following properties:

(1) The pair of functors {C∞, ev} is a Quillen pair.
(2) The cofibrant objects are the spectra consisting of complexes sat-

isfying the property P with structure maps τi monomorphic with
cokernels satisfying the property P.

(3) The fibrant objects are the K-spectra.
(4) A map of spectra which is a levelwise quasi-isomorphism is a weak

equivalence.
(5) The degreewise prolongation of C′ on SP̂ is a Quillen equivalence

with the quasi-inverse being the shift functor.
(6) A natural map X → Θ∞(X) is a weak equivalence for any spectrum

X, hence Θ∞ can be chosen as a fibrant replacement functor.
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(7) The category Ho(SP̂) has a structure of triangulated category such
that the total derived functor LC∞ = C∞ : Ho(SP̂) → Ho(SP̂) is
an exact functor.

Remark. — These properties of the model structure on SP̂ will be suffi-
cient for our purposes. The first property allows one to compare KP̂ with
SP̂. Properties (2) and (3) provide explicit descriptions of fibrant and cofi-
brant objects which is essential in making calculations and also shows im-
portance of K-spectra. In fact one could also extract from [8, Sections 3-4]
certain descriptions of fibrations and cofibrations in SP̂ but we will not need
them. Properties (4) and (5) deal with weak equivalences. Property (5) is
central for the whole idea of spectra, since it shows that in SP̂ the endo-
functor C′ becomes invertible up to homotopy. Property (6) will be crucial
in the proof of Theorem 4.6.

Proof. — We apply the machinery of [8] to the projective model structure
on KP̂ with the functor C′ as the left Quillen endofunctor. The first prop-
erty is the second assertion in [8, Proposition 1.15]. The second property
follows from [8, Proposition 1.14] (we recall that the Bousfield localiza-
tion preserves cofibrant objects by [8, Theorem 2.2]). The third part is [8,
Theorem 3.4]. The fourth property is obvious. The fifth property is [8,
Theorem 3.9].

We would like to deduce the sixth property from [8, Corollary 4.11]. For
this we need to show that sequential colimits in KP̂ commute with finite
products and that K′ commutes with sequential colimits. The first fact
is well known, since Pd is equivalent to a module category. In order to
show the second fact it suffices to show that K′, when restricted to KP dp

commutes with sequential colimits. It follows from [3, Section 5] that K′ is
explicitly given as

K′(F )(V ) = HomPdp
(X̃(V, −), F ),

where X̃ is certain strict polynomial functor in two variables. Then, since X̃

is finite dimensional, K′ commutes with infinite sums; since X̃(V, −) con-
sists of projectives in Pdp, K′ preserves cokernels. Therefore K′ preserves
sequential colimits.

In order to equip Ho(SP̂) with a structure of triangulated category we re-
call that by [9, Section 7] the homotopy category Ho(C) of a Quillen model
category C is canonically a triangulated category whenever the “model the-
oretic suspension functor” on C [9, Section 6] becomes an equivalence on
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Ho(C). The standard construction of the triangulated structure on the de-
rived category of abelian category fits into this formalism. Hence we inter-
pret the standard triangulated structure on DP̂ with the shift of complexes
as the suspension in model theoretic terms. Then we prolong degreewise
the shift functor on SP̂ and, since it remains invertible (already on KP̂),
this allows one to make Ho(SP̂) with degreewise model structure into a
triangulated category. At last, since the Bousfield localization preserves the
cofibrations, it commutes with the suspension functor. This shows that the
suspension functor remains a weak equivalence in the stable model struc-
ture on SP̂. □

The last property justifies calling Ho(SP̂) the derived category of SP̂,
hence from now on we shall use notation DSP̂ := Ho(SP̂).

Now we would like to find inside DSP̂ a subcategory corresponding to
DP d. Of course we have a decomposition of KP̂ into the product of KP d.
However, in order to describe the situation for spectra we need more subcat-
egories. Let N[ 1

p ] := {epj : e, j ∈ Z, e > 0, (e, p) = 1}. Then for epj ∈ N[ 1
p ]

we define SP epj to be the full subcategory of SP consisting of spectra X•
such that Xi = 0 for i < −j and Xi ∈ KP epi+j for i ⩾ −j. Then we have
a decomposition of DG categories:

SP̂ =
∏

d∈N[ 1
p ]

SP d.

Now we claim that, roughly speaking, all our constructions carry over to
the subcategories SP d. We recall that we could not apply the ideas of [8]
to SP d directly, since C′ does not preserve these subcategories.

Proposition 4.5. — For any f : X → Y with X, Y ∈ SP d and
d ∈ N[ 1

p ], its functorial factorizations into fibrations/cofibrations belong
to SP d. Hence SP d has a natural model structure inherited from SP . The
homotopy category DSP d := Ho(SP d) has a structure of triangulated cat-
egory and there is an equivalence of triangulated categories:

DSP̂ ≃
∏

d∈N[ 1
p ]

DSP d.

Moreover, the prolongation of C′ restricts to a Quillen equivalence produc-
ing an equivalence of triangulated categories

DSP d ≃ DSP pd

for any d ∈ N[ 1
p ].
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Proof. — For d = d′pi ∈ N[ 1
p ] we consider the functor πd : SP̂ → SP̂

given on the jth level by the projection KP̂ → KP pj−id ⊂ KP̂ if j ⩾ i

and trivial elsewhere. Then, obviously im(πd) = SP d and πd restricted
to SP d is the identity functor. Now, since for any f ∈ Mor(SP̂), πd(f)
is a retract of f , πd preserves the classes of cofibrations, fibrations and
weak equivalences. This shows that SP d has a natural model structure:
we obtain a functorial factorization into cofibrations/fibrations in SP d by
applying πd to the factorization in SP̂. This also shows that the decompo-
sition SP̂ =

∏
d∈N[ 1

p ] SP d is an isomorphism of model categories where we
consider on the right hand side the product of model structures we have
just described. This gives the required decomposition of homotopy cate-
gories, which also preserves triangulated structure because πd commutes
with the cone functor.

At last, we observe that by Proposition 4.4(5) the prolongation of C′ is
a self-equivalence of DSP̂ which takes DSP d into DSP pd which proves the
last part of the proposition. □

The properties of the derived category of spectra we have established
so far allow us to obtain an analog of the known description of stable
homotopy maps between suspension spectra. This theorem is one of the
main objectives of this part of the article.

Theorem 4.6. — Let F ∈ KP d be finite dimensional and G• ∈ SP d.
Then there is a natural in F, G• isomorphism

HomDSP d
(C∞(F ), G•) ≃ colimi HomDP d

(F, K′i(Gi)).

In particular, for F, G ∈ Pd we obtain:

HomDSP d
(C∞(F ), C∞(G)[s]) ≃ colimi Exts

Pdpi
(F (i), G(i)).

Proof. — We shall deduce our theorem from [8, Corollary 4.13], hence
we should verify the assumptions of [8, Corollary 4.13]. Let A be a cofibrant
replacement of F ∈ KP d. Then A and its cylinder are finite objects in KP̂
as being finite dimensional complexes of projectives. Additionally, we recall
that any spectrum G• is fibrant in the levelwise model structure. Therefore
we can apply [8, Corollary 4.13] to our A and Y := G• and we obtain the
first part of our theorem. The second part is just a special case which we
distinguished since it is related to [5]. Indeed, we obtain:

HomDSP d
(C∞(F ), C∞(G)[s]) ≃ colimi HomDP d

(F, K′i(C′i(G)[s])))

≃ colimi HomDP pid
(C′i(F ), C′i(G)[s])

≃ colimi Exts
Pdpi

(F (i), G(i)). □
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In fact, the crucial ingredient of the proof of [8, Corollary 4.13] is the fact
that the delooping functor Θ∞ is a weak equivalence. It is worth mentioning
(we will use this fact in Section 6) that in our situation, thanks to the
Collapsing Conjecture [2, Theorem 3.2] we have a very explicit description
of the functor Θ∞C∞. Namely, for F ∈ KP̂, let F

(∞)
A∞

denote the spectrum
with (

F
(∞)
A∞

)
i

:= C′i(F )A∞ ,

where C′i(F )A∞ is meant as precomposing of C′i(F ) with − ⊗ A∞ which
practically means that we also twist A∞. This is of great importance be-
cause twisting a graded space multiplies degrees of elements by pi. When
defining the map τi : C′i(F )A∞ → C′i+1(F )A∞ we should also be careful
since

C
((

F (i)
)

A∞

)
(V ) = F

(
V (i+1) ⊗ A(i)

∞

)
̸= F

(
V (i+1) ⊗ A(i+1)

∞

)
=

(
F (i+1)

)
A∞

(V )

Using these descriptions, we take τi as the map induced by the projection
A

(i)
∞ → A

(i+1)
∞ . Thus we see that τi is not an isomorphism. This is the

reason why we do not use the notation C∞(FA∞) here. On the other hand,
F

(∞)
A∞

is a K-spectrum, since K((F (i+1))A∞) = (F (i))A∞ and, as it is easy
to see, ωi corresponds just to the identity map. Now we have

Proposition 4.7. — Let {F•} be a C-spectrum. Then there is a natural
in F• weak equivalence

(F0)(∞)
A∞

≃ Θ∞(F•).

Proof. — By the Collapsing Conjecture [2, Theorem 3.2] we have

Θ∞(F•)i ≃ colimj Kj
(

F
(i+j)
0

)
≃ colimj

(
F

(i)
0

)
Aj

=
(

F
(i)
0

)
A∞

=
(

(F0)(∞)
A∞

)
i
. □

5. Spectra of ordinary functors and factorization

The aim of the present section is to factorize the adjunction {f , Ra}
through DSP d. In order to compare the categories DSP d and DF we
take the following strategy. We introduce an intermediate category SF of
spectra of ordinary functors. Since the Frobenius twist on F is invertible,
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DSF and DF are equivalent. Then we compare DSP d and DSF by using
functoriality of the construction of spectra.

Let KF be the category of complexes of objects of F (we admit un-
bounded complexes). The Frobenius twist

C : KF −→ KF

is a self-equivalence, hence a left Quillen endofunctor for the projective
model structure on KF . Then we introduce the category SF of spectra
over KF and we equip it with the stable model structure by the Hovey
construction analogous to that applied in Section 4 to the category KP̂.
Now, since C is a Quillen equivalence, we have:

Proposition 5.1. — The Quillen pair {C∞, ev} is a Quillen equiva-
lence between KF and SF (i.e. their derived functors are mutually in-
verse equivalences between derived categories). Explicitly, we can take
LC∞ = C∞ and Rev(F•) = colimj Fnj where |k| = pn.

Proof. — The fact that we have a Quillen equivalence follows from [8,
Theorem 5.1]. The fact that LC∞ = C∞ is a consequence of the fact that
C∞ preserves all weak equivalences. Then, in general, Rev = ev ◦ R where
R is a fibrant replacement functor. But we observe that in the category F ,
the right adjoint functor to C is just C−1 = Cn−1. Therefore, obviously
Θ∞(F ) ≃ F for any F ∈ SF and we can take Θ∞ as R. Finally, we have

ev ◦ Θ∞(F•) = colimj Cnj−j(Fj) ≃ colimj Fnj . □

Now we are going to compare the categories DSP̂ and DF . We introduce
a temporary notation. Let us denote by ad : KF → KP d the right adjoint
functor to the forgetful functor f : KP d → KF . Then it is easy to see that
the functor

â : KF −→ KP̂
given as the product â(F ) := (a1, . . . , ad, . . .) is right adjoint to the functor

f̂ : KP̂ −→ KF

sending (F1, . . . , Fd, . . . ) ∈ KP̂ to the direct sum
⊕

d⩾1 f(Fd). Moreover,
by Proposition 4.1, we have a natural transformation

f̂ ◦ C′ −→ C ◦ f̂

of functors from KP̂ to KF , which is a weak equivalence . Therefore, by [8,
Proposition 5.5] we get the Quillen pair {S f̂ , Sâ} between the spectra cat-
egories SP and SF such that

S f̂ ◦ C∞ ≃ C∞ ◦ f̂ .
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Now we are ready for defining the adjunction between DP̂ and DF . Let

f st : DSP̂ −→ DSF

be given as ev ◦ Θ∞ ◦ LS f̂ and

ast : DSF −→ DSP̂

given as RSâ ◦ C∞. Let DP b
d be the full subcategory of DP d consisting of

finite dimensional complexes and let DP st
d be the smallest full triangulated

subcategory of DP d containing C∞(DP b
d) and closed under isomorphisms

and direct summands. Our terminology here refers to stable homotopy the-
ory where the stable category of Spanier–Whitehead can be characterized
in a similar manner as a full subcategory of the category of spectra. Then
we have

Theorem 5.2. — The functors f st and ast satisfy the following prop-
erties:

(1) The functor f st is left adjoint to ast.
(2) There are isomorphisms of functors between DP̂ and DF

f st ◦ C∞ ≃ f̂ ,

Rev ◦ ast ≃ Râ.

(3) Let d ⩽ |k|. Then the unit map Id → ast ◦ f st is an isomorphism
on the subcategory DP st

d .
(4) Let d ⩽ |k|. Then f st restricted to DP st

d is fully faithful.

Proof. — The first part follows from the facts that {Sf , Sa} is a Quillen
pair and Proposition 5.1. For the second part we recall that

S f̂ ◦ C∞ ≃ C∞ ◦ f̂ .

Therefore we obtain

f st ◦ C∞ ≃ Rev ◦ S f̂ ◦ C∞ ≃ Rev ◦ C∞ ◦ f̂ ≃ f̂ .

In order to obtain the second isomorphism we recall, that since Sâ is just
degreewise prolongation of a by [8, Lemma 5.3], it commutes with C∞.
Hence we get

Rev ◦ ast ≃ Rev ◦ Sâ ◦ C∞ ≃ Rev ◦ C∞ ◦ â ≃ Râ.

Parts (3) and (4) are equivalent. Since DP st
d is generated as triangulated

category with direct summands by C∞(DP b
d), it suffices to show that the
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functor f st restricted to the objects of the form C∞(F ) for F ∈ DP st
d is

fully faithful. To this end let us take F, G ∈ Pd. Then by Theorem 4.6

HomDSP d
(C∞(F ), C∞(G)[s]) ≃ colimi Exts

Pdpi
(F (i), G(i)).

On the other hand

HomDSF (f st(C∞(F )), f st(C∞(G)[s])) ≃ HomDSF (f(F ), f(G)[s])
≃ Exts

F (F, G).

Therefore our assertion follows from [5, Theorem 3.10]. □

Remark. — The functor f st has an intriguing extra feature. We recall
from Section 4 the fibrant spectra Sp•λ := {Spiλ}. Then we see that

f st(Sp•λ) = colimi Spiλ(−i)

which is nothing but the product of the Carlsson functors whose injectivity
was shown by Kuhn [12]. Thus we see that f st preserves some important
fibrant objects in contrast to the fact that the original forgetful functor
f : DP d → F does not preserve injectives. This suggests possibility of fully
reconstructing DF from some categories of algebrogeometric origin. We
hope to extend this observation in a future work.

6. Comparison of spectra and ∞-affine functors

In this section we construct a functor γ : DP af∞
d → DSP d which is a

full embedding and is compatible with our previous constructions.
Let Ai := k[x1, x2, . . . , xi]/(xp

1, xp
2, . . . xp

i ) for |xj | = 2pj (we allow here
also A0 := k). We consider the categories ΓdVAi

, Pafi

d , DP afi

d , analogous to
the notions introduced in Section 2. In particular Paf0

d means just Pgr
d , the

graded counterpart of Pd (of course DP gr
d ≃ DP d). The theory of “i-affine

functors” is parallel but simpler, since Ai is finite dimensional, to that of
“∞-affine functors”. In particular, for j > i, we have the functors

t∗
j,i : DP

afj

d −→ DP afi

d

induced by the embeddings Ai ⊂ Aj and their adjoints z∗
j,i. We also consider

the infinite variants:
t∗
∞,i : DP af∞

d −→ DP afi

d

and their adjoints z∗
∞,i. We have also the adjunction {Cafi , Kafi} between

the categories DP afi

d and DP dpi .
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Lemma 6.1. — We have the following isomorphisms of functors:
• t∗

∞,i ≃ t∗
i+1,i ◦ t∗

∞,i

• Cafi ◦ t∗
i+1,i ≃ K ◦ Cafi+1

Proof. — The first isomorphism is obvious. In order to get the second
one we evaluate both sides on the cofibrant generator hU⊗Ai+1 of DP

afi+1
d .

Since hU⊗Ai+1 = z∗(Γd,U ), we have

K(Cafi+1(hU⊗Ai+1)) = K(Kafi+1(z∗(Γd,U )))

= K(Ci+1(Γd,U )) = (Γd,U )(i+1)
A1

,

and we recall that

(Γd,U )(i+1)
A1

(V ) := Γd(V (i) ⊗ A
(i+1)
1 ⊗ U∗).

On the other hand we have

Kafi(t∗
i+1,i(hU⊗Ai+1)) = Kafi(hU⊗Ai+1

1 ⊗Ai) = (Γd,U )(i+1)
A1

. □

Now for F ∈ Paf∞
d we consider the collection γ̃(F )i := {Cafi(t∗

∞,i(F ))}
for i ⩾ 0. I claim that γ̃(F ) may be equipped with a structure of K-
spectrum. Indeed, by using the second and first part of Lemma 6.1 we
obtain isomorphisms:

K(γ̃(F )i+1) = K(Cafi+1(t∗
∞,i+1(F )))

≃ Cafi(t∗
i+1,i(t∗

∞,i+1(F )))

≃ Cafi(t∗
∞,i(F )) = γ̃(F )i.

Thus γ̃ is a functor from Paf∞
d to SP d. Then we extend γ̃ to the functor

between derived categories:

γ : DP af∞
d −→ DSP d.

by applying γ̃ to the cofibrant objects in KP af∞
d .

Theorem 6.2. — The functor γ satisfies the following properties:
(1) There are isomorphisms of functors γ ◦ z∗ ≃ C∞, faf∞ ≃ f st ◦ γ.
(2) γ is a full embedding and it restricts to an equivalence DP faf∞

d ≃
DP st

d .

Remark 6.3. — Theorem 6.2 provides a comparison between the ideas of
Sections 2–3 and Sections 4–5. The first part shows that γ is compatible
with all our previous constructions. The crucial is the second part, which
shows that, in a sense, Paf∞

d is a more economical construction than SP d,
but they become equivalent when restricted to the subcategories consisting
of finite objects.
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Proof of Theorem 6.2. — First we observe that t∗
∞,i ◦ z∗ = (z∗

i,0)
A

(i)
∞

.
Hence for F ∈ KP d we obtain

γ(z∗(F )) = {Cafi(t∗
∞,i(z∗(F )))} = {Cafi(z∗

i,0(F
A

(i)
∞

))}

= {Ci(F
A

(i)
∞

)} = F
(∞)
A∞

.

Now we recall that by Proposition 4.7 the spectra F
(∞)
A∞

and C∞(F ) are
naturally stably quasi-isomorphic, hence equivalent in DSP d, which shows
the first isomorphism.

In order to establish the second isomorphism we evaluate the two sides
on the generator hU⊗A∞ . On the one hand we have

faf∞(hU⊗A∞) = f(Γd,U ).

On the other hand:

f st(γ(hU⊗A∞)) = f st((Γd,U )(∞)
A∞

) ≃ f st(C∞(Γd,U )) = f(Γd,U ).

In order to obtain the second part of Theorem 6.2 we recall that s hU⊗A∞ =
z∗(Γd,U ), thus we have γ(hU⊗A∞) ≃ Γd,U )(∞)

A∞
≃ C∞(Γd,U ). Hence ,since

C∞(Γd,U ) form a set of finite generators of DP st
d , by [10, Lemma 4.2], it

suffices to show that γ induces bijections:

HomDP af∞
d

(hU⊗A∞ , hW ⊗A∞ [j]) ≃ HomDSP d
((Γd,U )(∞)

A∞
, (Γd,W [j])(∞)

A∞
)

for all spaces U, W and shifts j. It is easy to see that the source and target
are abstractly isomorphic. However, since γ uses t∗

∞,i, it may appear that
it can kill morphisms. For this reason, let us look carefully how γ acts on
morphisms. First of all, since hU⊗A∞ , hW ⊗A∞ are cofibrant, we have:

HomDP af∞
d

(
hU⊗A∞ , hW ⊗A∞ [∗]

)
≃ HomPaf∞

d

(
hU⊗A∞ , hW ⊗A∞

)
≃ HomPaf∞

d

(
z∗ (

Γd,U
)

, z∗ (
Γd,W

))
.

Now we recall that by Proposition 4.7 (F )∞
A∞

≃ Θ∞(C∞(F )). Thus by
general theory of spectra (and the cofibrance of C∞(Γd,U )) we have:

HomDSP d

((
Γd,U

)(∞)
A∞

,
(
Γd,W [∗]

)(∞)
A∞

)
≃ HomDSP d

(
C∞ (

Γd,U
)

,
(
Γd,W [∗]

)(∞)
A∞

)
≃ HomSP d

(
C∞ (

Γd,U
)

,
(
Γd,W

)(∞)
A∞

)
≃ HomPd

(
Γd,U ,

(
Γd,W

)
A∞

)
≃ HomPd

(
Γd,U , t∗ ◦ z∗ (

Γd,W
))

.
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We point out that the first bijection is in general induced by the canonical
map of spectra C∞(F ) → Θ∞(C∞(F )) which on the zeroth level of spectra
in our example may be identified with the unit map Γd,U → t∗ ◦ z∗(Γd,U )
by Proposition 4.7. Therefore, under these identifications, the action of γ

on the morphisms can be described as the composite:

HomPaf∞
d

(
z∗ (

Γd,U
)

, z∗ (
Γd,W

))
−→ HomPaf∞

d

(
t∗ ◦ z∗ (

Γd,U
)

, t∗ ◦ z∗ (
Γd,W

))
−→ HomPd

(
Γd,U

)
, t∗ ◦ z∗ (

Γd,W
)

where the first map is applying t∗ and the second one is induced by the
aforementioned unit map. This composite coincides with the adjunction
isomorphism by general theory of adjunctions. □
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