Complete quaternionic Kähler manifolds with finite volume ends
[Variétés quaternion-kählériennes complètes avec bouts de volume fini]
Annales de l'Institut Fourier, Online first, 47 p.

Nous construisons des exemples de variétés quaternion-kählériennes complètes avec un bout de volume fini, qui ne sont pas localement homogènes. Les variétés sont asphériques avec groupe fondamental qui est, à une extension cyclique infinie près, un produit semi-direct d’un réseau dans un groupe semi-simple avec un réseau dans un groupe de Heisenberg. Leur revêtement universel est une déformation de cohomogénéité 1 d’un espace symétrique de type non compact.

We construct examples of complete quaternionic Kähler manifolds with an end of finite volume, which are not locally homogeneous. The manifolds are aspherical with fundamental group which is up to an infinite cyclic extension a semi-direct product of a lattice in a semi-simple group with a lattice in a Heisenberg group. Their universal covering is a cohomogeneity one deformation of a symmetric space of non-compact type.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3664
Classification : 53C26
Keywords: Quaternionic Kähler manifolds, $c$-map, One-loop deformation, Isometry groups, Cohomogeneity one.
Mot clés : Variétés quaternion-kählériennes, $c$-map, Déformation à une boucle, Groupes d’isométries, Cohomogénéité 1.

Cortés, Vicente 1 ; Röser, Markus 1 ; Thung, Daniel 1

1 Department of Mathematics, University of Hamburg (Germany)
@unpublished{AIF_0__0_0_A107_0,
     author = {Cort\'es, Vicente and R\"oser, Markus and Thung, Daniel},
     title = {Complete quaternionic {K\"ahler} manifolds with finite volume ends},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3664},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Cortés, Vicente
AU  - Röser, Markus
AU  - Thung, Daniel
TI  - Complete quaternionic Kähler manifolds with finite volume ends
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3664
LA  - en
ID  - AIF_0__0_0_A107_0
ER  - 
%0 Unpublished Work
%A Cortés, Vicente
%A Röser, Markus
%A Thung, Daniel
%T Complete quaternionic Kähler manifolds with finite volume ends
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3664
%G en
%F AIF_0__0_0_A107_0
Cortés, Vicente; Röser, Markus; Thung, Daniel. Complete quaternionic Kähler manifolds with finite volume ends. Annales de l'Institut Fourier, Online first, 47 p.

[1] Alekseevsky, Dmitri V. Riemannian spaces with unusual holonomy groups, Funkts. Anal. Prilozh., Volume 2 (1968) no. 2, pp. 1-10 | MR

[2] Alekseevsky, Dmitri V. Classification of quaternionic spaces with transitive solvable group of motions, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 39 (1975) no. 2, p. 315-362, 472 | MR | Zbl

[3] Alekseevsky, Dmitri V.; Cortés, Vicente; Devchand, Chandrashekar Special complex manifolds, J. Geom. Phys., Volume 42 (2002) no. 1-2, pp. 85-105 | DOI | MR | Zbl

[4] Alekseevsky, Dmitri V.; Cortés, Vicente; Dyckmanns, Malte; Mohaupt, Thomas Quaternionic Kähler metrics associated with special Kähler manifolds, J. Geom. Phys., Volume 92 (2015), pp. 271-287 | DOI | MR | Zbl

[5] Alekseevsky, Dmitri V.; Cortés, Vicente; Mohaupt, Thomas Conification of Kähler and hyper-Kähler manifolds, Commun. Math. Phys., Volume 324 (2013) no. 2, pp. 637-655 | DOI | MR | Zbl

[6] Beauville, Arnaud Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differ. Geom., Volume 18 (1983) no. 4, pp. 755-782 | DOI | MR | Zbl

[7] Berger, Marcel Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. Fr., Volume 83 (1955), pp. 279-330 | DOI | MR | Zbl

[8] Borel, Armand Compact Clifford–Klein forms of symmetric spaces, Topology, Volume 2 (1963), pp. 111-122 | DOI | MR | Zbl

[9] Bryant, Robert L. Metrics with exceptional holonomy, Ann. Math., Volume 126 (1987) no. 3, pp. 525-576 | DOI | MR | Zbl

[10] Bryant, Robert L.; Salamon, Simon On the construction of some complete metrics with exceptional holonomy, Duke Math. J., Volume 58 (1989) no. 3, pp. 829-850 | DOI | MR | Zbl

[11] Cecotti, Sergio; Ferrara, Sergio; Girardello, Luciano Geometry of type II superstrings and the moduli of superconformal field theories, Int. J. Mod. Phys. A, Volume 4 (1989) no. 10, pp. 2475-2529 | DOI | MR | Zbl

[12] Cortés, Vicente; Dyckmanns, Malte; Suhr, Stefan Completeness of projective special Kähler and quaternionic Kähler manifolds, Special metrics and group actions in geometry (Springer INdAM Series), Volume 23, Springer, 2017, pp. 81-106 | DOI | MR | Zbl

[13] Cortés, Vicente; Han, X.; Mohaupt, Thomas Completeness in supergravity constructions, Commun. Math. Phys., Volume 311 (2012) no. 1, pp. 191-213 | DOI | MR | Zbl

[14] Cortés, Vicente; Saha, A.; Thung, D. Symmetries of quaternionic Kähler manifolds with S 1 -symmetry, Trans. Lond. Math. Soc., Volume 8 (2021) no. 1, pp. 95-119 | DOI | MR | Zbl

[15] Cortés, Vicente; Saha, A.; Thung, D. Curvature of quaternionic Kähler manifolds with S 1 -symmetry, Manuscr. Math., Volume 168 (2022) no. 1-2, pp. 35-64 | DOI | MR | Zbl

[16] Epstein, David B. A. Complex hyperbolic geometry, Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984) (London Mathematical Society Lecture Note Series), Volume 111, Cambridge University Press, 1987, pp. 93-111 | MR | Zbl

[17] Freed, Daniel S. Special Kähler manifolds, Commun. Math. Phys., Volume 203 (1999) no. 1, pp. 31-52 | DOI | MR | Zbl

[18] Haydys, Andriy HyperKähler and quaternionic Kähler manifolds with S 1 -symmetries, J. Geom. Phys., Volume 58 (2008) no. 3, pp. 293-306 | DOI | MR | Zbl

[19] Horan, Robin A rigidity theorem for quaternionic Kähler manifolds, Differ. Geom. Appl., Volume 6 (1996) no. 2, pp. 189-196 | DOI | MR | Zbl

[20] Joyce, Dominic D. Compact 8-manifolds with holonomy Spin(7), Invent. Math., Volume 123 (1996) no. 3, pp. 507-552 | DOI | MR | Zbl

[21] Joyce, Dominic D. Compact Riemannian 7-manifolds with holonomy G 2 . I, J. Differ. Geom., Volume 43 (1996) no. 2, pp. 291-328 | DOI | MR | Zbl

[22] Joyce, Dominic D. Compact Riemannian 7-manifolds with holonomy G 2 . II, J. Differ. Geom., Volume 43 (1996) no. 2, pp. 329-375 | DOI | MR | Zbl

[23] Katok, Svetlana Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, 1992, x+175 pages | MR | Zbl

[24] LeBrun, Claude Quaternionic-Kähler manifolds and conformal geometry, Math. Ann., Volume 284 (1989) no. 3, pp. 353-376 | DOI | MR | Zbl

[25] LeBrun, Claude On complete quaternionic-Kähler manifolds, Duke Math. J., Volume 63 (1991) no. 3, pp. 723-743 | DOI | MR | Zbl

[26] LeBrun, Claude; Salamon, Simon Strong rigidity of positive quaternion-Kähler manifolds, Invent. Math., Volume 118 (1994) no. 1, pp. 109-132 | DOI | MR | Zbl

[27] Macia, Oscar; Swann, Andrew Twist geometry of the c-map, Commun. Math. Phys., Volume 336 (2015) no. 3, pp. 1329-1357 | DOI | MR | Zbl

[28] Macias Virgós, Enrique Nonclosed Lie subgroups of Lie groups, Ann. Global Anal. Geom., Volume 11 (1993) no. 1, pp. 35-40 | DOI | MR | Zbl

[29] Morris, Dave Witte Introduction to arithmetic groups, Deductive Press, 2015, xii+475 pages | MR | Zbl

[30] Mosak, Richard D.; Moskowitz, Martin Stabilizers of lattices in Lie groups, J. Lie Theory, Volume 4 (1994) no. 1, pp. 1-16 | MR | Zbl

[31] Robles Llana, Daniel; Saueressig, Frank; Vandoren, Stefan String loop corrected hypermultiplet moduli spaces, J. High Energy Phys. (2006) no. 3, 081, 35 pages | DOI | MR | Zbl

[32] Serre, Jean-Pierre A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973, viii+115 pages | DOI | MR | Zbl

[33] Swann, Andrew Twisting Hermitian and hypercomplex geometries, Duke Math. J., Volume 155 (2010) no. 2, pp. 403-431 | DOI | MR | Zbl

[34] Wilson, Edward N. Isometry groups on homogeneous nilmanifolds, Geom. Dedicata, Volume 12 (1982) no. 3, pp. 337-346 | DOI | MR | Zbl

[35] Wolf, Joseph A. Complex homogeneous contact manifolds and quaternionic symmetric spaces, J. Math. Mech., Volume 14 (1965), pp. 1033-1047 | MR | Zbl

[36] Yau, Shing Tung On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I, Commun. Pure Appl. Math., Volume 31 (1978) no. 3, pp. 339-411 | DOI | MR | Zbl

Cité par Sources :