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COMPLETE QUATERNIONIC KÄHLER MANIFOLDS
WITH FINITE VOLUME ENDS

by Vicente CORTÉS, Markus RÖSER & Daniel THUNG (*)

Abstract. — We construct examples of complete quaternionic Kähler mani-
folds with an end of finite volume, which are not locally homogeneous. The man-
ifolds are aspherical with fundamental group which is up to an infinite cyclic ex-
tension a semi-direct product of a lattice in a semi-simple group with a lattice in
a Heisenberg group. Their universal covering is a cohomogeneity one deformation
of a symmetric space of non-compact type.

Résumé. — Nous construisons des exemples de variétés quaternion-kählériennes
complètes avec un bout de volume fini, qui ne sont pas localement homogènes.
Les variétés sont asphériques avec groupe fondamental qui est, à une extension
cyclique infinie près, un produit semi-direct d’un réseau dans un groupe semi-simple
avec un réseau dans un groupe de Heisenberg. Leur revêtement universel est une
déformation de cohomogénéité 1 d’un espace symétrique de type non compact.

1. Introduction

One of the milestones of twentieth century differential geometry is Ber-
ger’s classification of irreducible holonomy groups of non-locally symmetric
Riemannian manifolds [7]. The problem to construct non-locally symmet-
ric Riemannian manifolds (or to show their non-existence) for each of the
groups in Berger’s list has been a major driving force for research in the
theory of Einstein manifolds, involving a combination of Lie theory [1, 2],
differential geometry [9, 10, 24, 25], geometric analysis [20, 21, 22, 36] and
algebraic geometry [6]. As a result, we have compact non-locally symmetric
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476 Vicente CORTÉS, Markus RÖSER & Daniel THUNG

examples of Riemannian manifolds for all of the groups in Berger’s list with
exception of the group Sp(n)Sp(1).

Riemannian manifolds with holonomy group a subgroup of Sp(n)Sp(1)
for n ⩾ 2 are known as quaternionic Kähler manifolds. These manifolds
are Einstein and, in fact, generalize half-conformally flat Einstein four-
manifolds, which are by definition the quaternionic Kähler manifolds of
dimension four.

All the known compact examples of non-zero scalar curvature are locally
symmetric. They fall into two classes: symmetric quaternionic Kähler man-
ifolds of compact type, known as Wolf spaces [35], and locally symmetric
spaces obtained as smooth quotients of the non-compact duals of the Wolf
spaces by lattices of the isometry group [8]. The manifolds in both classes
are rigid [19, 26] which shows that further examples cannot be obtained
from deformation theory. Moreover, in the case of positive scalar curvature
it is even conjectured that the Wolf spaces exhaust all complete (and hence
compact, by Bonnet–Myers) examples [26].

In this article we show that complete quaternionic Kähler manifolds of
negative scalar curvature can have ends of finite volume without being lo-
cally homogeneous. Our constructions are based on the recently proven fact
that the known homogeneous quaternionic Kähler manifolds of negative
scalar curvature and higher rank can be deformed into complete quater-
nionic Kähler manifolds with an isometric cohomogeneity one action [14,
Corollary 3.19].

In this paper we focus on the above deformation (Nn, g
c), c ⩾ 0, for the

symmetric spaces

(Nn, g
0) =

(
SU(2, n)

S(U(2) × U(n)) , gcan

)
.

The one-parameter family (Nn, g
c), c ⩾ 0, is obtained from an indefinite

hyper-Kähler manifold by the HK/QK correspondence. This implies that
the metrics gc are quaternionic Kähler [4, Corollary 1]. The completeness of
(Nn, g

c) for c ⩾ 0 was shown in [12, Corollary 15]. The manifolds (Nn, g
c)

are locally inhomogeneous for c > 0 [14, Theorem 4.8].
We show in dimensions 4 and 8 (i.e. for n = 1 and 2) that the isometry

group of (Nn, g
c), c ⩾ 0, contains discrete subgroups which give rise to

smooth quotient manifolds X = XΓ = N/Γ with exactly two ends, see
Theorem 4.2. The metric gc on Nn induces a complete quaternionic Kähler
metric on XΓ, which we denote by the same symbol. With respect to this
metric one of the two ends is of finite volume and the other is of infinite
volume, see Theorem 4.5.
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COMPLETE QK MANIFOLDS WITH FINITE VOLUME ENDS 477

The fundamental groups Γ of the eight-dimensional complete quater-
nionic Kähler manifolds (XΓ, g

c), c ⩾ 0, have the structure of a cyclic quo-
tient (Γ1⋉Γ2)/Z of a semi-direct product Γ1⋉Γ2, where Γ1 ⊂ S̃U(1, 1) is the
preimage of an arithmetic subgroup Γ1 ⊂ SU(1, 1) in the universal covering
and Γ2 is a lattice in the five-dimensional Heisenberg group. The subgroup
Z ⊂ Γ1⋉Γ2 is diagonal for c > 0, in the sense that it has trivial intersection
with each of the factors. We consider also Γ = Γ1 ⋉ Γ2, which is a lattice
in SU(1, 1)⋉Heis5. In the undeformed case c = 0, we have Z ⊂ Γ1 and the
above construction reduces to a semi-direct product Γ = Γ = Γ1 ⋉ Γ2, of
an arithmetic group Γ1 ⊂ SU(1, 1) with a lattice Γ2 ⊂ Heis5. In four di-
mensions, Γ reduces to a lattice in the three-dimensional Heisenberg group
and XΓ is diffeomorphic to (Heis3 /Γ) × R.

Our results are developed in such a way that they immediately extend
to higher dimensions given lattices Γ ⊂ SU(1, n− 1) ⋉ Heis2n+1, which do
always exist. In particular, the isometric action of SU(1, n− 1) ⋉ Heis2n+1
on a cyclic quotient of Nn is proven in all dimensions, see Theorem 3.16.
The arithmetic part of the construction consists in finding lattices Γ1 in
SU(1, n− 1) which normalize a lattice in Heis2n+1. For n = 2 we were able
to construct co-compact lattices of this type using quaternion algebras. The
lattices which we obtained can be described as follows.

Let a, b ∈ Z>0 be such that b is prime and a is a quadratic non-residue
mod b, i.e. a does not have a square root in the field Zb. Denote by Oa,b ⊂
gl(2,C) the Z-span of the four matrices

1 =
(

1 0
0 1

)
, I =

√
ai
(

0 1
−1 0

)
, J =

√
b

(
0 1
1 0

)
, K =

√
abi
(

1 0
0 −1

)
.

Then Γ1,a,b = Oa,b ∩ SU(1, 1) = {A ∈ Oa,b : detA = 1} is a co-compact
Fuchsian group, which preserves the lattice Γ2 in Heis5 ∼= C2 ×R generated
by Oa,b ·( 1

0 ) ⊂ C2. Up to passing to a suitable finite index normal subgroup,
Γ = Γ1,a,b ⋉ Γ2 gives a lattice of the desired type, as long as the one-loop
parameter c is chosen to be a rational multiple of

√
ab.

The following theorem summarizes the main results about quaternionic
Kähler manifolds of dimension ⩽ 8 obtained in this paper, compare Theo-
rem 4.2 and Theorem 4.5.

Theorem 1.1. — There exist complete locally inhomogeneous quater-
nionic Kähler manifolds of dimension 4 and 8 which are diffeomorphic to a
product X = R ×K, where K is a compact aspherical manifold described
more in detail below and the volume of one of the two ends of X is finite,
the other infinite.
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478 Vicente CORTÉS, Markus RÖSER & Daniel THUNG

• For dimX = 4 the fiber K is a nilmanifold.
• For dimX = 8 it is a manifold with fundamental group of the

form (Γ1 ⋉Γ2)/Z, where Γ1 is a lattice in S̃U(1, 1) covering a finite
index normal subgroup of any of the above Fuchsian groups Γ1,a,b ⊂
SU(1, 1), Γ2 is a lattice in Heis5 and Z is a diagonally embedded
central subgroup.

While co-compact lattices in SU(1, n − 1) are known from complex hy-
perbolic geometry, see for instance [16], there is no such lattice normalizing
a lattice in Cn for n ⩾ 3 compatible(1) with the Hermitian structure (and
a fortiori no such lattice normalizing a compatible log-lattice in Heis2n+1).
Indeed, such a lattice in SU(1, n−1), n ⩾ 3, would give rise to an anisotropic
Hermitian sesquilinear form over an imaginary number field. The real part
thereof would be an anisotropic non-degenerate rational symmetric bilin-
ear form in more than 4 variables that is indefinite over R, contradicting
Meyer’s theorem (see [32, Corollary 2 on p. 43]).

However, lattices of finite co-volume in SU(1, n − 1) ⋉ Heis2n+1 can be
easily obtained by considering normalizers of certain lattices in Heis2n+1.
Using suitable lattices

(1.1) Γ ⊂ SU(1, n− 1) ⋉ Heis2n+1

we construct quaternionic Kähler manifolds of dimension 4n fibering over
R with locally homogeneous fibers of finite volume. The results can be
summarized as follows, see Theorem 4.4 and Theorem 4.5.

Theorem 1.2. — In all dimensions 4n ⩾ 4, there exist complete locally
inhomogeneous quaternionic Kähler manifolds diffeomorphic to X = R×K,
where the fibers {t} ×K are aspherical of finite volume with fundamental
group an infinite cyclic extension of a group Γ of the form (1.1). Infinitely
many examples of such groups Γ do occur in every dimension. The domains
{t > t0} ⊂ X are of finite volume for all t0 ∈ R while the domains {t < t0}
are of infinite volume.

After this summary of the main results, we would like to briefly describe
the structure of our paper. Our constructions are based on an explicit
construction of quaternionic Kähler metrics of negative scalar curvature
known as the one-loop deformed c-map. This is reviewed in Section 2.

(1) Compatibility is defined on page 514.
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COMPLETE QK MANIFOLDS WITH FINITE VOLUME ENDS 479

In Section 3 we specialize the construction to the complete quaternionic
Kähler 4n-manifolds N = (Nn, g

c), c > 0, considered above. We prove that
the simply connected group S̃U(1, n−1)⋉Heis2n+1 acts on N by isometries
and characterize its image in the isometry group.

In Section 4 we study lattices in that semi-direct product, which act
with co-finite volume on the leaves of a certain codimension one foliation
of N . When the action on the leaves is co-compact, we prove that the
corresponding quotients of N have an end of finite volume, while the other
end has infinite volume.
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2. Preliminaries

2.1. The (one-loop deformed) c-map

The one-loop deformed c-map is a string theory construction [31] which,
to a given projective special Kähler manifold M , associates a one-parameter
family of quaternionic Kähler manifolds. A geometric proof of the quater-
nionic Kähler property was given in [4, Theorem 5] based on an exten-
sion [5] of Haydys’ HK/QK correspondence [18]. These constructions were
elegantly recovered in [27] based on Swann’s twist approach [33], as we
will now describe. For more information see [4, 14, 27] and references
therein.

We begin by recalling [3, 17] the notion of a projective special Kähler
manifold, which is defined in terms of a corresponding conical affine special
Kähler manifold.

Definition 2.1. — A pseudo-Kähler manifold (M, g, J, ω)endowed with
a flat, torsion-free connection ∇ which satisfies ∇ω = 0 and d∇J = 0,
where J is viewed as a TM -valued one-form, is called an affine special
Kähler (ASK) manifold.

TOME 75 (2025), FASCICULE 2



480 Vicente CORTÉS, Markus RÖSER & Daniel THUNG

An ASK manifold (M, g, J,∇) endowed with a vector field ξ is called
conical, or a CASK manifold, if

(1) {ξ, Jξ} generate a principal (that is, free and proper) C∗-action,
(2) g|⟨ξ,Jξ⟩ is negative-definite while g|⟨ξ,Jξ⟩⊥ is positive-definite, and
(3) ∇ξ = ∇LCξ = idT M , where ∇LC is the Levi-Civita connection of g.

The vector field ξ is called the Euler field.

The C∗-action on a CASK manifold casts it as the total space of a C∗-
principal bundle. The base of this bundle is what we call a projective special
Kähler manifold.

Definition 2.2. — Let (M, g, J,∇, ξ) be a CASK manifold. Then M :=
M/C∗ is called a projective special Kähler (PSK) manifold.

That every PSK manifold is indeed Kähler follows from the fact that we
can construct M as a Kähler quotient. If (M, g, J,∇, ξ) is a CASK manifold,
−Jξ generates an S1-action which preserves the (pseudo-)Kähler structure.
Its Hamiltonian function is µ = − 1

2g(ξ, ξ), whose level sets intersect the
orbits of the R+-action generated by the Euler field exactly once. Choosing
the level 1

2 , we then find M//S1 = µ−1( 1
2
)
/S1 ∼= M/C∗ = M . Since g|⟨ξ,Jξ⟩⊥

is positive-definite, so is the induced Kähler metric on M .
By definition, M arises from a CASK manifold (M, gM , JM , ωM ,∇, ξ).

The ASK structure on M gives rise to a pseudo-hyper-Kähler structure on
its cotangent bundle.

Theorem 2.3 ([3, 11, 17]). — Let (M, gM , JM , ωM ,∇) be an ASK man-
ifold. Then N := T ∗M carries a pseudo-hyper-Kähler structure. With re-
spect to the splitting TN ∼= π∗TM ⊕ π∗T ∗M induced by ∇, the hyper-
Kähler metric g and complex structures Ik, k = 1, 2, 3, are given by the
expressions

g =
(
gM 0
0 g−1

M

)
, I1 =

(
JM 0
0 J∗

M

)
, I2 =

(
0 −ω−1

M

ωM 0

)
, I3 = I1I2,

where g−1
M and J∗

M denote the natural induced structures on T ∗M , ωM is
regarded as an isomorphism TM → T ∗M , and we have omitted pullbacks
throughout to simplify notation.

This pseudo-hyper-Kähler structure, which is known as the rigid c-map
structure, is a natural generalization of the standard pseudo-hyper-Kähler
structure on Hn,1 ∼= Cn,1 ⊕ (Cn,1)∗.

In the conical case, we additionally have a natural circle action, generated
by the vector field −JMξ.
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Definition 2.4. — We call a vector field Z ∈ X(N) on a (pseudo-
)hyper-Kähler manifold (N, g, ωk), k = 1, 2, 3, a rotating Killing field if it
satisfies LZg = 0, LZω1 = 0, LZω2 = ω3 and LZω3 = −ω2.

Using coordinates adapted to the CASK structure [3], a straightforward
computation shows:

Proposition 2.5 ([5]). — Let (M, gM , JM ,∇, ξ) be a CASK manifold,
and endow N = T ∗M with the rigid c-map structure. Then Z = −J̃Mξ ∈
X(N), where the tilde denotes the ∇-horizontal lift, is a rotating Killing
field. Moreover, it is ω1-Hamiltonian, with Hamiltonian function fZ =
− 1

2g(Z,Z).

In summary, the CASK structure on M induces a pseudo-hyper-Kähler
structure equipped with a free circle action, generated by an ω1-Hamilto-
nian rotating Killing field, on its cotangent bundle. This is precisely the
input required for the so-called HK/QK correspondence [4, 5, 18], which
produces a one-parameter family of quaternionic Kähler manifolds (N, gc),
c ⩾ 0, endowed with a nowhere-vanishing Killing field, out of it. The fact
that, for the data described in Proposition 2.5, the resulting metric is pre-
cisely the one-loop deformed c-map metric of [31] was proven in [4].

The twist construction [33] provides a duality between manifolds en-
dowed with a distinguished, closed two-form and a vector field which is
Hamiltonian with respect to it. In the case at hand, the relevant two-form
is ωH := ω1 +dιZg, and the vector field is the rotating Killing field Z intro-
duced above. For any c ∈ R, the function fH = fZ +g(Z,Z) = 1

2g(Z,Z)− 1
2c

is a Hamiltonian for Z with respect to ωH, i.e. satisfies dfH = −ιZωH. The
triple (Z, ωH, fH) makes up the so-called twist data for the HK/QK corre-
spondence. In the following, we will assume that ωH is an integral two-form,
i.e. has integer periods.

Exploiting the integrality, we pass to a principal S1-bundle πN : P → N

endowed with a principal S1-connection η with curvature ωH. The next
step is to lift Z ∈ X(N) to a vector field on P which preserves η; such a
lift is provided by ZP := Z̃+π∗

NfHXP , where Z̃ ∈ X(P ) is the η-horizontal
lift of Z and XP ∈ X(P ) is generator of the principal circle action on P .
It is known that, after imposing an integrality condition on the additive
constant c ∈ R which appears in the definition of fH, one may assume that
ZP generates a circle action [33]. If the circle action on N is free, as in the
case at hand, we may moreover assume that the lifted action is free as well.
The quotient of P by this lifted circle action is then a smooth manifold; this
quotient realizes P as the total space of a second circle bundle πN : P → N .

TOME 75 (2025), FASCICULE 2



482 Vicente CORTÉS, Markus RÖSER & Daniel THUNG

Since the two principal circle actions on P commute, N inherits a twisted
circle action, generated by (πN )∗XP .

The power of the twist construction lies in the fact that it enables one to
use geometric structures on N to induce twisted structures on N , assuming
that they are invariant under the initial circle action. This is done by ex-
ploiting the double fibration structure (see (2.1)), which induces pointwise
identifications of the tangent spaces to both N and N with the η-horizontal
subspaces of the tangent spaces to P .

(2.1)

N twist

P

πN πN

N

In particular, the quaternionic structure bundle of the hyper-Kähler man-
ifold N , which is preserved by the rotating Killing field Z, endows N with
an almost quaternionic structure. However, the hyper-Kähler metric g does
not twist to a quaternionic Kähler metric on N . In order to obtain a quater-
nionic Kähler structure, we must first perform a so-called elementary de-
formation [27].

A (pseudo-)Riemannian metric h on N is called an elementary deforma-
tion if it takes the following form:

h = ag + b

3∑
µ=0

αµ ⊗ αµ

where, after setting, ω0 := g, we use the notation αµ = ιZωµ, and a, b ∈
C∞(N) are nowhere-vanishing functions. Assuming that Z is nowhere-
vanishing, the second term is proportional to the restriction of g to the
quaternionic span HZ = ⟨Z, I1Z, I2Z, I3Z⟩ of Z. Thus, we can think of
an elementary deformation as arising from the composition of a conformal
scaling with an independent conformal scaling along HZ.

Building on earlier work of several authors, Macia and Swann showed
that there is an essentially unique combination of elementary deformation
and twist data which yield a (pseudo-)quaternionic Kähler metric:

Theorem 2.6 ([4, 5, 18, 27]). — Consider a (pseudo-)hyper-Kähler man-
ifold (N, g, ωk) endowed with an ω1-Hamiltonian, rotating Killing field Z.
Assume that its Hamiltonian function fZ is nowhere-vanishing and let
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k1, k2 ∈ R \ {0}. Then, with respect to the twist data (Z, ωH, fH), where

ωH = k1(ω1 + dιZg) fH = k1(fZ + g(Z,Z))

the elementary deformation

gH := k2

(
1
fZ
g + 1

f2
Z

∑
µ

αµ ⊗ αµ

)
twists to a (pseudo-)quaternionic Kähler metric on N . These are the only
choices of elementary deformation and twist data which lead to a
(pseudo-)quaternionic Kähler structure. Moreover, when the initial
(pseudo-)hyper-Kähler manifold arises from a CASK manifold in the man-
ner described above, the resulting quaternionic Kähler metrics are positive-
definite, and of negative scalar curvature.

The constants k1, k2 do not influence the local geometry of the resulting
quaternionic Kähler manifold, and will be set to 1 in the following. However,
the additive constant c parametrizing the freedom in the choice of the
Hamiltonian function fZ does play an important role as can be seen from
the explicit appearance of fZ in the formula for gH.

In our setup, where N is the cotangent bundle of a CASK manifold, we
have fZ = − 1

2 (g(Z,Z)+c). Denoting the resulting metrics by gc, we have in
summary obtained a one-parameter family (N, gc), c ⩾ 0, of quaternionic
Kähler manifolds out of a PSK manifold M . The metric g0 is known as the
undeformed c-map metric (or Ferrara–Sabharwal metric); the metrics gc,
c > 0, are called (one-loop) deformed c-map metrics.

We will rely on the following completeness results:

Theorem 2.7 ([12, 13]). — Let (N, gc), c ⩾ 0, be the image of the PSK
manifold M under the deformed c-map. Then (N, g0) is complete if and
only if M is complete. If, additionally, M arises from the (supergravity)
r-map, or has regular boundary behavior, then (N, gc) is complete for all
c ⩾ 0.

Another fact to keep in mind is:

Proposition 2.8 ([12]). — Let (N, gc), c ⩾ 0, be the image of the PSK
manifold M under the deformed c-map. Then, for arbitrary c1, c2 > 0,
(N, gc1) is locally isometric to (N, gc2).

The undeformed c-map metric, however, is generally distinct, as we will
soon demonstrate in explicit examples.

TOME 75 (2025), FASCICULE 2
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2.2. Symmetries and the c-map

In this section we review what is known about the symmetries of the
quaternionic Kähler metrics constructed via the c-map and its one-loop
deformation. In particular, we outline how one may obtain Killing vector
fields from infinitesimal automorphisms of the initial PSK manifold.

It is well-known that the 4n-dimensional quaternionic Kähler manifold
(N, gc) that arises from the c-map applied to a PSK manifold M of com-
plex dimension n − 1 admits an isometric action of a 2n + 1-dimensional
Heisenberg group. In the examples considered in this paper, where M is a
so-called PSK domain, we can think of (N, gc) as a bundle over M such
that the Heisenberg group preserves fibers and acts on them freely. In par-
ticular, the orbits are submanifolds of the fibers of codimension one. For
c = 0, this can be improved: A one-dimensional solvable extension of the
Heisenberg group acts isometrically, freely and transitively on the fibers,
casting (N, g0) as a bundle of Lie groups. A detailed description, including
an explicit formula for the action with respect to a standard coordinate
system on the fibers, is given in [14, Lemma 2.20].

Given this large group of fiber-preserving isometries, it is natural to ask
whether (deformed) c-map metrics admit additional isometries that cover
non-trivial diffeomorphisms of the initial PSK manifold M . In particular,
if the PSK structure of M admits non-trivial automorphisms, we may ask
if these can be lifted to symmetries of its image under the c-map.

In order to provide a precise answer, we must formalize what an auto-
morphism of a PSK manifold is. Keeping in mind the extrinsic definition
of this class of manifolds, the following is natural:

Definition 2.9. — Let (M, g, J,∇, ξ) be a CASK manifold, and M the
corresponding PSK manifold. An automorphism of the CASK structure on
M is a diffeomorphism of M which preserves the pseudo-Kähler structure
and the flat connection ∇, and commutes with the C∗-action induced by
{ξ, Jξ}. An automorphism of the PSK manifold M is a diffeomorphism of
M which is induced by a CASK automorphism of the corresponding CASK
manifold M .

The matter of lifting PSK automorphisms to the image (N, gc) under
the c-map was taken up in [14]. By definition, every one-parameter group
of PSK automorphisms lifts to a one-parameter group of CASK automor-
phisms of the corresponding CASK manifold M . These CASK automor-
phisms can in turn be lifted canonically to N = T ∗M , using the pullback
on one-forms. It turns out that the canonical lift of a CASK automorphism
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to N preserves all data on N that we have discussed, i.e. the pseudo-hyper-
Kähler structure and twist data (Z, ωH, fH). Moreover, every one-parameter
family of canonically lifted CASK automorphisms is ωH-Hamiltonian, and
there is a canonical choice of Hamiltonian function. In fact, there exists an
equivariant moment map for the lifted action of AutM :

Proposition 2.10. — Let (M, g, ω,∇, ξ) be an CASK manifold. Then
an equivariant moment map for the (canonically lifted) action of AutM
on N , with respect to ωH, is given by µ : N → g∗ where ⟨µ,X⟩ =: µX =
1
2
(
g(Z,X) + νX

)
. Here, νX(α) = (ω−1)π(α)(α ◦ ∇V X , α), α ∈ T ∗M , with

V X the fundamental vector field corresponding to X.

Proof. — The expression given here for the Hamiltonian function corre-
sponding to X ∈ autM agrees (though the notation differs) with the results
of [14], so we will not verify (again) that it indeed provides a Hamiltonian.
One then checks the equivariance, i.e. that µX(g · α) = µAdg−1 X(α) for
all g ∈ AutM and α ∈ T ∗M , by working through the definitions of µX

and νX . □

Theorem 2.11 ([14]). — Let aut(M) denote the algebra of infinitesimal
automorphisms of the PSK manifold M , and isom(N, gc) the algebra of
Killing fields of its image (N, gc) under the (deformed) c-map. Then there
exists an injective, linear map aut(M) → isom(N, gc) for every c ⩾ 0.

Sketch of Proof. — After lifting an infinitesimal PSK automorphism to
the corresponding CASK manifold, and then to its cotangent bundle N ,
let us denote the generator of the lifted one-parameter family by X, and
its ωH-Hamiltonian by fX . Then we certainly have LXgH = 0, where gH
is the elementary deformation from Theorem 2.6. However, since the twist
of a Killing field is generally not a Killing field with respect to the twisted
metric, we must modify X to obtain a Killing field of the quaternionic
Kähler metric gc. This aim is achieved by X − fX

fH
Z, whose twist Y indeed

satisfies LY g
c = 0. Note that Y implicitly depends on the deformation

parameter c through the appearance of fH. □

Remarks 2.12.
(1) The proof shows that the entire procedure can be applied just as

well to an infinitesimal CASK automorphism of M that does not
arise as a lift of an infinitesimal PSK automorphism of M . Such
infinitesimal automorphisms can only exist in case the CASK man-
ifold is flat (cf. [14]), in which case the generator of the distinguished
circle action is an infinitesimal automorphism. The series of exam-
ples discussed in this paper is of this type.
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(2) The principal circle action on P pushes down to a distinguished,
isometric circle action on (N, gc) which commutes with the Killing
fields constructed by means of Theorem 2.11.

The map aut(M) → isom(N, gc) of Theorem 2.11 is in general not a Lie
algebra homomorphism. Upon twisting, the commutator of vector fields
(generically) picks up an additional term which is proportional to the vec-
tor field generating the distinguished circle action on N , yielding a one-
dimensional central extension:

Theorem 2.13 ([14]). — The Lie algebra aut(M) induces a Lie algebra
of Killing fields on (N, gc) which is isomorphic to a one-dimensional central
extension of aut(M).

Remark 2.14. — If the central extension is trivial, then we may arrange
matters such that we do obtain a subalgebra of isom(N, gc) isomorphic to
aut(M). This is the case in the series of examples on which we focus in this
work.

The Killing fields constructed via Theorem 2.11 are linearly indepen-
dent of the generators of the action of the 2n + 1-dimensional Heisenberg
group. Putting them together and taking into account Remark 2.12, we
have constructed an algebra of Killing fields of (N, gc) whose dimension is
dim aut(M) + 2n + 1, where dimCM = n. For c = 0, this is improved to
dim aut(M)+2n+2. Under the assumptions of Theorem 2.7, we know that
(N, gc) is complete for all c ⩾ 0 and can integrate these Killing fields to
obtain a group of isometries of the (deformed) c-map metric.

3. The c-map applied to complex hyperbolic spaces

3.1. The infinitesimal action

We will now focus on an important series of examples. Consider Cn,
equipped with the flat pseudo-Kähler structure induced by the indefinite
Hermitian form h = −dz0 ⊗ dz0 +

∑n−1
a=1 dza ⊗ dza. Since the Levi-Civita

connection is flat, we may regard it as endowing Cn with the structure of
an ASK manifold. The standard C∗-action by scalar multiplication endows
the C∗-invariant domain Mn = {z ∈ Cn | −|z0|2 +

∑n−1
a=1 |za|2 < 0} with the

structure of a CASK manifold. The Kähler quotient by U(1) ⊂ C∗ is noth-
ing but complex hyperbolic space CHn−1 equipped with the (symmetric)
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Bergman metric

(3.1) gCHn−1 = 1
1 − ∥X∥2

(
n−1∑
a=1

|dXa|2 + 1
1 − ∥X∥2

∣∣∣∣ n−1∑
a=1

XadXa

∣∣∣∣2
)

The indefinite unitary group U(1, n − 1) acts on Mn by automorphisms
of the CASK structure and projects down to yield a transitive action on
CHn−1, which is therefore a homogeneous PSK manifold.

It follows directly from the general theory developed in Section 2.2 that
the image (Nn, g

0) of CHn−1 under the undeformed c-map is a homoge-
neous quaternionic Kähler manifold (of negative scalar curvature), and that
the deformed metrics (Nn, g

c), c > 0, are complete and of cohomogeneity
at most one. An explicit expression for the metrics gc, with respect to a
global coordinate system (Xa, wk, ϕ̃, ρ) ∈ Cn−1 × Cn × R × R>0, where
a = 1, . . . , n− 1 and ∥X∥2 =

∑
a|Xa|2 < 1, and k = 0, . . . , n− 1, was given

in [12]:
(3.2)
gc = ρ+ c

ρ
gCHn−1 + 1

4ρ2
ρ+ 2c
ρ+ c

dρ2

+ 1
4ρ2

ρ+c

ρ+2c

(
dϕ̃−4 Im

(
w0dw0−

n−1∑
a=1

wadwa

)
+ 2c

1−∥X∥2 Im
(n−1∑

a=1
XadXa

))2

− 2
ρ

(
dw0dw0−

n−1∑
a=1

dwadwa

)
+ ρ+ c

ρ2
4

1−∥X∥2

∣∣∣∣∣dw0+
n−1∑
a=1

Xadwa

∣∣∣∣∣
2

Note that the case n = 1, where we apply the c-map to a single point,
is exceptional. With the convention

∑0
a=1 = 0, the expression (3.2) re-

mains valid and greatly simplifies. The resulting quaternionic Kähler four-
manifold is known as the universal hypermultiplet in the physics literature.
Despite the qualitative difference with the case n ⩾ 2, our results in this
paper remain valid if n = 1, unless explicitly indicated.

As a smooth manifold, Nn is just a copy of R4n. However, its Riemannian
structure is interesting. In fact, it is known that the undeformed c-map met-
ric casts Nn as the non-compact symmetric space SU(n,2)

S(U(n)×U(2)) . Moreover,
it was proven in [14] that (Nn, g

c) is of cohomogeneity one. In summary,
the family (Nn, g

c), c ⩾ 0 is a one-parameter deformation of a symmetric
space through cohomogeneity one complete quaternionic Kähler metrics.

To develop a more concrete understanding of these manifolds, we will
now show in detail how the general theory works out in these examples.
Our main goal is to derive explicit formulas for the Killing fields obtained
by means of Theorem 2.11. The starting point is the (standard) action of
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U(1, n − 1) on Mn by CASK automorphisms, or rather the infinitesimal
action of its Lie algebra u(1, n − 1). Passing to Nn = T ∗Mn = Mn ×
Cn ⊂ Cn × Cn, the canonically lifted vector field XA corresponding to
A ∈ u(1, n− 1) is given by

XA(z, w) = (Az +Az,−A⊤w −A⊤w),

where we identify the tangent spaces with the underlying vector space.
The twisting two-form ωH is

ωH = i

2

(
dz0 ∧ dz0 − dw0 ∧ dw0 −

n−1∑
a=1

(
dza ∧ dza − dwa ∧ dwa

))
,

so that the Hamiltonian corresponding to XA is given by

fXA
(z, w) = −1

2 Im
(
⟨Az, z⟩ + ⟨Aw,w⟩

)
,

where

⟨z1, z2⟩ = −z0
1z

0
2 +

n−1∑
a=1

za
1z

a
2 .

The rotating Killing field Z, which is the horizontal lift of the (nega-
tive) generator of the standard U(1)-action on the first factor, is given
by Z(z, w) = (−iz, 0). Its Hamiltonian is

fH = fZ + g(Z,Z) = 1
2(g(Z,Z) − c) = 1

2(⟨z, z⟩ − c).

(Recall that fZ = − 1
2 (g(Z,Z) + c) denoted the ω1-Hamiltonian for the

particular vector field Z. That is why we are using the notation fH for the
ωH Hamiltonian.) Following the proof of Theorem 2.11, we now know that
the twist of X H

A := XA − fXA

fH
Z will be a Killing field on (Nn, g

c).
In order to derive explicit expressions for these twisted vector fields,

we first construct a circle bundle P , equipped with a connection η with
curvature ωH. Since ωH is exact, P is trivial and we may choose η = ds+
1
2 ιΞωH, where s is the periodic coordinate parametrizing S1 = R/2πZ and
Ξ is the position vector field

Ξ =
n−1∑
k=0

(
zk ∂

∂zk
+ zk ∂

∂zk
+ wk ∂

∂wk
+ wk ∂

∂wk

)
.
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Explicitly,

η = ds+ i
4

(
z0dz0 − z0dz0 − w0dw0 + w0dw0

−
n−1∑
a=1

(
zadza − zadza − wadwa + wadwa

))
.

We lift Z to the vector field ZP , which generates the circle action defining
the principal circle bundle P → Nn. Recall that ZP = Z̃ + fH

∂
∂s , where

the tilde denotes the η-horizontal lift and we regard fH as a function on
P = Nn × S1. Regarding Z as a vector field on P , a short computation
shows that

ZP = Z − c

2
∂

∂s
= −i

n−1∑
k=0

(
zk ∂

∂zk
− zk ∂

∂zk

)
− c

2
∂

∂s
.

Similarly, for A ∈ u(1, n−1), one may check that η(X H
A ) = − fXA

fH
c
2 , so that

X̃ H
A = X H

A + fXA

fH

c

2
∂

∂s
= XA − fXA

fH
ZP .

We now want to push this vector field down to Nn. To this end, we realize
Nn as a submanifold of P , using a global slice for the action obtained by
integrating ZP , which is given by (z, w, s) 7→ (e−it z, w, s− c

2 t), t ∈ R. The
flow is not periodic for arbitrary c ⩾ 0, but for c ∈ 2Z we have a circle
action covering the circle action on Nn (this is the previously mentioned
quantization condition). Since the local geometry of the metrics gc, c > 0,
is independent of c (cf. Proposition 2.8) we will only consider the values
c = 0 and c = 2. The submanifold Nn = Nn,S1 := {(z, w, s) ∈ Nn × S1 |
arg z0 = 0} then provides a global slice for the action, and can therefore
be identified as the twist manifold. More precisely, instead of working with
the principal S1-bundle P = PS1 = Nn × S1 we can instead consider the
principal R-bundle P = PR = Nn × R and its submanifold Nn = Nn,R =
{(z, w, s) ∈ Nn × R | arg z0 = 0}. We will do this implicitly without
changing the notation. This amounts simply to considering s with values
in R rather than in S1 = R/2πZ. The final results concern the simply
connected manifolds Nn = Nn,R and quotients thereof.

The final ingredient required is an identification of the horizontal tangent
spaces to P with the tangent spaces of Nn, given by an S1-principal con-
nection with respect to the circle action generated by ZP , namely θ = 1

fH
η.
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Now we have to write X̃ H
A in the form X̃ H

A = YA − θ(YA)ZP , where YA

is tangent to Nn ⊂ P (at every point in Nn). YA is then be the twist
of X H

A , whose θ-horizontal lift indeed agrees with η. Since θ(ZP ) = 1 and
θ(X̃ H

A ) = 0 by construction, we already have

X̃ H
A = XA − θ(XA)ZP ,

but XA will not be tangent to Nn in general. To remedy this, we have to
consider a vector field of the form XA + φZP , where φ is a function. This
vector field restricts to Nn if and only if it satisfies d(arg z0)(XA +φZP ) =
d(arg z0)(XA) − φ = 0, where we used that d(arg z0)(ZP ) = −1, showing
that we must have φ = d(arg z0)(XA). The twisted vector field YA on Nn

is therefore given by

(3.3) YA := XA + d(arg z0)(XA)ZP .

Now we turn to the algebra u(1, n − 1) of infinitesimal CASK auto-
morphisms of Mn, which we consider as a real form of gl(n,C). Writing
A ∈ gl(n,C) in block form with respect to the splitting Cn = Ce0 ⊕ e⊥

0
(where {ek}k=0,...,n−1 is an orthonormal basis with respect to the indefinite
Hermitian form), i.e.

(3.4) A =
(
λ v⊤

w B

)
,

with λ ∈ C, v, w ∈ Cn−1 and B ∈ gl(n− 1,C), we will think of u(1, n− 1)
as the fixed-point set of the anti-linear involutive automorphism

σ : gl(n,C) → gl(n,C), Aσ := σ(A) := −IA⊤I,

where I =
(−1 0

0 1n−1

)
. We may now write any A ∈ gl(n,C) uniquely in the

form
A = Reσ(A) + i Imσ(A),

where

Reσ(A) = 1
2(A+Aσ), Imσ(A) = 1

2i (A−Aσ)

are both elements of u(1, n− 1). Note that Aσ = Reσ(A) − i Imσ(A).
The Lie algebra sl(n,C) is generated by the matrices

(3.5) Ua =
(

0 e⊤
a

0 0

)
, Uσ

a := σ(Ua) =
(

0 0
ea 0

)
, a = 1, . . . , n−1.
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We observe that

(3.6) [Ua, Ub] = 0, [Uσ
a , U

σ
b ] = 0, [Ua, U

σ
b ] =

(
δab 0
0 −ebe

⊤
a

)
.

Thus,
{Ua, U

σ
a , [Ua, U

σ
b ] : a, b = 1, . . . , n− 1}

is a basis of sl(n,C). From this, together with the central element C = i1n,
they form a basis for gl(n,C), which is therefore generated (as a complex
Lie algebra) by {C,Ua, U

σ
a : a = 1, . . . , n− 1}.

The infinitesimal action of u(1, n − 1) on Mn ⊂ Cn by CASK auto-
morphisms extends complex-linearly to an infinitesimal action gl(n,C) →
XC(Mn) by complex vector fields. Since both canonically lifting and the
twisting procedure extend to complex vector fields without problems, we
can complexify the above discussion of u(1, n − 1) to obtain a linear map
αC : gl(n,C) → XC(Nn).

Proposition 3.1. — The linear map αC : gl(n,C) → isom(Nn, g
c)C,

A 7→ YA defines an infinitesimal action of gl(n,C) by complex Killing fields
on (Nn, g

c). It maps u(1, n− 1) into isom(Nn, g
c) and is given on genera-

tors by

(3.7)

YC := αC(C) = −i
n−1∑
k=0

(
wk ∂

∂wk
− wk ∂

∂wk

)
− 2c ∂

∂ϕ̃
,

Ya := αC(Ua) = ∂

∂Xa
−Xa

n−1∑
b=1

Xb ∂

∂Xb

− w0 ∂

∂wa
− wa ∂

∂w0 + icXa ∂

∂ϕ̃
,

Y a = αC(Uσ
a ),

where (Xa := za

z0 , w
k, ϕ̃ := 4s, ρ := 2fZ = |z0|2 −

∑n−1
a=1 |za|2 − c), a =

1, . . . , n − 1, k = 0, . . . , n − 1, are global coordinates on Nn
∼= Bn−1 ×

R2n+1 × R>0. Here Bn−1 ⊂ Cn−1 denotes the unit ball.

Corollary 3.2. — The real vector fields YC ,Re(Ya), Im(Ya) ∈ X(Nn)
generate a subalgebra of isom(Nn, g

c) isomorphic to u(1, n− 1).

Proof of Proposition 3.1. — First observe that it follows immediately
from the fact that αC satisfies αC(Aσ) = αC(A) for every A ∈ gl(n,C) that
αC(u(1, n− 1)) ⊂ isom(Nn, g

c).
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Our next aim is to prove (3.7), for which we use (3.3). Denoting the
canonical lift of the fundamental vector field (on Mn) corresponding to Ua

by Xa, we obtain

Xa = za ∂

∂z0 + z0 ∂

∂za
− w0 ∂

∂wa
− wa ∂

∂w0 .

Since d(arg z0) = − i
2
(dz0

z0 − dz0

z0

)
, d(arg z0)(Xa) = − i

2
za

z0 and the twist of
Xa is

Ya = Xa − i

2
za

z0ZP

= za ∂

∂z0 + z0 ∂

∂za
− w0 ∂

∂wa
− wa ∂

∂w0

− 1
2
za

z0

n−1∑
k=0

(
zk ∂

∂zk
− zk ∂

∂zk

)
+ ic

4
za

z0
∂

∂s
.

Expressing this vector field in terms of the conventional (global) coordinate
functions (Xa := za

z0 , w
k, ϕ̃ := 4s, ρ := 2fZ = |z0|2 −

∑n−1
a=1 |za|2 − c) on

Nn, we obtain Ya as in (3.7). Applying the same procedure to the central
element C = i1n, we obtain YC as in (3.7). Finally, the third line of (3.7)
follows from αC(Uσ

a ) = αC(Ua).
Next, we explicitly compute the commutators of the complex Killing

fields YC , Ya, Y a and compare them with the structure constants of gl(n,C)
with respect to the basis {C,Ua, U

σ
a , [Ua, U

σ
b ] : a, b = 1, . . . , n− 1}.

Since C = i1n lies in the center of gl(n,C), we start by verifying that
YC lies in the center of ImαC ⊂ XC(Nn). Since C ∈ u(1, n− 1), YC is real
and

[YC , Ya]=−i
[

n−1∑
k=0

(
wk ∂

∂wk
−wk ∂

∂wk

)
+2c ∂

∂ϕ̃
,
∂

∂Xa
−
∑

j

XaXj ∂

∂Xj
+icXa ∂

∂ϕ̃

]

+ i
[

n−1∑
k=0

(
wk ∂

∂wk
− wk ∂

∂wk

)
, w0 ∂

∂wa
+ wa ∂

∂w0

]

= i
[

n−1∑
k=0

(
wk ∂

∂wk
− wk ∂

∂wk

)
, w0 ∂

∂wa
+ wa ∂

∂w0

]
= 0.

It follows that YC commutes with Y a and thus also with the commutators
[Ya, Y b] for all a, b. This means that YC commutes with every vector field
in the image of αC, as desired.
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Next, since [Ua, Ub] = 0 we have to check that [Ya, Yb] = 0 for all a, b:

[Ya, Yb]=
[
∂

∂Xa
−
∑

j

XaXj ∂

∂Xj
+icXa ∂

∂ϕ̃
,
∂

∂Xb
−
∑

k

XbXk ∂

∂Xk
+icXb ∂

∂ϕ̃

]

+
[
w0 ∂

∂wa
+ wa ∂

∂w0 , w
0 ∂

∂wb
+ wb ∂

∂w0

]
=
[

−
∑

j

XaXj ∂

∂Xj
+ icXa ∂

∂ϕ̃
,−
∑

k

XbXk ∂

∂Xk
+ icXb ∂

∂ϕ̃

]

=
∑
j,k

[
XaXj ∂

∂Xj
, XbXk ∂

∂Xk

]
−ic
(∑

j

XaXjδjb−
∑

k

XbXkδka

)
∂

∂ϕ̃

= 0.

This relation immediately implies [Y a, Y b] = 0.
Finally, we show that αC([Ua, U

σ
b ]) = −[Ya, Y b]; note the sign, which

arises due to the fact that the map sending a Lie algebra element to its
fundamental vector field is a Lie algebra anti-homomorphism in our setting.
We start by computing the commutator [Ya, Y b]:

[Ya,Y b]=
[
∂

∂Xa
−
∑

j

XaXj ∂

∂Xj
+icXa ∂

∂ϕ̃
,
∂

∂Xb
−
∑

j

XbXj ∂

∂Xj
−icXb ∂

∂ϕ̃

]

+
[
w0 ∂

∂wa
+ wa ∂

∂w0 , w
0 ∂

∂wb
+ wb ∂

∂w0

]
= −

∑
j

(
(δabX

j +δajX
b) ∂

∂Xj
−(δabX

j +δbjX
a) ∂

∂Xj

)
−2icδab

∂

∂ϕ̃

+ w0δab
∂

∂w0 − wb ∂

∂wa
+ wa ∂

∂wb
− δabw

0 ∂

∂w0

= δab

(∑
j

(
Xj ∂

∂Xj
−Xj ∂

∂Xj

)
+ w0 ∂

∂w0 − w0 ∂

∂w0 − 2ic ∂
∂ϕ̃

)

+Xa ∂

∂Xb
−Xb ∂

∂Xa
+ wa ∂

∂wb
− wb ∂

∂wa
.

On the other hand, the canonical lift of the fundamental vector field cor-
responding to [Ua, U

σ
b ] is

X[Ua,Uσ
b

] = δab

(
z0

∂

∂z0
− z0

∂

∂z0
− w0

∂

∂w0
+ w0

∂

∂w0

)
− za

∂

∂zb
+ zb

∂

∂za
+ wb

∂

∂wa
− wa

∂

∂wb
.
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Upon twisting, we indeed obtain

αC([Ua, U
σ
b ])=−δab

(∑
j

(
Xj ∂

∂Xj
−Xj ∂

∂Xj

)
+w0 ∂

∂w0−w0 ∂

∂w0−2ic ∂
∂ϕ̃

)

−Xa ∂

∂Xb
+Xb ∂

∂Xa
− wa ∂

∂wb
+ wb ∂

∂wa
.

This completes the proof. □

The Proposition 3.1 provides an (infinitesimal) action of the unitary Lie
algebra u(1, n−1) on Nn. As explained in Section 2.2, there is an additional
action of a (2n+1)-dimensional Heisenberg group. As we will now show, this
action also has a natural interpretation in terms of the twist construction
of Nn.

On the hyper-Kähler side of the twist correspondence, translations of
the w-coordinates define an action of R2n on Nn. The action preserves
the pseudo-hyper-Kähler structure and twist data (Z, ωH, fH), and is ωH-
Hamiltonian. Thus, we may apply the procedure outlined in the proof of
Theorem 2.11 to turn its infinitesimal generators into Killing fields on Nn.

We will once again work with the complexified generators ∂
∂wk , k =

0, 1 . . . , n − 1, and their conjugates. A natural choice of ωH-Hamiltonian
function for ∂

∂wk is fwk = ± i
2w

k, where the sign is positive for k = 0 and
negative otherwise. Carrying out the exact same procedure as outlined for
the vector fields arising from the underlying CASK manifold, we now obtain
Killing fields on Nn by twisting the modified vector fields Uk = ∂

∂wk − f
wk

fH
Z.

Horizontally lifting, we find

Ũk = Uk − η(Uk) ∂
∂s

= Uk − 1
2
(
Ξ(fwk ) − fwk

fH
Ξ(fH)

) ∂
∂s

= Uk + fwk

2fH
(fH + c) ∂

∂s
= ∂

∂wk
+ fwk

2
∂

∂s
− fwk

fH
ZP

where we used that Ξ(fwk ) = fwk and Ξ(fH) = 2fH + c in passing to the
second line. We note that the first two terms determine a vector field Vk

on P which is tangent to Nn (at every point in Nn) and satisfies Ũk =
Vk − θ(Vk)ZP , which means that Vk restricts to the sought-after Killing
field on Nn. After substituting ϕ̃ = 4s, we have:

(3.8) Va = ∂

∂wa
− iwa ∂

∂ϕ̃
, V0 = ∂

∂w0 + iw0 ∂

∂ϕ̃
.

where a = 1, . . . , n − 1. The complex conjugate vector fields V k, k =
0, . . . , n − 1, naturally arise in the same way from ∂

∂wk . We remark that
the explicit formula (3.2) for the metric gc is obtained by an application
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of Theorem 2.6 to the above twist data (Z, ωH , fH) with k1 = 1, k2 = 1
2

followed by a coordinate transformation (Xa, wk, ϕ̃, ρ) 7→ (Xa,
√

2wk, ϕ̃, ρ).
Under this coordinate transformation, the vector fields Ya, YC from (3.7)
are invariant, while the vector fields Vk become Va = 1√

2

(
∂

∂wa − 2iwa ∂
∂ϕ̃

)
,

V0 = 1√
2

(
∂

∂w0 + 2iw0 ∂
∂ϕ̃

)
. In all computations below that use the explicit

form (3.2) of the metric, we will work therefore with the vector fields Vk

expressed in these new coordinates.
Now let e0, f0, ea, fa, a = 1, . . . , n− 1, be the standard basis of R2n. We

define the one-dimensional central extension heis2n+1 of R2n by setting

(3.9) [ek, el] = 0, [fk, fl] = 0, [ek, fl] =
(
δk0δl0 −

n−1∑
a=1

δkaδla

)
T

for every k, l = 0, 1, . . . , n− 1, where T denotes the generator of the center.
Complexifying and extending the Lie bracket complex-bilinearly, we obtain
heisC2n+1.

Proposition 3.3. — The vector fields Vk and V k, k = 0, . . . , n− 1, to-
gether with ∂

∂ϕ̃
, generate an infinitesimal action of a complexified Heisen-

berg algebra heisC2n+1 by complex Killing fields on (Nn, g
c) which sends

heis2n+1 into isom(Nn, g
c).

Proof. — We define a (complex) infinitesimal action, i.e. a Lie algebra
anti-homomorphism βC : heisC2n+1 → XC(N), by setting βC(Ek) = Vk and
βC(Ek) = V k, where k = 0, 1, . . . , n − 1 and Ek := ek − ifk, as well as
β(T ) = ∂

∂ϕ̃
. The fact that βC defines an infinitesimal action follows from

[Vk, V l] = −2i
(
δk0δl0 −

n−1∑
a=1

δkaδla

)
∂

∂ϕ̃

and the vanishing of all other Lie brackets, which is easily deduced
from (3.8). The vector fields Vk, V k are complex Killing fields by con-
struction. Their real and imaginary parts, which generate R2n ⊂ heis2n+1,
are real Killing fields on Nn. The general theory of the twist construction
also dictates that ∂

∂ϕ̃
, which is the restriction of the generator of the princi-

pal circle action of the bundle P → Nn, is Killing. Indeed, the quaternionic
Kähler metric gc arises by pushing down the pullback of the elementary
deformation gH, which is certainly invariant under the principal circle ac-
tion. □

The next logical step is to study how the generators of the infinitesi-
mal (complex) gl(n,C)- and heisC2n+1-actions interact with one another. To
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determine this interaction we recall that, on the hyper-Kähler side of the
HK/QK correspondence, the vector spaces spanned by the w-coordinates
are the fibers of Nn = T ∗Mn. Therefore, u(1, n− 1) naturally acts on them
via the dual of the defining representation.

Passing to the quaternionic Kähler side, these same w-coordinates span
R2n ⊂ heis2n+1. We therefore expect that u(1, n− 1) acts on this subspace
via the dual representation. We extend this to an action on all of heis2n+1
by stipulating that u(1, n − 1) acts trivially on the center. This defines
a representation of u(1, n − 1) by derivations of heis2n+1 and therefore
yields a semi-direct product structure u(1, n−1)⋉heis2n+1. Complexifying
and extending the Lie bracket complex-bilinearly, we obtain a complex Lie
algebra gl(n,C) ⋉ heisC2n+1.

Recall that {Ua, U
σ
a , [Ua, U

σ
b ] : a, b = 1, . . . , n − 1}, together with C,

form a basis of gl(n,C). We complete to a basis of gl(n,C) ⋉ heisC2n+1
by adding the basis elements T , Ek, Ek, k = 0, 1, . . . , n− 1 of heisC2n+1 (as
in the proof of Proposition 3.3). We now extend the infinitesimal action
αC : gl(n,C) → isom(Nn, g

c)C to an infinitesimal action αC : gl(n,C) ⋉
heisC2n+1 → isom(Nn, g

c)C in the manner prescribed in the proof of Propo-
sition 3.3, i.e. by setting

(3.10) αC(Ek) = Vk, αC(Ek) = V k, αC(T ) = ∂

∂ϕ̃
.

where Ek = ek − ifk.

Proposition 3.4. — The linear map

αC : gl(n,C) ⋉ heisC2n+1 → isom(Nn, g
c)C,

as defined by Proposition 3.1 and equation (3.10) is an infinitesimal action
on (N, gc) by complex Killing fields which sends u(1, n− 1)⋉ heis2n+1 into
isom(Nn, g

c).

Proof. — It is clear from the preceding discussion that αC indeed maps
into isom(Nn, g

c)C, and that the image of u(1, n− 1)⋉ heis2n+1 consists of
real Killing fields of (Nn, g

c). All that remains is to verify that αC defines
a Lie algebra anti-homomorphism.

By Propositions 3.1 and 3.3, we need only check those Lie brackets that
involve one element of gl(n,C) and one element of heisC2n+1. In gl(n,C) ⋉
heisC2n+1, the following brackets can be calculated from (3.5) and the fact
that, by definition of the semi-direct product structure, the bracket of
gl(n,C) ⋉ heisC2n+1 evaluated on A ∈ u(1, n − 1) and v ∈ R2n is just
[A, v] = −A⊤v (where A⊤ is identified with a real 2n × 2n-matrix). This
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prescription yields

[C,Ek] = −iEk, [C,Ek] = iEk,

[Ua, Ek] = −δk0Ea, [Uσ
a , Ek] = −δkaE0,

[Ua, Ek] = −δkaE0, [Uσ
a , Ek] = −δk0Ea

The remaining Lie brackets involving one element of gl(n,C) and one of
heisC2n+1 can be deduced from these via the Jacobi identity. We now com-
pare to the brackets of the corresponding vector fields on the quaternionic
Kähler manifold, using the formulas (3.7) and (3.8). They yield the ex-
pected results, namely

[YC , Vk] = iVk, [YC , V k] = −iV k,

[Ya, Vk] = δk0Va, [Y a, Vk] = δkaV0,

[Ya, V k] = δkaV 0, [Y a, V k] = δk0V a.

This confirms that αC defines an infinitesimal action. □

This shows that, despite the c-dependence of the Killing fields con-
structed via the HK/QK correspondence, the isomorphism type of the Lie
algebra of Killing fields is independent of c. The c-dependence arises only
once we consider the (c-dependent) infinitesimal action α : u(1, n − 1) ⋉
heis2n+1 → isom(Nn, g

c) obtained by restricting αC.

3.2. u(1, n− 1) ⋉ heis2n+1 as an algebra of Killing fields

The goal of this section is to provide a characterization of g := Imα as
a subalgebra of the Killing algebra of isom(Nn, g

c), see Proposition 3.10.
We start by determining the stabilizer of a distinguished point:

Lemma 3.5. — Consider, for fixed ρ0 > 0, the point n0 = (0, 0, 0, ρ0) in
Nn. Then the stabilizer of n0 in g is given by

gn0 = span


YC + 2c ∂

∂ϕ̃
,

Re([Ya, Y b]),

Im([Ya, Y b]) + 2cδab
∂

∂ϕ̃

∣∣∣∣∣∣∣∣∣∣∣
a, b = 1, . . . , n− 1


.

In particular, gn0 is isomorphic to u(1) × u(n− 1).
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Proof. — Recall from the proof of Proposition 3.1 the formula

(3.11) [Ya, Y b]

= δab

(
n−1∑
d=1

(
Xd ∂

∂Xd
−Xd ∂

∂Xd

)
+ w0 ∂

∂w0 − w0 ∂

∂w0 − 2ic ∂
∂ϕ̃

)

+Xa ∂

∂Xb
−Xb ∂

∂Xa
+ wa ∂

∂wb
− wb ∂

∂wa
.

From this we read off

[Ya, Y b](n0) = −2icδab
∂

∂ϕ̃
.

Similarly, YC(n0) = −2c ∂

∂ϕ̃
; the inclusion of the right-hand side in the left-

hand side now follows. The other inclusion can be seen directly from (3.7),
(3.8) and (3.10).

To see that this subalgebra is isomorphic to u(1) × u(n− 1), consider its
preimage under the (injective!) infinitesimal action α, which is

(3.12) g′ = span


C + 2cT,
Re([Ua, U

σ
b ]),

Im([Ua, U
σ
b ]) + 2cδabT

∣∣∣∣∣∣∣ a, b = 1, . . . , n− 1


Since heis2n+1 ⊂ u(1, n − 1) ⋉ heis2n+1 is an ideal, the natural projection
map π1 : u(1, n − 1) ⋉ heis2n+1 → u(1, n − 1) is a homomorphism of Lie
algebras. Its restriction to g′ is injective since α(heis2n+1) ∩ gn0 = {0}, and
from (3.12) one reads off that

π1(g′) = span
{
C,Re([Ua, U

σ
b ]), Im([Ua, U

σ
b ]) : a, b = 1, . . . , n− 1

}
,

which is nothing but the standard embedding

u(1) × u(n− 1) ⊂ u(1, n− 1). □

Using this, we can determine the subalgebra consisting of Killing fields
tangent to the submanifold H := {X = 0, ρ = ρ0} ⊂ Nn, which is acted on
simply transitively and isometrically by Heis2n+1. Since the isometry group
of the symmetric space (Nn, g

0) is well-understood, we focus on (Nn, g
c),

c > 0.

Lemma 3.6. — Let c > 0 and let K be a Killing field on (Nn, g
c) which

is tangent to H at every point contained in H. Then there exists an element
of the Lie subalgebra α((u(1) × u(n − 1)) ⋉ heis2n+1) ⊂ g which coincides
with K along H.
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Proof. — Clearly, K|H is a Killing field on (H, gc
H) where we wrote gc

H

for the metric on H induced by gc. From (3.2), we find

gc
H = 1

2ρ0

n−1∑
a=1

∣∣dwa
∣∣2 +

(
ρ0 + c

ρ2
0

− 1
2ρ0

)∣∣dw0∣∣2
+ 1

4ρ2
0

ρ0 + c

ρ0 + 2c

(
dϕ̃−2i

(
w0dw0 − w0dw0 −

n−1∑
a=1

(wadwa − wadwa)
))2

,

which is a left-invariant metric on the Heisenberg group Heis2n+1 ∼= H

by construction. A result of Wilson [34] asserts that the Killing algebra of
(H, gc

H) can be constructed as a semi-direct product s⋉ heis2n+1, where s

is the Lie algebra of skew-symmetric derivations of heis2n+1 = T(0,0,0)H.
Note that

gc
H(0, 0, 0) = 1

2ρ0

n−1∑
a=1

|dwa|2 +
(
ρ0 + c

ρ2
0

− 1
2ρ0

)
|dw0|2 + 1

4ρ2
0

ρ0 + c

ρ0 + 2cdϕ̃2

is diagonal, and recall, see (3.9), that the bracket on heis2n+1 is given by
[v1, v2] = ω(v1, v2) ∂

∂ϕ̃
, where ω = i

2
(
dw0 ∧ dw0 −

∑n−1
a=1 dwa ∧ dwa

)
.

Now let A ∈ End(heis2n+1) be a skew-symmetric derivation, so that in
particular

(3.13) ω(v1, v2)A
(
∂

∂ϕ̃

)
=
(
[Av1, v2] + [v1, Av2]

) ∂
∂ϕ̃

, ∀v1, v2 ∈ R2n.

For v ∈ R2n we write Av = Ãv + lA(v) ∂

∂ϕ̃
and A

(
∂

∂ϕ̃

)
= λA

∂

∂ϕ̃
(every

derivation preserves the center) with lA ∈ (R2n)∗, λA ∈ R. Since gc
H is

diagonal at (0, 0, 0), skew-symmetry implies that λA = 0, lA = 0. Then
equation (3.13) simplifies to

0 = ω(Ãv1, v2) + ω(v1, Ãv2),

that is Ã ∈ sp(2n,R).
Introducing real coordinates {ζ̃k, ζ

k} by writing w0 = 1
2 (ζ̃0 + iζ0) and

wa = 1
2 (ζ̃a − iζa), we have ω = 1

2
∑n−1

k=0 dζk ∧ dζ̃k and

gc
H = 1

8ρ0

( n−1∑
a=1

(dζa)2 + (dζ̃a)2
)

+ 1
4

(
ρ0 + c

ρ2
0

− 1
2ρ0

)(
(dζ0)2 + (dζ̃0)2)

+ 1
4ρ2

0

ρ0 + c

ρ0 + 2cdϕ̃2.
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Write Ã in block form with respect to the splitting R2n = R2 ⊕ R2n−2.

Ã =
(
A1 A2
A3 A4

)
The Gram matrices of gc

H (restricted to R2n = span{ζ̃k, ζ
k}) and ω are

G = 1
4

((
ρ0+c

ρ2
0

− 1
2ρ0

)
12 0

0 1
2ρ0

12n−2

)
, Ω = 1

2

(
J2 0
0 J2n−2

)
,

where J2 =
( 0 −1

1 0
)

and J2n−2 consists of (n−1) copies of J2 on its diagonal.
Skew-symmetry of A implies Ã⊤G + GÃ = 0 and Ã ∈ sp(2n,R) implies
that Ã⊤Ω + ΩÃ = 0. This means that(

A⊤
1 A⊤

3
A⊤

2 A⊤
4

)((ρ0+c
ρ2

0
− 1

2ρ0

)
12 0

0 1
2ρ0

12n−2

)

+
((

ρ0+c
ρ2

0
− 1

2ρ0

)
12 0

0 1
2ρ0

12n−2

)(
A1 A2
A3 A4

)
=0,

and (
A⊤

1 A⊤
3

A⊤
2 A⊤

4

)(
J2 0
0 J2n−2

)
+
(
J2 0
0 J2n−2

)(
A1 A2
A3 A4

)
= 0.

This implies

A1 +A⊤
1 = 0,

A⊤
1 J2 + J2A1 = 0,

A4 +A⊤
4 = 0,

A⊤
4 J2 + J2A4 = 0,(

ρ0 + c

ρ2
0

− 1
2ρ0

)
A⊤

2 + 1
2ρ0

A3 = 0,

A⊤
2 J2 + J2n−2A3 = 0.

The last two lines imply A2 = 0 and A3 = 0, since the parameter c > 0.
Thus, Ã is of the form

Ã =
(
A1 0
0 A4

)
with A1 and A4 skew-symmetric and complex linear. Put differently, we
have shown that A ∈ u(1) × u(n− 1), and thereby that s ∼= u(1) × u(n− 1).

The stabilizer (in g = Imα) of the point (0, 0, 0, ρ0), determined in
Lemma 3.5, consists of Killing fields that are tangent to H and span a
subalgebra isomorphic to u(1)×u(n−1). Combining this with α(heis2n+1),
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we see that α((u(1)×u(n−1))⋉heis2n+1) ∼= s⋉heis2n+1, so the full algebra
of Killing fields of H arises from α as claimed. □

The image of αC, which we denote by gC, contains the subalgebra

h = spanC

{
Ya, Va, V0,

∂

∂ϕ̃
: a = 1, . . . , n− 1

}
This is a 2-step nilpotent Lie algebra of complex dimension 2n, whose
center is

z(h) = spanC

{
Va,

∂

∂ϕ̃
: a = 1, . . . , n− 1

}
.

The only non-trivial brackets are [Ya, V0] = Va, for a = 1, . . . , n− 1. Analo-
gous statements hold for h. Note that h∩h = C ∂

∂ϕ̃
, and that h+h generates

the Lie algebra gC. Note that the elements of gC preserve the coordinate
function ρ and are therefore tangent to its level sets, which we shall denote
by Nρ.

Lemma 3.7. — There is a natural isomorphism TCNρ
∼= Nρ × (h + h).

Proof. — We show that the 4n−1 vector fields Ya, Va, V0, Y a, V a, V 0,
∂

∂ϕ̃

give a global frame for TCNρ. Comparing dimensions, it is enough to check
that these complex vector fields are pointwise linearly independent. We
have the decomposition

TCNρ
∼= (pr∗

XTB
n−1)C ⊕ (pr∗

wTCn)C ⊕ C
∂

∂ϕ̃
,

where Bn−1 ⊂ Cn−1 denotes the open unit ball, and we used the natural
projections prX : Nρ = Bn−1 ×Cn ×R → Bn−1, prw : Nρ = Bn−1 ×Cn ×
R → Cn. Now consider a linear combination

0 =
n−1∑
a=1

λaYa + µaY a +
n−1∑
k=0

δkVk + ϵkV k + γ
∂

∂ϕ̃
,

with coefficients λa, µa, δk, ϵk, γ ∈ C. Projecting onto the (TBn−1)C =
T 1,0Bn−1 ⊕ T 0,1Bn−1 component and considering (1, 0) and (0, 1) parts
separately yields the relations

µa = Xa
n−1∑
j=1

Xjλj , λa = Xa
n−1∑
j=1

Xjµj .

Using vector notation λ = (λ1, . . . , λn−1) ∈ Cn−1 and similarly for µ and
X, we can use the standard Hermitian inner product on Cn−1 to rewrite

TOME 75 (2025), FASCICULE 2



502 Vicente CORTÉS, Markus RÖSER & Daniel THUNG

these relations as µ = ⟨λ,X⟩X and λ = ⟨µ,X⟩X. The Cauchy–Schwarz
inequality now yields

∥λ∥ ⩽ ∥µ∥∥X∥2, ∥µ∥ ⩽ ∥λ∥∥X∥2,

which implies (1 − ∥X∥4)∥λ∥ = 0 since ∥X∥ < 1 (cf. the discussion pre-
ceding (3.2)). Since ∥X∥ < 1, this means that λ = 0, hence also µ = 0.
Projecting onto the TCn−1-factor and considering (1, 0) and (0, 1) parts,
we see immediately from (3.8) that δk = 0 = ϵk for all k = 0, . . . , n − 1,
which in turn implies γ = 0, completing the proof. □

Consider once again the submanifold H = {X = 0} ⊂ Nρ0 and note
that, at p = (0, w, ϕ̃, ρ0) ∈ H, we have

Ya(p) = ∂

∂Xa
− w0 ∂

∂wa
− wa ∂

∂w0 ,

and

Va(p) = 1√
2

(
∂

∂wa
− 2iwa ∂

∂ϕ̃

)
, V0(p) = 1√

2

(
∂

∂w0 + 2iw0 ∂

∂ϕ̃

)
.

The metric (given in (3.2)) also simplifies on TpNρ0 :

gc = ρ0 + c

ρ0

n−1∑
a=1

∣∣dXa
∣∣2

+ 1
2ρ0

n−1∑
a=1

∣∣dwa
∣∣2 +

(
ρ0 + c

ρ2
0

− 1
2ρ0

)∣∣dw0∣∣2(3.14)

+ 1
4ρ2

0

ρ0 +c
ρ0+2c

(
dϕ̃−2i

(
w0dw0−w0dw0−

n−1∑
a=1

(wadwa−wadwa)
))2

.

Lemma 3.8. — The vector fields ∂
∂Xa ,

∂

∂Xa
, a = 1, . . . , n − 1 form a

parallel frame for the complexified normal bundle of the submanifold H ⊂
Nρ0 with respect to the connection induced by the Levi-Civita connection
of (Nρ0 , g

c).

Proof. — By looking at the form of the metric gc at p ∈ H given in (3.14)
we see that the vector fields ∂

∂Xa ,
∂

∂Xa
, a = 1, . . . , n − 1 are orthogonal to
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TC
p H. Moreover, the complex bilinear extension of the metric satisfies

gc

(
∂

∂Xa
,
∂

∂Xb

)
= 0

gc

(
∂

∂Xa
,
∂

∂Xb

)
= 0

gc

(
∂

∂Xa
,
∂

∂Xb

)
= ρ0 + c

ρ0
δab.

Now it follows from the Koszul formula that for any vector field W ∈ XC(H)
the covariant derivatives ∇W

∂
∂Xb and ∇W

∂

∂Xb
must be tangent to H. □

Given a vector field K on Nρ0 , we shall denote the normal component
of the restriction of K to the submanifold H by K⊥

H .

Lemma 3.9. — Denote by k = {K ∈ XC(Nρ0) : ∇⊥(K⊥
H) = 0}, the

space of complex vector fields on Nρ0 whose normal component along the
submanifold H is a parallel section of the normal bundle of H. Then g ⊂ k.

Proof. — We can write any complex vector field in the form

K =
∑

a

fa
∂

∂Xa
+ ga

∂

∂Xa
+
∑

k

ϕk
∂

∂wk
+ ψk

∂

∂wk
+ h

∂

∂ϕ̃

with fa, ga, ϕa, ψk, h ∈ C∞(Nρ0). By Lemma 3.8, we see that K ∈ k if and
only if the functions fa, ga are constant when restricted to the submani-
fold H. Clearly, this is satisfied by the vector fields YC , Ya, Y a, Vk, V k,

∂

∂ϕ̃
.

Moreover, at p = (0, w, ϕ̃, ρ0) we have

[Ya, Y b](p) = δab

(
w0 ∂

∂w0 − w0 ∂

∂w0 − 2ic ∂
∂ϕ̃

)
+ wa ∂

∂wb
− wb ∂

∂wa
,

which is also tangent to H and thus is an element of k. This means that
we have verified our claim for the basis {YC , Ya, Ya, [Ya, Y b], Vk, Vk,

∂

∂ϕ̃
}

of gC. □

Proposition 3.10. — For every c > 0, the elements of the algebra g

can be characterized, modulo Killing fields that are zero at each point of
H, as those Killing fields on (Nρ0 , g

c) whose normal component along H
is parallel.

Proof. — Let K be such a Killing field. Expand it in the frame TCNρ0
∼=

Nρ0 × (h + h) constructed in Lemma 3.7. Then the coefficient functions in
front of Ya, Y a are constant along H. By subtracting a linear combination
of Ya, Y a with constant coefficients, we can thus obtain a Killing field that
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is tangent to H. By Lemma 3.6, this must then coincide with an element
of α((u(1) ×u(n− 1))⋉heis2n+1) along H. This shows that, up to addition
of a Killing field vanishing along H, the vector field K lies in g. □

3.3. The action of Ũ(1, n− 1) ⋉ Heis2n+1

In the previous section we have constructed an injective (c-dependent)
infinitesimal action α : u(1, n − 1) ⋉ heis2n+1 → g ⊂ isom(Nn, g

c). Since
(N, gc) is a complete Riemannian manifold, any Killing field on it is nec-
essarily complete. We can therefore integrate the infinitesimal action α :
u(1, n − 1) ⋉ heis2n+1 → isom(Nn, g

c) to an isometric action of the corre-
sponding simply connected group Ũ(1, n − 1) ⋉ Heis2n+1. In this way we
obtain a group homomorphism β : Ũ(1, n− 1)⋉Heis2n+1 → Isom(Nn, g

c).
Let us collect some useful pieces of notation, which we will repeatedly make
use of in the following.

Notation. — We will abbreviate G̃ := Ũ(1, n− 1) ⋉ Heis2n+1 and denote
its image β(G̃) by G. The subgroups β(Ũ(1, n−1)) and β(Heis2n+1) will be
called U and H, respectively. We will write F for the intersection U ∩ H.
We will also consider G̃′ := S̃U(1, n − 1) ⋉ Heis2n+1; the restriction of β
to G̃′ will be denoted by β′. Its image is G′ := β′(G̃′), and we abbreviate
β′(S̃U(1, n− 1)) to U ′ (note that β′(Heis2n+1) = H). Finally, we set F ′ :=
U ′ ∩ H.

We are interested in G, which acts effectively on Isom(Nn, g
c). In order

to understand G, we have to determine the kernel of β.
Since the infinitesimal action α : u(1, n−1)⋉heis2n+1 → isom(Nn, g

c) is
injective, kerβ is discrete and normal, hence central. The elements in kerβ
stabilize every point of Nn, and in particular the point n0 = (0, 0, 0, ρ0),
for any fixed ρ0 > 0. Thus, kerβ must be a discrete central subgroup of the
stabilizer G̃n0 . We computed its Lie algebra gn0 in Lemma 3.5, and it turns
out that we can integrate the vector fields in the center of gn0 explicitly.
This allows us to determine kerβ, as we will now show.

Lemma 3.11. — For every n ⩾ 2, the kernel of β is the subgroup of
Z(Ũ(1, n − 1) ⋉ Heis2n+1) ∼= R × 2πZ × R generated by the elements
(2π, 0, 4πc) and

(
− 2π

n ,−2π, 4π n−2
n c
)
. In particular, kerβ ∼= Z2.

Proof. — As shown in Lemma 3.5, the Lie algebra gn0 of the stabilizer
of n0 is isomorphic to u(1)×u(n−1). Its two-dimensional center is spanned
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by the vector fields

(3.15)

C1 := YC + 2c ∂
∂ϕ̃

,

C2 :=
n−1∑
a=1

Im([Ya, Y a]) + 2(n− 1)c ∂
∂ϕ̃

− C1,

as can be easily checked using (3.6). Let us reproduce the explicit coordinate
expressions, obtained from (3.7) and (3.11), for convenience:

C1 = −i
n−1∑
k=0

(
wk ∂

∂wk
− wk ∂

∂wk

)
,

C2 = −in
n−1∑
a=1

(
Xa ∂

∂Xa
−Xa ∂

∂Xa
+ w0 ∂

∂w0 − w0 ∂

∂w0

)
.

Integrating these vector fields, we see that the corresponding one-parameter
groups of diffeomorphisms act as follows:

ΦC1
t (Xa, w0, wa, ϕ̃, ρ) = (Xa, e−it w0, e−it wa, ϕ̃, ρ)

ΦC2
t (Xa, w0, wa, ϕ̃, ρ) = (e−int Xa, e−int w0, wa, ϕ̃, ρ)

It is clear that the flows are periodic with periods 2π and 2π
n , respectively.

Thus, the Z2-subgroup generated by exp(2πC1) and exp( 2π
n C2) acts trivially

on all of Nn and is therefore contained in kerβ. In fact, it is equal to kerβ,
since we know that kerβ is certainly contained in the preimage of the
stabilizer.

The center of Ũ(1, n− 1) ⋉ Heis2n+1 is

Z(Ũ(1, n− 1) ⋉ Heis2n+1) = exp(R · C) × exp(2πZ · C ′) × exp(R · T )
∼= R × 2πZ × R,

where C ′ := i
n diag(1 − n, 1, . . . , 1) ∈ su(1, n− 1).

Using (3.15) and combining the fact that
∑

a Imσ[Ua, U
σ
a ] = nC ′ and

that α is an anti-homomorphism, we can directly read off that the kernel
of β is the subgroup generated by (2π, 0, 4πc) and

(
− 2π

n ,−2π, 4π n−2
n c
)
. □

Remark 3.12. — We observe that, for all c > 0, the subgroup kerβ ⊂
Z(G̃) has a non-trivial projection onto the subgroup Z(Heis2n+1).

We will now consider the subgroups U and H of G.
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Lemma 3.13. — For every n ⩾ 2, the following hold:

(1) The restricted map β : Heis2n+1 → H is an isomorphism.
(2) The kernel kerβ is contained in the subgroup Ũ(1, n − 1) if c = 0.

If c > 0, then the kernel of the restricted map β : Ũ(1, n− 1) → U
is equal to the infinite cyclic group 2πZ · (n − 1, n) ⊂ R × Z =
Z(Ũ(1, n− 1)) if n is odd and πZ · (n− 1, n) if n is even.

(3) The intersection F = U ∩ H is given by ⟨β(0, 0, 8πc
n )⟩ if n is even

and ⟨β(0, 0, 4πc
n )⟩ if n is odd. In particular, it is trivial if c = 0 and

infinite cyclic if c > 0.

Proof.

(1). — By Lemma 3.11, the kernel of β is the subgroup of Z(G̃) ∼= R ×
2πZ×R generated by (2π, 0, 4πc) and

(
− 2π

n ,−2π, 4π n−2
n c
)
. But this group

has trivial intersection with Heis2n+1 for any value of c, so the restriction
of β is injective, hence an isomorphism.

(2). — We compute kerβ∩Z(Ũ(1, n−1)), using the generators provided
by Lemma 3.11. For c = 0, our claim is obvious. Now assume that c > 0 and
let x, y ∈ Z. The third component of x(2π, 0, 4πc) + y

(
− 2π

n ,−2π, 4π n−2
n c
)

is 4πc(x+ n−2
n y), which vanishes if and only if nx+ (n− 2)y = 0, which in

turn holds if and only if (x, y) is an integral multiple of (2−n, n) if n is odd
and 1

2 (2−n, n) if n is even. Thus, if n is odd, then kerβ is generated by the
element (n− 2) · (2π, 0, 4πc) − n ·

(
− 2π

n ,−2π, 4π n−2
n c
)

= 2π · (n− 1, n, 0).
If n is even we obtain π · (n− 1, n, 0) as a generator instead.

(3). — Since dim G = dim U + dim H, F is discrete and normal in U .
Thus U ⊂ Z(U). Moreover, since left-translation by U fixes the origin in
R2n ×{0} ⊂ H, we must have F ⊂ Z(H). It follows that F = Z(U)∩Z(H).
The preimage β−1(F) = β−1(Z(U)) ∩ β−1(Z(H)) is therefore a discrete
subgroup of the center R × 2πZ × R of G̃.

By part (1) , β restricts to an isomorphism Heis2n+1 → H. Conse-
quently, we have β−1(Z(H)) = ({(0, 0)} × R) + kerβ. On the other hand
β−1(Z(U)) = (R×2πZ×{0})+kerβ. Now, a point 2π · (0, 0, λ) with λ ∈ R
lies in β−1(F) if and only if we can find some κ ∈ kerβ, a ∈ R and b ∈ Z
such that 2π · (0, 0, λ) + κ = 2π · (a, b, 0). For any x, y ∈ Z we have

(0, 0, 2πλ)+ x(2π, 0, 4πc)− y

(
2π
n
, 2π,−4πn− 2

n
c

)
= 2π

(
x− y

n
,−y, λ+2c

(
x+ n− 2

n
y

))
.
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To make the third entry zero, we must have λ = −2c
(
x + n−2

n y
)

∈ 2c ·
spanZ{1, n−2

n }, which equals 4c
n Z if n is even and 2c

n Z if n is odd. Thus,
β−1(F) = Z·(0, 0, 8πc

n )+kerβ if n is even and β−1(F) = Z·(0, 0, 4πc
n )+kerβ

if n is odd, which means that F = ⟨β(0, 0, 8πc
n )⟩ in the former case and

F = ⟨β(0, 0, 4πc
n )⟩ in the latter, just as claimed. □

Next, we study G′, which is obtained by restricting the homomorphism
β to G̃′ = S̃U(1, n− 1) ⋉ Heis2n+1.

Lemma 3.14. — For every n ⩾ 2, the following hold:
(1) If c = 0, then the kernel of β′ : S̃U(1, n − 1) → U ′ is equal to

2πnZ ⊂ 2πZ = Z(S̃U(1, n− 1)). Thus, U ′ ∼= SU(1, n− 1).
(2) If c > 0 then β′ : S̃U(1, n− 1) → U ′ is an isomorphism.
(3) The subgroup F ′ = U ′ ∩ H is given by ⟨β′(0, 0, 4πc(n− 1))⟩, hence

trivial if c = 0 and infinite cyclic if c > 0.

Proof.
(1). — Since c = 0, Lemma 3.11 implies that the kernel of β intersects

Z(S̃U(1, n − 1)) ∼= 2πZ in the cyclic subgroup generated by 2πn. The
assertion follows.

(2). — We have Ũ(1, n − 1) ∼= R × S̃U(1, n − 1) and U ′ = β({0} ×
S̃U(1, n − 1)). By part (2) of Lemma 3.13, the intersection of kerβ and
{0} × S̃U(1, n− 1) is trivial.

(3). — By the same arguments as in the proof of part (3) of Lemma 3.13,
F ′ = Z(U ′) ∩ Z(H). The center of G̃′ = ({0} × S̃U(1, n − 1)) ⋉ Heis2n+1
is {0} × 2πZ × R, which intersects the kernel of β in the cyclic sub-
group Z · (0,−2πn, 4πc(n − 1)). This observation together with a calcu-
lation analogous to the proof of part (3) of Lemma 3.13 shows that F ′ =
⟨β′(0, 0, 4πc(n− 1))⟩. □

The following Proposition is now an immediate application of the results
proven in Lemmata 3.11, 3.13 and 3.14.

Proposition 3.15. — Let n ⩾ 2 and consider G′ ⊂ Isom(Nn, g
c).

(1) If c = 0, then G′ ∼= SU(1, n− 1) ⋉ Heis2n+1.
(2) If c > 0, then G′ ∼= (S̃U(1, n − 1) ⋉ Heis2n+1)/F ′, where F ′ is the

infinite cyclic subgroup ⟨β′(0, 0, 4πc(n− 1))⟩.

For c > 0 and n ⩾ 2 we now consider the cyclic quotient N̂ c
n := Nn/F ′,

endowed with the induced quaternionic Kähler metric which we continue to
denote by gc. This amounts to considering the coordinate ϕ̃ periodic with
period 4πc(n− 1). We extend this family to c = 0 by setting N̂0

n = Nn.
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Since F ′ ⊂ G̃ is central, the action of G̃ on Nn descends to N̂ c
n. We ex-

tend our notation to the resulting action in the obvious way:

Notation. — In the following, we will denote by β̂ : G̃ → Isom(N̂ c
n, g

c)
and β̂′ : G̃′ → Isom(N̂ c

n, g
c) the corresponding group homomorphisms with

images Ĝ and Ĝ′, respectively. We also define Ĥ := β̂(Heis2n+1) and Û =
β̂(Ũ(1, n− 1)), as well as Û ′ = β̂′(S̃U(1, n− 1)).

We can now state the main result of this section.

Theorem 3.16. — For n ⩾ 2 and any value of c ⩾ 0, Ĝ′ ⊂ Isom(N̂ c
n, g

c)
is isomorphic to SU(1, n − 1) ⋉ (Heis2n+1 /F ′). In particular, the group
SU(1, n− 1)⋉ (Heis2n+1 /F ′) acts effectively and isometrically on (N̂ c

n, g
c).

Proof. — By construction, and the proof of part (3) of Lemma 3.14, the
kernel of β̂′ is generated by (0, 2πn, 0) and (0, 0, 4πc(n−1)). This means that
im β̂′ ∼= (S̃U(1, n− 1) ⋉ Heis2n+1)/ ker β̂′ ∼= SU(1, n− 1) ⋉ (Heis2n+1 /F ′),
as claimed. □

With the notation introduced above, we may rephrase this result as fol-
lows. Firstly, Û ′ ∼= SU(1, n− 1) and Ĥ ∼= Heis2n+1 /F ′. Secondly Û ′ ∩ Ĥ =
{id} so that Ĝ′ ∼= Û ′ ⋉ Ĥ.

The above results have been formulated for the case n ⩾ 2 only. The
arguments in the case n = 1 are very similar and the differences are mostly
notational. We state them separately in the next Proposition.

Proposition 3.17. — Let n = 1 and c ⩾ 0 arbitrary. Then
(1) kerβ = Z · (2π, 4πc) ⊂ R × R ∼= Z(Ũ(1) ⋉ Heis3).
(2) The restricted map β : Heis3 → H is an isomorphism.
(3) The kernel of the restricted map β : Ũ(1) → U is 2πZ ⊂ R = Ũ(1)

if c = 0 and trivial if c > 0.
(4) The intersection F = U ∩ H is given by ⟨β(0, 4πc)⟩. In particular,

it is trivial if c = 0 and infinite cyclic if c > 0.
(5) G = (Ũ(1) ⋉ Heis3)/F .
(6) G′ = Heis3.

In the following, it will be convenient to set N̂ c
1 := N1/F for c > 0 and

N̂0
1 := N1 so that we can speak of N̂ c

n for all c ⩾ 0 and n ∈ N.
Our next aim is to prove that G and Ĝ are closed as subgroups of

Isom(Nn, g
c) and Isom(N̂ c

n, ĝ
c), respectively. In the first step, we consider

the subgroup Û = β̂(Ũ(1, n− 1)) ⊂ Ĝ.

Lemma 3.18. — For all n ∈ N and any c ⩾ 0, Û ⊂ Isom(N̂ c
n, g

c) has
compact center.
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Proof. — The u(1)-factor of Lie(Û) ∼= u(1) ⊕ su(1, n − 1) is generated
by the vector field YC . If c = 0, it is clear that YC generates a U(1)-
subgroup. In the case c > 0, the periodicity of the coordinate ϕ̃ ensures
that this assertion remains valid, so Û = U(1) · Û ′, where Û ′ is the group of
isometries generated by the subalgebra su(1, n − 1). Since the U(1)-factor
is central, we have Z(Û) = U(1) · Z(Û ′), and it therefore suffices to prove
that Z(Û ′) is compact. In the case n = 1, Û ′ is trivial so there is nothing to
prove. For n ⩾ 2, Theorem 3.16 shows that Û ′ ∼= SU(1, n− 1), so its center
is cyclic of order n and in particular finite. □

For all c > 0, the periodicity of the coordinate ϕ̃ implies that the center
of Ĥ = β̂(Heis2n+1) is compact as well. By [28, Proposition 4.2] the com-
pactness of the centers of Û and Ĥ implies that they are closed subgroups
of Isom(N̂ c

n, g
c).

Proposition 3.19. — For all n ∈ N and c ⩾ 0, Ĝ is a closed subgroup
of Isom(N̂ c

n, g
c) and G is a closed subgroup of Isom(Nn, g

c).

Proof. — We start by proving the result in the case c > 0. The idea is
to exploit the closedness of the subgroups Û and Ĥ of Ĝ to prove the first
claim, and then apply a lifting argument to establish the second claim.

Note that Ĥ ⊂ Ĝ is normal, i.e. Ĝ is contained in the normalizer N(Ĥ),
which is a closed subgroup, since it coincides with the normalizer of the
Lie algebra of Ĥ. Thus, it suffices to prove that Ĝ is closed as a subgroup
of N(Ĥ). Let us therefore consider a sequence {xj} in Ĝ which converges
in N(Ĥ). Under the projection N(Ĥ) → N(Ĥ)/Ĥ, which is a submersion
because Ĥ is closed, this projects to a sequence in Û/(Û ∩ Ĥ) ⊂ N(Ĥ)/Ĥ.

It follows from the description of U ∩H given in Lemma 3.13 and Proposi-
tion 3.17, and the definition of N̂ c

n, that Û ∩Ĥ is a finite cyclic subgroup, so
the map Û → Û/(Û ∩Ĥ) is a finite cyclic covering. The center of Û/(Û ∩Ĥ)
is compact (because the center of Û is) and we may appeal once again
to [28, Proposition 4.2] to deduce that it is a closed subgroup of N(Ĥ)/Ĥ.
The projected sequence therefore converges in Û/(Û ∩ Ĥ), and lifts to the
covering space, producing a convergent sequence {gj} in Û . We may now
write xj = gjhj , and it follows from convergence of {xj} and {gj} that
{hj} converges in N(Ĥ). In fact, since Ĥ is closed in N(Ĥ) it converges in
Ĥ, and we conclude that {xj} converges in Ĝ = Û · Ĥ. This proves that
Ĝ ⊂ Isom(N̂ c

n, ĝ
c) is closed.

By definition, Ĝ = G/F ′ where F ′ ∼= Z is a discrete subgroup of the center
Z of H = β(Heis2n+1). Let C(Z) ⊂ Isom(Nn, g

c) denote its centralizer.
Then the covering map Nn → N̂ c

n induces a covering C(Z) → C(Z/F ′).
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Under this covering map, G is the preimage of the closed subgroup Ĝ ⊂
C(Z/F ′), and therefore G is itself closed in C(Z), hence in Isom(Nn, g

c)
as well.

In the case c = 0 we proceed analogously, by passing to the quotient
(Nn/Z, g0) obtained by making ϕ̃ periodic with period 2π, showing that
G/Z is a closed subgroup of Isom(Nn/Z, g0) and then performing the same
lifting argument. □

We note the following consequence, which we will use later.

Corollary 3.20. — Let n ∈ N and c ⩾ 0 and consider arbitrary points
p ∈ Nn and p̂ ∈ N̂ c

n. Then G0 := {g ∈ G | g · p = p} and Ĝ0 := {ĝ ∈ Ĝ |
ĝ · p̂ = p̂} are compact.

4. Quotients and ends of finite volume

4.1. Quotients from arithmetic lattices

We will now use the group actions discussed in the previous section
to construct interesting quotients of (Nn, g

c) by dividing out appropriate
discrete subgroups of isometries. The resulting manifolds will be complete
and quaternionic Kähler (since the isometries automatically preserve the
quaternionic structure), with non-trivial fundamental group.

For c = 0, the metric is symmetric and much is known about its quo-
tients by discrete subgroups. In particular, it is known that (Nn, g

0) =
SU(n,2)

S(U(n)×U(2)) admits a compact quotient [8]. Since any isometry of (Nn, g
c),

c > 0, preserves(2) the level sets of the global coordinate function ρ, we
cannot expect to obtain compact quotients in this case. The best one can
hope for is to obtain manifolds that have the structure of a fiber bundle over
R>0, which is parametrized by ρ, with locally homogeneous and compact
fibers.

If n ⩽ 2 we shall explicitly construct (infinitely many) discrete subgroups
of Isom(Nn, g

c), c > 0, which yield complete quaternionic Kähler manifolds
of this type. We shall see that if one does not insist on compactness of
the fibers and only requires them to be of finite volume, suitable discrete
subgroups can be found for all values of n ∈ N.

(2) This follows from the fact that ρ is a curvature invariant for c > 0 [15]. For c = 0,
this is of course not true, as witnessed by the fact that (Nn, gc) is the symmetric space

SU(n,2)
S(U(n)×U(2)) .
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For the purpose of studying quotients of (Nn, g
c), we may (recalling the

notation of Section 3.3) restrict our attention to the subgroup G′ ⊂ G,
whose orbits are the same as those of the full group. This is most easily
seen by noting that g = Lie(G) = u(1) ⊕ Lie(G′), where the first factor
is generated by the vector field YC , which is tangent to the fibers of the
projection (Nn, g

c) → CHn and preserves the coordinate function ρ. But
the level sets of ρ in these fibers are already acted upon transitively by
H ∼= Heis2n+1. As we will see shortly, restricting to G′ affords us certain
technical advantages.

Let us now turn to the construction of discrete subgroups. If c = 0, then
G′ has the structure of a semi-direct product (cf. Proposition 3.15). This
no longer holds true for c > 0, but can be remedied by passing to the cyclic
quotient N̂ c

n: by Theorem 3.16, the induced group of isometries Ĝ′ is always
a semi-direct product of the form SU(1, n−1)⋉Ĥ, where Ĥ = Heis2n+1 /F ′,
with F ′ ∼= Z a central, cyclic subgroup of Heis2n+1.

Thinking of Ĝ′ as determined by an action of SU(1, n − 1) on Ĥ by
automorphisms suggests the following strategy. First, we construct a dis-
crete subgroup Γ1 of SU(1, n− 1). Next, we construct a discrete subgroup
Γ̂2 ⊂ Ĥ which is invariant under the action of Γ1. Then Γ̂ := Γ1 ⋉ Γ̂2 will
be a discrete subgroup of the semi-direct product group.

Hence, the first step is to construct a suitable discrete subgroup of
SU(1, n−1). Recall that a lattice in a unimodular Lie group G is a discrete
subgroup Γ ⊂ G such that vol(G/Γ) is finite. Here vol(G/Γ) = vol(F ),
where F ⊂ G is a fundamental domain and vol(F ) is computed with re-
spect to the Haar measure on G. A lattice is called co-compact if G/Γ is
compact. The study of lattices in semi-simple Lie groups is a well-developed
area of research (see e.g. [29]), and we will now show how to apply some of
the known constructions to the problem at hand.

In the case n = 1 the group SU(1, n − 1), and thus the first step in our
construction, is trivial. We can take Γ̂ = Γ̂2 where Γ̂2 is a discrete subgroup
in Ĥ = Heis3 /F ′. If Γ̂ is a co-compact lattice in Ĥ, the resulting quotient
N̂1/Γ̂ is topologically R>0 × Ĥ/Γ̂ and hence of the desired type.

The next case, n = 2, is much less simple. The first step is to construct co-
compact lattices in SU(1, 1). It is well-known that SU(1, 1) is isomorphic to
SL(2,R), so discrete subgroups of SU(1, 1) are the same thing as Fuchsian
groups. Therefore, we are looking for co-compact Fuchsian groups which
preserve a lattice in Heis5. One way to construct Fuchsian groups is via
quaternion algebras, and this is what we recall next. Let F be a field, and
let a, b ∈ F ∗ = F \ {0}. Then the quaternion algebra over F associated
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to the pair (a, b) is the unital algebra over F with generators I, J,K and
relations

I2 = a, J2 = b, IJ = K = −JI
Note that this implies K2 = −IJJI = −ab. We will denote this algebra by(

a,b
F

)
. The case relevant for us is F = Q. It is known that if a, b are positive

integers such that b is prime and a is a quadratic non-residue mod b, then(
a,b
Q
)

is a division algebra (see, for instance, [23, Chapter 5])
Note that we may realize A :=

(
a,b
Q
)

as a Q-subalgebra of Mat2(C) via

(4.1)
1 =

(
1 0
0 1

)
, I =

√
ai
(

0 1
−1 0

)
,

J =
√
b

(
0 1
1 0

)
, K =

√
abi
(

1 0
0 −1

)
.

The reduced norm of an element Q = q01 + q1I + q2J + q3K ∈ A ⊂
Mat2(C) is given by det(Q). Explicitly, we have

Q =
(

q0 +
√
abiq3

√
aiq1 +

√
bq2

−
√
aiq1 +

√
bq2 q0 −

√
abiq3

)
,

so
det(Q) = q2

0 − aq2
1 − bq2

2 + abq2
3 .

Note that if a and b are positive and det(Q) = 1, then Q ∈ SU(1, 1).
The standard order in A is given by

O = {Q = q01+ q1I + q2J + q3K : qi ∈ Z}

We can now define the Fuchsian group associated with the standard order
in A. It is given by the elements of O of unit reduced norm:

Γ(A,O) := {Q ∈ O : det(Q) = 1} ⊂ SU(1, 1).

It is known that Γ(A,O) constructed as above is a Fuchsian group. More-
over, the fact that A is a division algebra guarantees that the quotient
space CH1/Γ(A,O) is compact [23, Chapter 5]. In particular, Γ(A,O) is a
co-compact Fuchsian group.

We shall see next that Γ(A,O) preserves a lattice in Heis5, as desired.
In what follows, we shall use the following realization of Heis2n+1 for any
n ∈ N. Consider Cn with the Hermitian structure (h, ·) of signature (1, n−1)
and associated symplectic form ω = Im(h). Then Heis2n+1 is the set Cn ×R
with multiplication law

(4.2) (v, t) · (v′, t′) =
(
v + v′, t+ t′ + 1

2ω(v, w)
)
,

for any v, v′ ∈ Cn, t, t′ ∈ R
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Proposition 4.1. — Let b be a prime number and a ∈ N a quadratic
non-residue modulo b. Equip A =

(
a,b
Q
)

with the standard order O. Then
there exists a Γ(A,O)-invariant and co-compact lattice Γ2 in the five-
dimensional Heisenberg group. Thus, Γa,b := Γ(A,O)⋉Γ2 is a co-compact
lattice in SU(1, 1) ⋉ Heis5.

Proof. — We write e1 = ( 1
0 ) ∈ C2. Looking at (4.1), we see that

O · e1 := spanZ{e1, Ie1, Je1,Ke1} = spanZ{e1,−
√
aie2,

√
be2,

√
abie1}

is a lattice in the real vector space C2 ∼= R4. Now we consider the subgroup
of Heis5 generated by the lattice O · e1. To see that the result is a lat-
tice in the Heisenberg group, we need only check that the possible entries
in the additional R-factor are discrete. These are determined by the sym-
plectic form corresponding to the Hermitian metric of signature (1, 1) on
C2. By (4.2), the values that occur in the subgroup generated by a lattice
Λ ⊂ C2 are half-integer multiples of the evaluation of this symplectic form
on its generators. Thus, it suffices to determine these:

ω(Ie1, e1) = ω(Je1, e1) = 0 = ω(Ie1,Ke1) = ω(Je1,Ke1)

ω(e1,Ke1) =
√
ab = ω(Ie1, Je1)

Clearly, we only obtain multiples of
√
ab by evaluation. This shows that

the subgroup generated by this lattice in C2 is a co-compact lattice in
Heis5. □

We have now constructed infinitely many co-compact lattices Γa,b ⊂
SU(1, 1) ⋉ Heis5, labeled by pairs (a, b) ∈ N2, where b is prime and a a
quadratic non-residue modulo b.

Theorem 4.2. — Let a, b ∈ N be such that b is prime and a is a qua-
dratic non-residue modulo b. Choose c ⩾ 0 such that 1

2
√
ab and 4πc are

linearly dependent over Q. Then Γa,b admits a co-compact sub-lattice Γ̃a,b

such that (N̂ c
2 , ĝ

c)/Γ̃a,b is a complete quaternionic Kähler manifold dif-
feomorphic to R>0 × K, where K is a compact and locally homogeneous
seven-dimensional manifold.

Proof. — By Proposition 3.15 and Theorem 3.16 and since 1
2
√
ab and

4πc are linearly dependent over Q, we see that Γa,b ∩ Z(Heis5) + F ′ is
a discrete subgroup of Z(Heis5) ∼= R. It follows that Γa,b descends to a
lattice Γ̂a,b in SU(1, n − 1) ⋉ (Heis5 /F ′) which acts effectively on N̂ c

2 . If
Γ̂a,b acts freely on (N̂ c

2 , ĝ
c), we may directly take the quotient and obtain a
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quaternionic Kähler manifold with the required properties. We may think of
N̂ c

2
∼= R>0 × Nρ0/F ′, where Nρ0 = {ρ ≡ ρ0 > 0} ⊂ N2, as a fiber bundle

over R>0 with homogeneous fibers. The ρ-coordinate is preserved by all
isometries, so N̂ c

2/Γ̂a,b is a fiber bundle over R>0 with locally homogeneous
fibers which are moreover compact since Γ̂a,b is co-compact.

However, the constructed lattices Γ̂a,b do not necessarily act freely on
N̂ c

2 . Nevertheless their intersection with the stabilizer of a point, which is
compact by Corollary 3.20, is finite. Since a finite-index subgroup of a co-
compact lattice is once again a co-compact lattice, it now suffices to find a
finite-index subgroup of Γ̂a,b which only intersects this finite group in the
identity.

The existence of such a subgroup is guaranteed by Selberg’s lemma,
which asserts that every finitely generated subgroup of GL(n,C) admits
a finite-index normal subgroup which is torsion-free. To apply this result,
it remains to check that Γa,b is finitely generated. Observe that Γa,b =
Γ(A,O) ⋉ Γ2, where Γ2 ⊂ Heis5 is generated by {e1, Ie1, Je1,Ke1}, hence
finitely generated. It therefore suffices to check that for the Fuchsian group
Γ(A,O) is finitely generated. But Γ(A,O) is a lattice in a semi-simple Lie
group and all such lattices are even finitely presented [29, Chapter 4], so
Selberg’s lemma applies. Thus, we obtain a co-compact lattice Γ̃a,b which
acts freely and isometrically on (N̂ c

2 , ĝ
c) so that the corresponding quotient

space possesses all the claimed properties. □

We now move on to describe a class of lattices Γ ⊂ SU(1, n−1)⋉Heis2n+1
for arbitrary n ⩾ 2. These are of the form Γ = Γ1⋉Γ2, where Γ2 is a lattice
in Heis2n+1 with the property that its normalizer Γ1 ⊂ SU(1, n−1) is again
a lattice. We consider lattices Γ2 ⊂ Heis2n+1 that are generated by lattices
Λ ⊂ Cn satisfying a compatibility condition with the Hermitian structure
(h, ·) on Cn of signature (1, n− 1).

To state this condition, let F be a totally imaginary quadratic number
field, i.e. F = Q[i

√
d], where d ∈ N is a square-free integer. If we denote by

OF the ring of integers of F , then we have OF = Z[i
√
d], if d ≡ 1, 2 mod 4

and OF = Z[ 1+i
√

d
2 ] if d ≡ 3 mod 4.

We call a lattice Λ ⊂ Cn that admits an action of the ring OF of integers
in F compatible with (h, ·) if Λ ⊂ Λ, i.e. Λ is invariant under complex
conjugation, and h|Λ×Λ induces a sesquilinear form over OF .

We remark that in the co-compact lattices Γa,b = Γ(A,O) ⋉ Γ2 con-
structed above for n = 2, the lattice Γ2 ⊂ Heis5 is generated by a lattice
Λ ⊂ C2 satisfying this compatibility condition with d = ab, provided d is
square-free and d ≡ 1, 2 mod 4.
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Proposition 4.3. — Let n ∈ N be arbitrary and denote the generator
of Z(Heis2n+1) ∼= R by T . Then, for any square-free d ∈ N with d ≡ 1, 2
mod 4 there exists a lattice Γ2 ⊂ Heis2n+1 generated by a lattice Λ ⊂
Cn compatible with (h, ·) such that Γ2 ∩ Z(Heis2n+1) = 1

2
√
dZT and the

stabilizer Γ1 in SU(1, n− 1) is also a lattice. In particular, Γ := Γ1 ⋉ Γ2 ⊂
SU(1, n− 1) ⋉ Heis2n+1 is a lattice.

If n ⩾ 3 then a lattice Γ ⊂ SU(1, n − 1) ⋉ Heis2n+1 constructed in this
way is never co-compact.

Proof. — The assertion is clear for n = 1, so assume that n ⩾ 2. Let
d ∈ N be square-free with d ≡ 1, 2 mod 4, so that F = Q[i

√
d] is a totally

imaginary quadratic number field with ring of integers OF = Z[i
√
d].

We start by constructing a suitable lattice Λd ⊂ Cn, which is compatible
with (h, ·). Let {ej : j = 1, . . . , n} be the standard basis of Cn, which is
orthonormal with respect to the Hermitian metric h of signature (1, n−1) on
Cn. Setting fj = iej , we may consider the lattice Λd ⊂ R2n ∼= Cn generated
by {ej ,

√
dfj : j = 1, . . . , n}. Since the symplectic form associated to h

takes values in Z ·
√
d when evaluated on this lattice in Cn, the subgroup

Ld of Heis2n+1 that this lattice generates is in fact a co-compact lattice.
By construction, the above lattice Λd is preserved by the natural action
of OF . Moreover, Λd is invariant under complex conjugation and h|Λ×Λ
induces a sesquilinear form over OF , so Λ is compatible with (h, ·) in the
sense defined above.

In this fashion, any square-free d ∈ N with d ≡ 1, 2 mod 4 gives rise
to a (co-compact) lattice Ld ⊂ Heis2n+1 which is generated by a lattice
Λd ⊂ Cn compatible with (h, ·).

Recall that we view Heis2n+1 as the set Cn × R with multiplication law
given by

(v, t) · (v′, t′) =
(
v + v′, t+ t′ + 1

2ω(v, w)
)
,

where ω = Im(h). Note that the Lie algebra heis2n+1 is the (real) vector
space Cn ⊕ R with Lie bracket

[(v, t), (v′, t′)] = ω(v, v′).

In this setting the exponential map exp : heis2n+1 → Heis2n+1 is just the
identity on Cn × R.

In general, we have the following description of the lattice Γ2 ⊂ Heis2n+1
generated by a lattice Λ ⊂ Cn compatible with (h, ·). Let rT be a generator
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for the image ω(Λ × Λ) ⊂ R. Then we have

Γ2 =
{

(v, t) ∈ Cn × R : v ∈ Λ, t ∈ 1
2rTZ

}
.

This follows from the observation that if v, v′ ∈ Λ satisfy ω(v, v′) = rT ,
then we have in Heis2n+1:

(v, 0) · (v′, 0) · (−(v + v′), 0) =
(

0, 1
2rT

)
.

In particular, we find Ld ∩ Z(Heis2n+1) = 1
2
√
dZT for the lattice Ld con-

structed above.
The set log Γ2 ⊂ heis2n+1 = Cn ⊕ R is closed under addition and equals

the lattice Λ ⊕ 1
2rTZ. Thus, the lattice Γ2 generated by a compatible lat-

tice Λ ⊂ Cn is a log-lattice. The lattice log Γ2 ⊂ heis2n+1 induces the Q-
structure (heis2n+1)Q = spanQ(log Γ2) and the compatibility of Λ ensures
that SU(1, n− 1) is defined over Q with respect to (heis2n+1)Q. It then fol-
lows from [30, Theorem 2.2] that the stabilizer Γ1 ⊂ SU(1, n− 1) of Γ2 is a
lattice in SU(1, n−1). We now take Γ2 = Ld and the above discussion shows
that Γ1 = StabSU(1,n−1)(Γ2) is a lattice. We may then form the semi-direct
product to obtain a lattice Γ = Γ1 ⋉ Γ2 ⊂ SU(1, n− 1) ⋉ Heis2n+1.

If n ⩾ 3, and Λ ⊂ Cn is a lattice compatible with (h, ·) generating a lat-
tice Γ2 ⊂ Heis2n+1, then the lattice Γ1 = StabSU(1,n−1)(Γ2) ⊂ SU(1, n− 1)
contains a unipotent element and is therefore not co-compact by Gode-
ment’s compactness criterion [29, Proposition 5.3.1]. To find such a unipo-
tent element, we consider the indefinite rational quadratic form given by
the real part of h on the 2n-dimensional Q-vector space spanQ(Λ). Since
n ⩾ 3, i.e. 2n ⩾ 6, we can apply Meyer’s theorem [32, Corollary 2 on p. 43]
to find a vector v ∈ Λ such that h(v, v) = 0. Furthermore, we can choose
w ∈ Λ such that v and w are linearly independent and h(v, w) = 0. Then
A ∈ End(Cn) given by A = h(·, v)w − h(·, w)v is not zero, skew-hermitian
with respect to h and nilpotent, in particular A ∈ su(1, n − 1). Thus, the
unipotent element exp(A) ∈ SU(1, n − 1) stabilizes Λ, and hence Γ2, i.e.
exp(A) ∈ Γ1. For the lattices Ld constructed above, we can take v = e1 +e2
and w =

√
d(f1 + f2). This shows that in fact also for n = 2 the stabilizer

of Ld in SU(1, n− 1) is not co-compact. □

Proceeding as in the proof of Theorem 4.2, we now easily obtain:

Theorem 4.4. — Let n ∈ N be arbitrary and let d ∈ N be square-free
such that d ≡ 1, 2 mod 4. Then there exists a lattice Γ ⊂ SU(1, n − 1) ⋉
Heis2n+1 such that Γ ∩ Z(Heis2n+1) = Z · 1

2
√
dT , where T is the generator

of Z(Heis2n+1) ∼= R. Choose c ⩾ 0 such that 4πc and 1
2
√
d are linearly

ANNALES DE L’INSTITUT FOURIER



COMPLETE QK MANIFOLDS WITH FINITE VOLUME ENDS 517

dependent over Q. Then Γ contains a lattice Γ̃ such that (N̂ c
n, g

c)/Γ̃ is a
complete quaternionic Kähler manifold diffeomorphic to R×K, where the
fibers {t} ×K are locally homogeneous and of finite volume.

4.2. The volume of fiberwise quotients by lattices

Given a lattice in SU(1, n − 1) ⋉ Heis2n+1, we have outlined above how
to obtain a quaternionic Kähler manifold Nn/Γ which can be viewed as
a fiber bundle with locally homogeneous fibers of finite volume. In the
previous section we have shown how to obtain infinitely many lattices for
any n ∈ N, and constructed infinitely many co-compact examples in the
case n ⩽ 2. We are now interested in the dependence of the volume of the
fibers Nρ/Γ ⊂ Nn/Γ on ρ.

Recall the explicit expression for the one-loop deformed c-map metrics
on Nn given in (3.1) and (3.2):

gc = ρ+ c

ρ
gCHn−1 + 1

4ρ2
ρ+ 2c
ρ+ c

dρ2

+ 1
4ρ2

ρ+c

ρ+2c

(
dϕ̃−4 Im

(
w0dw0−

n−1∑
a=1

wadwa

)
+ 2c

1−∥X∥2 Im
(n−1∑

a=1
XadXa

))2

− 2
ρ

(
dw0dw0−

n−1∑
a=1

dwadwa

)
+ ρ+ c

ρ2
4

1−∥X∥2

∣∣∣∣∣dw0+
n−1∑
a=1

Xadwa

∣∣∣∣∣
2

where

gCHn−1 = 1
1 − ∥X∥2

(
n−1∑
a=1

|dXa|2 + 1
1 − ∥X∥2

∣∣∣∣ n−1∑
a=1

XadXa

∣∣∣∣2
)
.

Ordering our coordinates as (ρ,X,w, ϕ̃), where X = (X1, . . . , Xn−1) and
w = (w0, . . . , wn−1), the Gram matrix Gc of gc takes on the following block
form:

Gc =


gρρ 0 0 0
0 gXX gXw g

Xϕ̃

0 g⊤
Xw gww g

wϕ̃

0 g⊤
Xϕ̃

g⊤
wϕ̃

g
ϕ̃ϕ̃


where we have coefficients

gρρ, gϕ̃ϕ̃
∈ C∞(Nn,R), gXX ∈ C∞(Nn,Mat2n−2,2n−2(R)),

gww ∈ C∞(Nn,Mat2n,2n(R)), gXw ∈ C∞(Nn,Mat2n−2,2n(R)),

g
Xϕ̃

∈ C∞(Nn,R2n−2), g
wϕ̃

∈ C∞(Nn,R2n).
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Since the level sets of ρ are locally homogeneous of finite volume, it
suffices to compute the Gram matrix and its determinant at a point (ρ, p0)
where X = 0 and w = 0. At such a point the metric gc evaluates to

gc(ρ, p0) = ρ+ c

ρ

(
n−1∑
a=1

|dXa|2
)

+ 1
4ρ2

ρ+ 2c
ρ+ c

dρ2 + 1
4ρ2

ρ+ c

ρ+ 2cdϕ̃2

+ 2
ρ

(
ρ+ 2c
ρ

|dw0|2 +
n−1∑
a=1

|dwa|2
)
.

In particular, the off-diagonal components gXw, gXϕ̃
, g

wϕ̃
of Gc all vanish

at (ρ, p0) and we have

gρρ(ρ, p0) = 1
4ρ2

ρ+ 2c
ρ+ c

, gXX(ρ, p0) = ρ+ c

ρ
12n−2

and

gww(ρ, p0) = 2
ρ

(
ρ+2c

ρ 12 0
0 12n−2

)
g

ϕ̃ϕ̃
(ρ, p0) = 1

4ρ2
ρ+ c

ρ+ 2c .

It follows that

detGc(ρ, p0) = 22n−4

ρ2n+4

(
ρ+ c

ρ

)2n−2(
ρ+ 2c
ρ

)2
.

Thus, f =
√

detGc = 1
ρn+2

(
ρ+c

ρ

)n−1 (
ρ+2c

ρ

)
finv, where finv is the vol-

ume density of the unique invariant volume form finvdX dw dϕ̃ in the fiber
normalized by finv(p0) = 2n−2. Here dX dw dϕ̃ stands for the Lebesgue
measure associated with the coordinate system.

Note that we have for any c ⩾ 0 and ρ > 0 the inequality

(4.3) f = 1
ρn+2

(
1 + c

ρ

)n−1(
1 + 2c

ρ

)
finv ⩾

finv

ρn+2 .

On the other hand, if ρ ⩾ ρ0 > 0 then we have for any c ⩾ 0,

(4.4) f = 1
ρn+2

(
1 + c

ρ

)n−1(
1 + 2c

ρ

)
finv ⩽ C(ρ0) finv

ρn+2 ,

where C(ρ0) =
(

1 + c
ρ0

)n−1 (
1 + 2c

ρ0

)
> 0.

Fix ρ0 > 0 and let D denote a fundamental domain for the action of Γ
on the fiber Nρ0 . Then we deduce from (4.4) that there exists some C1 > 0
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such that

volNρ⩾ρ0 /Γ := lim
ρ→∞

volN [ρ0,ρ]/Γ = lim
ρ→∞

∫
D×[ρ0,ρ]

fdX dw dϕ̃dρ

⩽ C1

∫ ∞

ρ0

dρ
ρn+2 = C1

(n+ 1)ρn+1
0

Similarly, we obtain from (4.3) the existence of a constant C2 > 0 such
that

volN [ρ1,ρ0]/Γ =
∫

D×[ρ1,ρ0]
fdX dw dϕ̃dρ

⩾ C2

∫ ρ0

ρ1

dρ
ρn+2 = C2

(n+ 1)

(
1

ρn+1
1

− 1
ρn+1

0

)
for any 0 < ρ1 < ρ0. We summarize this discussion as follows.

Theorem 4.5. — Let c ⩾ 0 and consider the quaternionic Kähler man-
ifold (Nn/Γ, gc). Then for each ρ0 ∈ R>0 we have

vol(Nρ⩾ρ0/Γ) < ∞,

and
vol(N [ρ,ρ0]/Γ) → ∞, as ρ → 0.

Remark 4.6. — We may write f
finv

= 1
ρn+2

(
ρ+c

ρ

)n−1(ρ+2c
ρ

)
= 1

ρn+2P
(

c
ρ

)
,

where P is a polynomial of degree n with positive coefficients and constant
term equal to 1. From this one may obtain the explicit formula

volN [ρ1,ρ0]/Γ = V (D)
∫ ρ0

ρ1

1
ρn+2P

(
c

ρ

)
dρ, V (D) =

∫
D

finvdX dw dϕ̃.

Analyzing this expression gives the leading asymptotics

volNρ⩾ρ0 /Γ = kρ−n−1
0 +O(ρ−n−2

0 ), k = V (D)
n+ 1

when ρ0 → ∞, while the asymptotics of volN [ρ1,ρ0]/Γ for ρ1 → 0 depends
on c. For c = 0 the volume is simply

volN [ρ1,ρ0]/Γ = k(ρ−n−1
1 − ρ−n−1

0 ) ∼ kρ−n−1
1 , ρ1 → 0,

whereas for c > 0 it grows like k1ρ
−2n−1
1 :

ρ2n+1
1 volN [ρ1,ρ0]/Γ = k1 +O(ρ1), k1 = 2cn

2n+ 1k

In the case n = 1 there are no X-coordinates and the above computations
simplify considerably. The Gram matrix Gc takes values in Mat4,4(R) and
i
2 dw ∧ dw ∧ dϕ̃ is a left-invariant volume form on Heis3. The determinant
detGc is therefore a function of ρ alone, i.e. finv is constant.
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