[Structures équivariantes hiérarchiquement hyperboliques pour les groupes de 3-variétés via les quasimorphismes]
Behrstock, Hagen et Sisto ont classifié les groupes fondamentaux des 3-variétés qui admettent une structure d’espace hyperbolique hiérarchique. Mais ces structures e sont pas toujours équivariantes. Dans cet article, nous classifions les groupes fondamentaux des 3-variétés admettant des structures HHS équivariantes. L’élément clé de notre preuve est que les groupes admissibles introduits par Croke et Kleiner admettent toujours des structures HHS équivariantes. Pour les variétés de graphes non géométriques, cela est contraire à une conjecture de Behrstock, Hagen et Sisto et contraste également avec des résultats sur les structures cubiques sur ces groupes. Nos arguments impliquent la construction de quasimorphismes appropriés sur les pièces de Seifert, afin de construire des actions sur des quasi-lignes.
Behrstock, Hagen and Sisto classified 3-manifold groups admitting a hierarchically hyperbolic space structure. However, these structures were not always equivariant with respect to the group. In this paper, we classify 3-manifold groups admitting equivariant hierarchically hyperbolic structures. The key component of our proof is that the admissible groups introduced by Croke and Kleiner always admit equivariant hierarchically hyperbolic structures. For non-geometric graph manifolds, this is contrary to a conjecture of Behrstock, Hagen and Sisto and also contrasts with results about CAT(0) cubical structures on these groups. Perhaps surprisingly, our arguments involve the construction of suitable quasimorphisms on the Seifert pieces, in order to construct actions on quasi-lines.
Révisé le :
Accepté le :
Première publication :
Keywords: Hierarchically hyperbolic group, 3-manifold.
Mot clés : groupe hiérarchique hyperbolic, 3-variété.
Hagen, Mark 1 ; Russell, Jacob 2 ; Sisto, Alessandro 3 ; Spriano, Davide 4
@unpublished{AIF_0__0_0_A114_0, author = {Hagen, Mark and Russell, Jacob and Sisto, Alessandro and Spriano, Davide}, title = {Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3654}, language = {en}, note = {Online first}, }
TY - UNPB AU - Hagen, Mark AU - Russell, Jacob AU - Sisto, Alessandro AU - Spriano, Davide TI - Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3654 LA - en ID - AIF_0__0_0_A114_0 ER -
%0 Unpublished Work %A Hagen, Mark %A Russell, Jacob %A Sisto, Alessandro %A Spriano, Davide %T Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms %J Annales de l'Institut Fourier %D 2024 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3654 %G en %F AIF_0__0_0_A114_0
Hagen, Mark; Russell, Jacob; Sisto, Alessandro; Spriano, Davide. Equivariant hierarchically hyperbolic structures for 3-manifold groups via quasimorphisms. Annales de l'Institut Fourier, Online first, 60 p.
[1] Hyperbolic structures on groups, Algebr. Geom. Topol., Volume 19 (2019) no. 4, pp. 1747-1835 | DOI | MR | Zbl
[2] Largest acylindrical actions and stability in hierarchically hyperbolic groups. With an appendix by Daniel Berlyne and Jacob Russell, Trans. Amer. Math. Soc., Ser. B, Volume 8 (2021), pp. 66-104 | DOI | MR | Zbl
[3] Hierarchically hyperbolic groups and uniform exponential growth (2019) (with appendix by Radhika Gupta and Harry Petyt, https://arxiv.org/abs/1909.00439)
[4] 3-manifold groups, EMS Series of Lectures in Mathematics, European Mathematical Society, 2015, xiv+215 pages | DOI | MR | Zbl
[5] A combinatorial take on hierarchical hyperbolicity and applications to quotients of mapping class groups (2020) (https://arxiv.org/abs/2005.00567)
[6] Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups, Proc. Lond. Math. Soc., Volume 114 (2017) no. 5, pp. 890-926 | DOI | MR | Zbl
[7] Hierarchically hyperbolic spaces I: Curve complexes for cubical groups, Geom. Topol., Volume 21 (2017) no. 3, pp. 1731-1804 | DOI | MR | Zbl
[8] Hierarchically hyperbolic spaces II: Combination theorems and the distance formula, Pac. J. Math., Volume 299 (2019), pp. 257-338 | DOI | Zbl
[9] Quasiflats in hierarchically hyperbolic spaces, Duke Math. J., Volume 170 (2021) no. 5, pp. 909-996 | DOI | MR | Zbl
[10] A refined combination theorem for hierarchically hyperbolic groups, Groups Geom. Dyn., Volume 14 (2020) no. 4, pp. 1127-1203 | DOI | MR | Zbl
[11] Hierarchical Hyperbolicity of Graph Products and Graph Braid Groups, Ph. D. Thesis, City University of New York (2021) (https://www.proquest.com/docview/2543702948)
[12] Hierarchical hyperbolicity of graph products, Groups Geom. Dyn., Volume 16 (2022) no. 2, pp. 523-580 | DOI | MR | Zbl
[13] Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 122 (2015), pp. 1-64 | DOI | Numdam | MR | Zbl
[14] Quasiconvexity and relatively hyperbolic groups that split, Mich. Math. J., Volume 62 (2013) no. 2, pp. 387-406 | DOI | MR | Zbl
[15] Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | DOI | MR | Zbl
[16] Amenable hyperbolic groups, J. Eur. Math. Soc., Volume 17 (2015) no. 11, pp. 2903-2947 | DOI | MR | Zbl
[17] Complete topological descriptions of certain Morse boundaries, Groups Geom. Dyn., Volume 17 (2023) no. 1, pp. 157-184 | DOI | MR | Zbl
[18] Relative hyperbolicity and Artin groups, Geom. Dedicata, Volume 129 (2007), pp. 1-13 | DOI | MR | Zbl
[19] From wall spaces to cube complexes, Int. J. Algebra Comput., Volume 15 (2005) no. 5-6, pp. 875-885 | DOI | MR | Zbl
[20] The geodesic flow of a nonpositively curved graph manifold, Geom. Funct. Anal., Volume 12 (2002) no. 3, pp. 479-545 | DOI | MR | Zbl
[21] Combination of convergence groups, Geom. Topol., Volume 7 (2003), pp. 933-963 | DOI | MR | Zbl
[22] Extensions of Veech groups II: Hierarchical hyperbolicity and quasi-isometric rigidity (2020) (https://arxiv.org/abs/2111.00685)
[23] Boundaries and automorphisms of hierarchically hyperbolic spaces, Geom. Topol., Volume 21 (2017) no. 6, pp. 3659-3758 | DOI | MR | Zbl
[24] Correction to the article Boundaries and automorphisms of hierarchically hyperbolic spaces, Geom. Topol., Volume 24 (2020) no. 2, pp. 1051-1073 | DOI | MR | Zbl
[25] Stable cubulations, bicombings, and barycenters (2020) (https://arxiv.org/abs/2009.13647)
[26] The second bounded cohomology of word-hyperbolic groups, Topology, Volume 36 (1997) no. 6, pp. 1275-1289 | DOI | MR | Zbl
[27] The coarse Helly property, hierarchical hyperbolicity, and semihyperbolicity (2020) (https://arxiv.org/abs/2009.14053)
[28] Cocompactly cubulated crystallographic groups, J. Lond. Math. Soc., Volume 90 (2014) no. 1, pp. 140-166 | DOI | MR | Zbl
[29] Extra-large type artin groups are hierarchically hyperbolic (2021) (https://arxiv.org/abs/2109.04387)
[30] Projection complexes and quasimedian maps, Algebr. Geom. Topol., Volume 22 (2022) no. 7, pp. 3277-3304 | DOI | MR | Zbl
[31] Cocompactly cubulated graph manifolds, Isr. J. Math., Volume 207 (2015) no. 1, pp. 377-394 | DOI | MR | Zbl
[32] On hierarchical hyperbolicity of cubical groups, Isr. J. Math., Volume 236 (2020) no. 1, pp. 45-89 | DOI | MR | Zbl
[33] Crystallographic Helly Groups (2020) (https://arxiv.org/abs/2010.07407)
[34] Lattices in a product of trees, hierarchically hyperbolic groups and virtual torsion-freeness, Bull. Lond. Math. Soc., Volume 54 (2022) no. 4, pp. 1413-1419 | DOI | MR | Zbl
[35] Induced quasicocycles on groups with hyperbolically embedded subgroups, Algebr. Geom. Topol., Volume 13 (2013) no. 5, pp. 2635-2665 | DOI | MR | Zbl
[36] On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn., Volume 8 (2014) no. 2, pp. 391-414 | DOI | MR | Zbl
[37] -manifold groups and nonpositive curvature, Geom. Funct. Anal., Volume 8 (1998) no. 5, pp. 841-852 | DOI | MR | Zbl
[38] Embedability between right-angled Artin groups, Geom. Topol., Volume 17 (2013) no. 1, pp. 493-530 | DOI | MR | Zbl
[39] Geometry of pseudocharacters, Geom. Topol., Volume 9 (2005), pp. 1147-1185 | DOI | MR | Zbl
[40] Stable subgroups of the genus two handlebody group (2020) (https://arxiv.org/abs/2009.05067)
[41] Straightening and bounded cohomology of hyperbolic groups, Geom. Funct. Anal., Volume 11 (2001) no. 4, pp. 807-839 | DOI | MR | Zbl
[42] Sublinearly Morse Boundary of CAT(0) admissible groups (2022) (https://arxiv.org/abs/2203.00935)
[43] Mapping class groups are quasicubical (2021) (https://arxiv.org/abs/2112.10681)
[44] Unbounded domains in hierarchically hyperbolic groups, Groups Geom. Dyn., Volume 17 (2023) no. 2, pp. 479-500 | DOI | MR | Zbl
[45] Hierarchical hyperbolicity of hyperbolic-2-decomposable groups (2020) (https://arxiv.org/abs/2007.13383)
[46] Extensions of multicurve stabilizers are hierarchically hyperbolic (2021) (https://arxiv.org/abs/2107.14116)
[47] From hierarchical to relative hyperbolicity, Int. Math. Res. Not. (2022) no. 1, pp. 575-624 | DOI | MR | Zbl
[48] Convexity in hierarchically hyperbolic spaces, Algebr. Geom. Topol., Volume 23 (2023) no. 3, pp. 1167-1248 | DOI | MR | Zbl
[49] The geometries of -manifolds, Bull. Lond. Math. Soc., Volume 15 (1983) no. 5, pp. 401-487 | DOI | MR | Zbl
[50] Topological methods in group theory, Homological group theory (Proc. Sympos., Durham, 1977) (London Mathematical Society Lecture Note Series), Volume 36, Cambridge University Press (1979), pp. 137-203 | DOI | MR | Zbl
[51] On metric relative hyperbolicity (2012) (https://arxiv.org/abs/1210.8081)
[52] Projections and relative hyperbolicity, Enseign. Math., Volume 59 (2013) no. 1-2, pp. 165-181 | DOI | MR | Zbl
[53] What is a hierarchically hyperbolic space?, Beyond hyperbolicity (London Mathematical Society Lecture Note Series), Volume 454, Cambridge University Press, 2019, pp. 117-148 | DOI | MR | Zbl
[54] Hyperbolic HHS I: Factor Systems and Quasi-convex subgroups. (2017) (https://arxiv.org/abs/1711.10931)
[55] Hierarchical hyperbolicity of graphs of multicurves, Algebr. Geom. Topol., Volume 22 (2022) no. 1, pp. 113-151 | DOI | MR | Zbl
Cité par Sources :