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EQUIVARIANT HIERARCHICALLY HYPERBOLIC
STRUCTURES FOR 3-MANIFOLD GROUPS VIA

QUASIMORPHISMS

by Mark HAGEN, Jacob RUSSELL,
Alessandro SISTO & Davide SPRIANO (*)

Abstract. — Behrstock, Hagen and Sisto classified 3-manifold groups admit-
ting a hierarchically hyperbolic space structure. However, these structures were not
always equivariant with respect to the group. In this paper, we classify 3-manifold
groups admitting equivariant hierarchically hyperbolic structures. The key compo-
nent of our proof is that the admissible groups introduced by Croke and Kleiner
always admit equivariant hierarchically hyperbolic structures. For non-geometric
graph manifolds, this is contrary to a conjecture of Behrstock, Hagen and Sisto
and also contrasts with results about CAT(0) cubical structures on these groups.
Perhaps surprisingly, our arguments involve the construction of suitable quasimor-
phisms on the Seifert pieces, in order to construct actions on quasi-lines.

Résumé. — Behrstock, Hagen et Sisto ont classifié les groupes fondamentaux des
3-variétés qui admettent une structure d’espace hyperbolique hiérarchique. Mais
ces structures e sont pas toujours équivariantes. Dans cet article, nous classifions les
groupes fondamentaux des 3-variétés admettant des structures HHS équivariantes.
L’élément clé de notre preuve est que les groupes admissibles introduits par Croke
et Kleiner admettent toujours des structures HHS équivariantes. Pour les variétés
de graphes non géométriques, cela est contraire à une conjecture de Behrstock,
Hagen et Sisto et contraste également avec des résultats sur les structures cubiques
sur ces groupes. Nos arguments impliquent la construction de quasimorphismes
appropriés sur les pièces de Seifert, afin de construire des actions sur des quasi-
lignes.
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1. Introduction

Fundamental groups of 3-manifolds are a major source of inspiration
in geometric group theory, providing a great part of the motivation for
the notion of Gromov-hyperbolicity and all its generalisations, the study
of actions on nonpositively-curved spaces, and the increasingly important
role of special cube complexes.

One notion of “coarse nonpositive curvature”, inspired partly by spe-
cial cube complexes, is hierarchical hyperbolicity. Hierarchically hyperbolic
spaces and groups were introduced in [7] as a means of isolating geomet-
ric features common to mapping class groups and certain CAT(0) cubical
groups. After the definition took an easier-to-verify form in [8], a budding
study of hierarchical hyperbolicity has emerged. This has included

• finding new examples of hierarchically hyperbolic spaces and
groups [5, 6, 8, 10, 11, 12, 22, 29, 32, 34, 40, 42, 45, 46, 55];

• development of new tools [5, 23, 24, 47, 48, 54];
• establishment of geometric and algebraic consequence of hierarchi-

cal hyperbolicity [3, 6, 9, 25, 27, 30, 43].
Very roughly, a hierarchically hyperbolic space structure on a space W

consists of a set S indexing a collection of δ-hyperbolic space {C(U)}U∈S

and a collection of projection maps {πU : W → C(U)}U∈S satisfying a col-
lection of axioms that allow for the coarse geometry of W to be recovered
from these projections; see [8, Definition 1.1] for the precise definition. Of-
ten, W is a finitely-generated group G equipped with a word metric. In
this case, stronger results can be achieved when G is not only a hierar-
chically hyperbolic space (HHS), but has a structure that is compatible
with the group action. These hierarchically hyperbolic groups (HHG) are
defined precisely in Definition 2.16, but essentially this means that G acts
cofinitely on S, with elements g ∈ G inducing isometries C(U) → C(gU)
so that all of the expected diagrams involving these isometries and the
projections from the definition of an HHS commute.

The difference between HHSs and HHGs is illustrated by the fact that
being an HHS is a quasi-isometry invariant property, but being an HHG
is not [44]. While considerable geometric information can be gleaned from
merely knowing that G is an HHS (e.g. finiteness of the asymptotic dimen-
sion [6] or control of quasiflats [9]), one gets much more from the HHG
property (e.g. semihyperbolicity [25, 27] and the Tits alternative [23, 24],
or the consequences listed in Corollary 1.5).

The first examples of hierarchically hyperbolic spaces beyond mapping
class groups and some cube complexes were the fundamental groups of
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closed orientable 3-manifolds whose prime decompositions excludes Nil and
Sol pieces [8]. However, the hierarchically hyperbolic structures constructed
for such groups in [8] are in general non-equivariant. In the present paper,
we use new combinatorial techniques to produce equivariant hierarchically
hyperbolic structures for 3-manifold groups. While many of the conse-
quences of hierarchical hyperbolicity were known previously for 3-manifold
groups, we find this satisfying as a complete answer to the question of
hierarchical hyperbolicity for 3-manifold groups:

Theorem 1.1 (Theorem 3.3). — Let M be a closed oriented 3-manifold.
Then π1M is a hierarchically hyperbolic group if and only if M has no Nil,
Sol, or non-octahedral flat manifolds in its prime decomposition.

In light of the previous characterisation of which 3-manifold groups are
HHSs, Theorem 1.1 says the only additional obstruction to being HHG are
non-octahedral flat manifolds in the prime decomposition.

Theorem 1.1 disproves a conjecture of Behrstock–Hagen–Sisto that there
were examples of non-geometric graph manifold groups that were hierarchi-
cally hyperbolic spaces, but not hierarchically hyperbolic groups; see [8, Re-
mark 10.2]. This is a surprising result as this conjecture had a compelling
heuristic justification. We explain this heuristic justification and how we
circumvent it, then discuss the outline of our proof of Theorem 1.1.

1.1. Comparison with cubulations: lines vs quasi-lines

To explain the justification for the original belief that some graph man-
ifold groups were not HHGs, we start with the octahedral hypothesis in
Theorem 1.1. This says that the flat pieces are quotients of E3 by crystal-
lographic groups with point group conjugate into O3(Z) (see [28, Defini-
tion 2.2] or [33, Theorem 7.1]). For crystallographic groups in any dimen-
sion, being octahedral is equivalent to cocompact cubulation [28]. Petyt–
Spriano showed that this is in turn equivalent to being an HHG [44]. So,
while every crystallographic group is an HHS via a quasi-isometry to Zn,
many crystallographic groups, such as the (3, 3, 3)-triangle group, are not
HHGs.

There is a similar obstruction to cocompactly cubulating π1M when M is
a non-geometric graph manifold [31]. Specifically, π1M can be cocompactly
cubulated if it is flip in the sense of [37], that is, in every Seifert piece there
is a “horizontal” surface whose boundary circles are fibres in the adjacent
Seifert pieces. The idea behind the obstruction to cubulation is then: if
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T̃ ⊂ M̃ is an elevation of a JSJ torus to the universal cover, and π1M is
cubulated, then the walls in M̃ cut through T̃ in at least two intersecting
families of parallel lines. If the “flip” condition fails, then in some T̃ , there
will be at least three such families, and the dual cube complex will contain
T̃ × R ∼= E3, preventing cocompactness. So, the obstruction to cocompact
cubulation arises from specific Z2 subgroups getting “over-cubulated”, as
is the case with crystallographic groups.

The suspicion (confirmed in [44]) that cocompact cubulation is equivalent
to the existence of an HHG structure for virtually abelian groups, together
with the restrictions on cubulating graph manifolds, motivated the now
disproven belief that non-flip graph manifold groups could fail to be HHGs.

The proof of Theorem 1.1 shows that constructing an HHG structure
needs less than is needed to cocompactly cubulate. Roughly, in a cocom-
pact cubulation of π1M , the immersed walls in M cut through each Seifert
piece in a collection of surfaces whose boundary circles map to fibers in ad-
jacent blocks; for each Seifert piece B we thus need a π1B-action on a line
where certain elements act loxodromically and specific others fix points. For
an HHG structure, we only need an action of π1B on a quasi-line such that
the central Z acts loxodromically, but the Z subgroups corresponding to
the fibers of the adjacent Seifert pieces act with bounded orbits. The latter
constraint is satisfiable even if M is not flip. This explains the involve-
ment of quasimorphisms in our proof. The idea of using quasimorphisms in
building HHG structures originated in this project, but has already found
additional applications to Artin groups [29] and extensions of subgroups of
mapping class groups [22].

Another simple application of these actions on quasi-lines is that central
extensions of hyperbolic groups by Z are HHGs.

Corollary 1.2 (Corollary 4.3). — If a group G is a central extension
Z ↪→ G

π
↠ F where F is a non-elementary hyperbolic group, then G is a

hierarchically hyperbolic group.

While these central extensions were known to be hierarchically hyperbolic
spaces by virtue of being quasi-isometric to Z× F , it did not appear to be
known that they are in fact HHGs.

We now discuss the proof of Theorem 1.1 in more detail.

1.2. Reduction to graph manifolds and admissible groups

Let M be a closed oriented 3-manifold. The proof of the forward di-
rection of Theorem 1.1, that the existence of an HHG structure for π1M
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implies that M has no Nil, Sol, or non-hyperoctahedral pieces in it prime
decomposition, is a consequence of results in [8, 44, 48]. The idea is that
we can push the HHG structure of π1M to the fundamental groups of each
of M ’s prime pieces, implying they cannot be Nil, Sol, or non-octahedal
flat.

The main part of the paper is therefore devoted to other direction of The-
orem 1.1, namely that if the prime decomposition of M excludes Nil, Sol,
and non-octahedral flat manifolds, then π1M is an HHG. As the geometric
cases can largely be handled by appealing to results in the literature, the
main new ingredient we need is that non-geometric graph manifold groups
are HHGs.

Corollary 1.3 (Corollary 3.2). — If M is a 3-dimensional non-geo-
metric graph manifold, then π1M is a hierarchically hyperbolic group.

With Corollary 1.3 in hand, we can deduce the general case of Theo-
rem 1.1 using the fact that a group that is hyperbolic relative to HHGs is
itself an HHG; see [8].

Our proof of Corollary 1.3 only relies on the specific way a graph man-
ifold group decomposes into a graph of groups. Hence, instead of working
in the specific case of graph manifolds, we work in the setting of admis-
sible graphs of groups. This is a class of groups introduced by Croke and
Kleiner to abstract the structure of π1M , when M is a non-geometric graph
manifold [20]. Roughly, an admissible graph of groups is a nontrivial finite
graph of groups G where each edge group is Z2 and each vertex group Gµ

has infinite cyclic center Zµ with quotient Fµ = Gµ/Zµ a non-elementary
hyperbolic group. Additionally, the various edge groups need to be pair-
wise non-commensurable inside each vertex group. The exact definition
is Definition 2.13. Hence, hierarchical hyperbolicity of π1M is a special
case of:

Theorem 1.4 (Theorem 3.1, Proposition 6.8). — Let G be an admissi-
ble graph of groups. Then π1G is a hierarchically hyperbolic group. More-
over, if each quotient Fµ is a free group, then the associated hyperbolic
spaces are quasi-isometric to trees.

Recently, Nguyen and Qing showed that every admissible group that acts
geometrically on a CAT(0) space is a hierarchically hyperbolic space [42,
Theorem A]. Their result focuses on CAT(0) geometry and does not in gen-
eral produce equivariant structures. Our proof of Theorem 1.4 will employ
a much more combinatorial framework that will ensure equivariance and
avoid the need for the action on a CAT(0) space.
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1.3. Consequences

Equivariant hierarchical hyperbolicity for fundamental groups of admis-
sible graphs of groups has several immediate consequences for these groups.

Corollary 1.5. — Let G be an admissible graph of groups, and let
G = π1G. Then:

(1) G acts properly and coboundedly on an injective metric space, and
is hence semihyperbolic;

(2) ifG is virtually torsion-free, thenG has uniform exponential growth;
(3) the action of G on the Bass–Serre tree is the largest (hence univer-

sal) acylindrical action of G on a hyperbolic space;
(4) the Morse boundary of G is an ω-cantor set. In particular, it is

totally disconnected.

Proof. — The first assertion follows from the fact that G is an HHG
(Theorem 1.4) by [27, Corollary 3.8, Lemma 3.10].

For the other assertions, we will need that the ⊑-maximal domain in the
HHG structure is G-equivariantly quasi-isometric to the Bass–Serre tree
T for G. We prove this in Proposition 6.8. Because the definition of an
admissible graph of groups ensures that T has infinitely many ends, [3,
Corollary 4.8] implies that G has uniform exponential growth. It follows
from [2, Theorem A] that the action of G on T is the largest acylindrical
action of G on a hyperbolic space(1) . The last item on the Morse boundary
follows from [46, Corollary A.8] (using HHGs) or [17, Theorem 1.2] (using
graphs of groups). □

HHGs on quasi-trees vs cubical groups

We also note the following consequence for the question of when hierar-
chically hyperbolic structures are forced to arise from cubulation. Corol-
lary 1.3 provides a hierarchically hyperbolic structure in which the con-
stituent hyperbolic spaces are all quasi-isometric to trees. Such hierarchi-
cally hyperbolic structures also arise on fundamental groups of compact
special cube complexes [7] and more generally, groups acting geometrically

(1) Theorem A of [2], as written, can be read as suggesting that 3-manifold groups are
hierarchically hyperbolic groups, although at the time they were only known to be hier-
archically hyperbolic spaces in the stated generality. But, as noted in [2, Remark 5.3],
Theorem A holds for 3-manifold groups without needing an HHG structure. Alterna-
tively, by Theorem 1.1, the statement in [2] holds once one excludes non-octahedral flat
pieces from the prime decomposition.
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on cube complexes admitting factor systems [7, 32]. However, there are
many examples of graph manifolds whose fundamental groups are virtually
special but not virtually compact special, and indeed not even virtually co-
compactly cubulated [31]. Hence Corollary 3.2 provides examples of groups
that are not cocompactly cubulated, but do admit HHG structures in which
the hyperbolic spaces are all quasi-trees.

1.4. Proof ingredients: combinatorial HHS and quasi-morphisms

To prove admissible groups are HHGs, we employ the recent combinato-
rial HHS machinery from [5]. For a group G, this requires constructing a
simplicial complex Y and a graph W , which are then combined in a graph
Y +W . Intuitively, the role of those spaces is as follows: the complex Y en-
codes the index set of a hierarchically hyperbolic structure, the complex Y
and the graph Y +W together encode the associated hyperbolic spaces, and
W is the (equivariant) quasi-isometry model of G.

In our case, the space Y is an augmented version of the Bass–Serre tree,
where each vertex is “blown up” to contain a copy of the coset it represents.
This technique of building combinatorial HHSs by “blowing up the vertex
groups” in some naturally-occurring hyperbolic graph is quite flexible, and
has analogues in a number of other contexts. For example, it is applied
in the context of certain Artin groups in [29], extensions of lattice Veech
groups in [22], and extensions of multicurve stabilisers in [46]. In [5], it is
explained how to build combinatorial HHSs for right-angled Artin groups
and mapping class groups by respectively blowing up the Kim–Koberda
extension graph [38] and the curve graph.

In a general combinatorial HHS, Y is a simplicial complex with a G-
action that has finitely many orbits of links of simplices, and W is a graph
whose vertices are maximal simplices of Y , where the action of G on Y

induces an isometric action of G of W . Given Y and W , the graph Y +W

is constructed from Y (1) by joining every vertex of the maximal simplex
Σ to every vertex of the maximal simplex ∆ by an edge whenever Σ and
∆ represent adjacent vertices of W . The group G acts naturally on the
resulting graph Y +W .

The spaces Y , W , and Y +W encode the HHS structure as follows. The
elements of the index set correspond to the links lk(∆) of non-maximal
simplices ∆ of Y (including the empty simplex, whose link is Y ). The
hyperbolic space associated to lk(∆) is the subgraph lk(∆)+W of Y +W

spanned by the vertices in lk(∆) ⊂ Y . Accordingly, we have to choose the
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edges of W in a way that ensures that all of these spaces (including Y +W

itself) are hyperbolic, while also ensuring that the action of G on W is
proper and cobounded.

Hierarchical hyperbolicity demands not only the construction of a col-
lection of hyperbolic spaces, but also a coarse projection from W to each
lk(∆)+W (satisfying a list of properties [8, Definition 1.1]). To arrange
this, the definition of a combinatorial HHS requires the following: consider
all of the simplices ∆′ ⊂ Y with the same link as ∆, and remove their
vertex sets (and incident edges) from Y +W to obtain a graph Y∆, which
contains lk(∆)+W . We ask that the inclusion lk(∆)+W ↪→ Y∆ is a quasi-
isometric embedding, for each non-maximal simplex ∆. The exact definition
of a combinatorial HHS is Definition 2.23, which involves some additional
(combinatorial) conditions.

Our combinatorial HHS and the role of quasimorphisms

Given an admissible graph G of groups, let T be the Bass–Serre tree. The
idea for constructing the simplicial complex Y for π1G is as follows: “blow
up” each vertex v of T to become the cone on a discrete set whose elements
correspond to the associated coset of the vertex group. Two such cones are
then graph-theoretically joined according to the edges of T , resulting in a
3-dimensional simplicial complex. The action of π1G on T induces an action
on Y , by construction.

Having constructed the simplicial complex Y , we now need to construct
the graph W whose vertices are maximal simplices of Y and will serve as
the geometric model for π1G. This is where quasimorphisms come in.

Specifically, for each vertex group Gµ, we construct an action of Gµ

of a quasi-line Lµ so that the center Zµ of Gµ acts loxodromically, and
each cyclic subgroup conjugate to the images of the center of adjacent
vertex groups acts elliptically. This is achieved by first choosing an appro-
priate quasimorphism and then using a result of Abbott–Balasubramanya–
Osin [1] to promote it to an action on a quasi-line; see Lemma 4.2.

Using the action on this quasi-line, each vertex groups in our admissible
graph of group is equivariantly quasi-isometric to the product Lµ × Fµ,
where Fµ is the hyperbolic quotient Gµ/Zµ. Balls in the Lµ factor therefore
give us coarse “level surfaces” in this product. Moreover, if ω is adjacent
to µ, the fact that the center Zω acts elliptically on Lµ means that Zω is
sent into one of these coarse level surfaces by the edge maps in G.

Now, maximal simplices of Y consist of an edge {u, v} of T and a pair
of elements s, t in the corresponding cosets of the vertex groups. Using
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the above product structure, each of s and t determine a level surface in
each of the vertex groups corresponding to u and v, and these two level
surface will intersect in uniformly bounded subsets. Roughly, we define W
so that there is an edge between two vertices if these bounded diameter
subsets associated to the two maximal simplices of Y are close; see see
Definition 5.7 and Proposition 5.9 for details. This definition will make W
an equivariant quasi-isometric model for π1G.

The definition of edges in W will ensure that the extra edges in Y +W

are only added between vertices of Y that are uniformly close under the
collapse map Y → T . Hence Y +W will be quasi-isometric to the Bass–
Serre tree T and hence hyperbolic. The other hyperbolic spaces coming
from our combinatorial HHS are all either bounded diameter or correspond
to one of the two factors of the product Lµ × Fµ for one of the vertex
groups. One set of spaces will be quasi-isometric to the quasi-lines Lµ,
while the other will be quasi-isometric to hyperbolic cone-offs of the Fµ.
The quasi-isometric embedding conditions for these hyperbolic spaces are
verified using a combination of closest point projection in the Bass–Serre
tree T with the hyperbolic geometry of the Fµ factor of each vertex group.

1.5. Outline

Section 2 contains background on coarse geometry, graphs of groups
and hierarchical hyperbolicity. This includes the definition of an admis-
sible graph of groups (Section 2.2) and combinatorial HHS (Section 2.3).
Section 3 presents the statements of our main results in more detail and
deduces Theorem 1.1 from Theorem 1.4. The rest of the paper is devoted to
the proof of Theorem 1.4. In Section 4, we use quasimorphism to produce
actions of central Z-extensions on quasi-lines. In Section 5, we construct
the simplicial complex Y and the graph W that will comprise our combina-
torial HHS for an admissible graph of groups. Section 6 contains the proof
that (Y,W ) is a combinatorial HHS. Section 6.1 focuses on describing the
link of simplices of Y and verifying the combinatorial parts of the defini-
tion of a combinatorial HHS. Section 6.2 contains the proof that Y +W and
the lk(∆)+W are hyperbolic. Section 6.3 is devoted to checking that the
inclusions lk(∆)+W → Y∆ are quasi-isometric embeddings.

Acknowledgments
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2. Preliminaries

2.1. Coarse Geometry and Groups

We recall some basic notions from coarse geometry and outline some
techniques we will use repeatedly. For a metric space Y , we will use dY

to denote the distance in the space Y . The metric spaces we will consider
will be undirected graphs, which we always equip with the path metric
coming from declaring each edge to have length 1. For a graph Y , we let
Y (0) denote the set of vertices of Y .

Let κ ⩾ 1, ξ ⩾ 0 and f : Y → Q be a map between metric spaces. The
map f is a (κ, ξ)-quasi-isometric embedding if for all x, y ∈ Y we have

1
κ
dQ(f(x), f(y)) − ξ ⩽ dY (x, y) ⩽ κdQ(f(x), f(y)) + ξ.

The map f is ξ-coarsely onto (or coarsely surjective) if for all q ∈ Q,
there exists y ∈ Y so that dQ(q, f(y)) ⩽ ξ. If f is a (κ, ξ)-quasi-isometric
embedding that is ξ-coarsely onto, we say f is a (κ, ξ)-quasi-isometry. A
ξ-quasi-inverse of f is a map h : Q → Y so that dY (y, h(f(y)) ⩽ ξ for each
y ∈ Y . The map f will be (κ, ξ)-coarsely Lipschitz if

dY (x, y) ⩽ κdQ(f(x), f(y)) + ξ

for all x, y ∈ Y . We often omit the constants when their specific value is not
relevant. Note that the map f is a quasi-isometry if and only if f is coarsely
Lipschitz and has a coarsely Lipschitz quasi-inverse (where the constants
on either side of this equivalence determine the constants on the other).

A (quasi)-geodesic in a metric space Y is an (quasi)-isometric embedding
of a closed interval I ⊆ R into Y . When Y is a graph, we additionally require
that the endpoints of the (quasi)-geodesic are vertices of Y .

At times it will be convenient to work with coarsely defined maps. A
ξ-coarse map from a metric space Y to a metric space Q is a function
f : Y → 2Q where for each y ∈ Y , f(y) is a subset of Q with diameter at
most ξ. By a slight abuse of notation, we still write f : Y → Q to denote
a coarse map. We say that a coarse map is coarsely Lipschitz, coarsely
onto, a quasi-isometric embedding, a quasi-inverse or a quasi-isometry if
it satisfies the same inequalities as described in the previous paragraph
(where the distance between two sets is the minimal distance between two
elements).

For graphs, we frequently use the following criteria to determine whether
a map is coarsely Lipschitz and when an inclusion is a quasi-isometric
embedding. The proofs are left as straightforward exercises.
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Lemma 2.1 (Locally Lipschitz is Lipschitz). — For each ξ ⩾ 0 and
κ ⩾ 0, there exists ξ′ ⩾ 0 and κ′ ⩾ 1 so that the following holds. Let Y and
Q be graphs and suppose f0 : Y (0) → Q is a ξ-coarse map. Let f : Y → Q

be the map that extends f0 by sending each edge e of Y to union of the
images of the endpoints of e under f0. If dQ(f0(x), f0(y)) ⩽ κ for each
x, y ∈ Y (0) that are joined by an edge of Y , then f is a (κ′, κ′)-coarsely
Lipschitz ξ′-coarse map.

Lemma 2.2 (Coarse retracts are undistorted). — Let Y and Q be graphs
and assume there is an injective simplicial map i : Q → Y . If there is a
(κ, κ)-coarsely Lipschitz κ-coarse map f : Y (0) → Q so that f(i(Q)) = i(Q)
and for each q ∈ Q, dQ(q, i−1 ◦ f ◦ i(q)) ⩽ κ, then the map i : Q → Y is a
quasi-isometric embedding with constants determined by κ.

We will apply Lemma 2.2 exclusively in the case where Q is a connected
subgraph of Y . In this case, we emphasise that the map f is coarsely Lips-
chitz with respect to the intrinsic path metric on Q and not the metric the
Q inherits as a subset of Y . A map f satisfying the conditions of Lemma 2.2
is called a coarse retract of Y to Q.

We say a graph Y is δ-hyperbolic if for any geodesic triangle in Y , the
δ-neighborhood of any two sides covers the third side. Special cases of
hyperbolic graphs are quasi-trees and quasi-line, which are graphs that are
quasi-isometric to a tree or line respectively. We will need to use some
ideas from the theory of relatively hyperbolic groups and spaces. Given
a collection of coarsely connected subsets Q of a graph Y , we define the
electrification of Y with respect to Q to be the space obtained from Y by
adding an additional edge between x, y ∈ Y (0) whenever there is Q ∈ Q
so that x, y ∈ Q. We denote this electrification by ŶQ. We say that Y is
hyperbolic relative to Q if ŶQ is δ-hyperbolic for some δ ⩾ 0 and if it
satisfies the bounded subset penetration property; see [51, Definition 3.7]
for full details.

Many of the graphs we will study will be the Cayley graphs of groups.

Definition 2.3. — Let G be a group and J be a symmetric generating
set for G. We let Cay(G, J) denote the simplicial graph whose vertices are
the elements of G and where two elements g, h are joined by an edge if
g−1h ∈ J .

Note that the generating set J does not need to be finite; in fact we will
consider non-locally finite Cayley graphs throughout the paper.

Suppose a group G is acting by isometries on metric space Y . We say G
acts coboundedly if there exists a bounded set B such that G ·B = Y . We
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say the action of G on Y is metrically proper if for any bounded diameter
subset K of Y , the set {g ∈ G : g · K ∩ K ̸= ∅} is finite. A version of the
Milnor–Schwartz lemma say that if a finitely generated group G groups
act metrically proper and coboundedly on a metric space Y , then the orbit
map gives a quasi-isometry Cay(G, J) → Y for any finite generating set J .

A finitely generated group G is hyperbolic if for some (and hence any)
finite generating set J , the graph Cay(G, J) is δ-hyperbolic for some δ ⩾ 0.
A finitely generated group G is hyperbolic relative to a finite collection
of subgroups {Q1, . . . , Qn} if for some (and hence any) finite generating
set J , the graph Cay(G, J) is hyperbolic relative to the collection of all
cosets of the Qi’s. In particular, the Cayley graph Cay(G, J ∪Q1 . . . Qn) is
hyperbolic.

The next lemma is a useful tool that allows to verify that the electrifica-
tion of a quasi-tree with respect to quasiconvex subsets is again a quasi-tree.

Lemma 2.4. — For all δ, κ ⩾ 1 there exists δ′ such that the following
holds. Let Γ be a graph that is (δ, δ)-quasi-isometric to a tree and Q be a
collection of κ-quasiconvex subspaces of Γ. Then the electrification Γ̂Q is
(δ′, δ′)-quasi-isometric to a tree.

Proof. — We use the following consequence of Manning’s bottleneck cri-
terion [39, Theorem 4.6], formulated in [13, Section 3.6] (see also [22, Propo-
sition 2.3]): a space is a quasi-tree if and only if there exists ξ as follows: for
any two points x, y, path p between them and point z on a geodesic between
x and y, we have d(z, p) ⩽ ξ. Moreover, the constants of the quasi-isometry
to a tree and ξ each determine the other

Let ξ be such a constant for the quasi-tree Γ and let Γ̂ = Γ̂Q. Our goal
is to find an analogous ξ̂ for Γ̂. Let x, y be two points of Γ(0) = Γ̂(0) and
let β̂ be a Γ̂-geodesic between them. Let ẑ be a point on β̂ and γ̂ be some
path in Γ̂ connecting x and y between them. Let β be a Γ-quasi-geodesic
between x, y. By [36, Corollary 2.6], the Hausdorff distance in Γ̂ between
β and β̂ is uniformly bounded by some R. Thus, there exists z ∈ β such
that dΓ̂(ẑ, z) ⩽ R. Let γ be the Γ-path obtained from γ̂ by replacing Γ̂ − Γ
edges with geodesics of Γ. Since Γ is a quasi-tree, there is a point p ∈ γ

with dΓ(p, z) ⩽ ξ. If p is also a point of γ̂ we are done. Otherwise, p is on
a geodesic with endpoints on a κ-quasiconvex Qi, we have dΓ(p,Qi) ⩽ κ.
As Qi is coned-off in Γ̂ and p̂ intersects Qi, we obtain dΓ̂(p, γ̂) ⩽ κ+ 1. By
the triangular inequality,

dΓ̂(ẑ, γ̂) ⩽ dΓ̂(ẑ, z) + dΓ̂(z, p) + dΓ̂(p, γ̂).

As each of the above quantities is uniformly bounded, we get the claim. □
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We conclude with a lemma relating quotients and Cayley graphs with
respect to infinite generators.

Lemma 2.5. — Let G be a group and N⊴G a normal subgroup. For any
generating set K of G satisfying N ⊆ K the quotient map π : G → G/N

induces a (2, 1)-quasi-isometry

π : Cay(G,K) −→ Cay(G/N, π(K)).

Proof. — Let Γ = Cay(G,K) and Ω = Cay(G/N, π(K)). By construc-
tion, the map π gives a 1-Lipschitz map Γ → Ω. For each x ∈ G/N ,
let θ(x) be the be an element of the coset gN in G so that π(gN) = x.
Given any x1, x2 ∈ G/N with x−1

1 x2 ∈ π(K) we can find y1 in the same
coset as θ(x1) and y2 in the coset as θ(x2) so that y−1

1 y2 ∈ K. Since each
coset gN has diameter 1 in Γ, we have dΩ(π(x1), π(x2)) ⩽ dΓ(x1, x2) ⩽
2dΩ(π(x1), π(x2)) + 1. □

2.2. Graphs of groups

We start with recalling some definitions and notations from Bass–Serre
theory. For a comprehensive background, we refer the reader to [50]. Firstly,
we recall that for Bass–Serre it is useful to use the language of bi-directed
graphs.

Definition 2.6. — A bi-directed graph Γ consists of sets V (Γ), E(Γ)
and maps

E(Γ) −→ V (Γ) × V (Γ); E(Γ) −→ E(Γ)
α 7−→ (α+, α−) α 7−→ α

satisfying α = α, α ̸= α and (α)− = α+.

The elements of V (Γ) are called vertices, the ones of E(Γ) are called
edges, the vertex α− is the source of α, α+ is the target and α is the
reverse edge. A bi-directed graph Γ is finite if both V (Γ), E(Γ) are finite
sets. A subgraph of Γ is a bi-directed graph Γ′ such that V (Γ′) ⊆ V (Γ) and
E(Γ′) ⊆ E(Γ). Given a bi-directed graph Γ, it is standard to associate to
it a an undirected graph |Γ|, where the vertices are the elements of V (Γ)
and the edges are pairs of edges of the form {α, α}. We call these pairs of
edges {α, α} undirected edges of G. An orientation on an undirected edge
is choice of one of the directed edges. We say that a bi-directed graph Γ is
connected, respectively a tree if |Γ| is connected, respectively a tree. We say
that a subgraph T of Γ is a spanning tree if V (T ) = V (Γ) and T is a tree.
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The correspondence between Γ and |Γ| gives an equivalence between
undirected graphs and bi-directed graphs. The reason behind distinguish-
ing the two classes is that the language of undirected graphs is more natural
when considering graphs as metric spaces, whereas bi-directed graphs high-
light combinatorial properties used to describe graphs of groups.

Definition 2.7. — A graph of groups G consists of a finite connected bi-
directed graph Γ, two collections of groups {Gµ | µ ∈ V (Γ)} and {Gα | α ∈
E(Γ)} satisfying Gα = Gα, and injective homomorphisms τα : Gα → Gα+

for each α ∈ E(Γ).

Definition 2.8. — Let G = (Γ, {Gµ}, {Gα}, {τα}) be a graph of groups.
We define the group FG as:

FG =
(

˚
µ∈V (Γ)

Gµ

)
∗

(
˚

α∈E(Γ)
⟨tα⟩

)
.

Let Sp(Γ) be a spanning tree of Γ. The fundamental group of G with re-
spect to Sp(Γ), denoted by π1(G,Sp(Γ)), is the group obtained adding the
following relations to FG:

(1) tα = t−1
α ;

(2) tα = 1 if α ∈ E(Sp(Γ));
(3) tατα(x)t−1

α = τα(x) for all x ∈ Gα.

Given a graph of groups G we can associate to it the Bass–Serre tree
T ; see e.g. [50, Section 4]. This is the bi-directed graph whose vertices are
cosets of the vertex groups, and two cosets are joined by a directed edge if
there are representatives gGµ and hGω such that the vertices µ and ω are
connected by an edge α with α+ = µ and htα = g. For a vertex v of T we
let qv denote the vertex µ of G so that v = gGµ. Similarly, given an edge e
of T , we define qe to be the edge of G joining qe+ and qe−.

If the vertex v ∈ T (0) is the coset gGµ, then stabiliser Stabπ1G(v) is the
conjugate of the vertex group gGµg

−1. Similarly, for each edge e of T , the
stabiliser Stabπ1G(e) is gτα(Gα)g−1 = gtατα(Gα)t−1

α g−1 where qe = α, and
g is an element of π1G so that gG

qe− and gtαGqe+ are the vertices e− and
e+ respectively.

Even though T is a bi-directed graph, we will at times think of it as
a metric space. When we do this, we are implicitly referring to |T |, the
undirected graph obtained from T . We will use E to denote unoriented
edges of T and e to denote an orientation on E.

Given a graph of groups, we want to provide a geometric model that
encodes the geometry of the entire fundamental group. To achieve this we
will take the cosets of the vertex groups and join them together using the
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information coming from the tree and the edge group. We call the resulting
space the Bass–Serre space. In order to keep track of the geometry of the
edge spaces, it is useful to introduce a combinatorial notion of edges with
midpoints.

Definition 2.9. — A subdivided edge is a (undirected) graph isomor-
phic to the graph with vertices v0, v1, v2 and edges between v0 and v1, and
between v1 and v2. The vertex v1 is called the middle vertex. Two vertices
x, y of a graph Γ are connected by a subdivided edge if there is a subgraph
of Γ isomorphic to a subdivided edge with v0 = x and v2 = y.

Definition 2.10 (Bass–Serre space). — Let G be a graph of finitely
generated groups. For each vertex group Gµ and edge group Gα fix once
and for all finite symmetric generating sets Jµ and Jα respectively, such
that Jα = Jα and τα(Jα) ⊆ Jα+ . We build the Bass–Serre space X for the
graph of groups G in three steps.

Step 1: vertex spaces. — For each vertex v = gGµ of T , we define Xv to
be the graph with vertex set gGµ and with an edge between x, y ∈ gGµ if
x−1y ∈ Jµ. We call each Xv the vertex space for v ∈ T (0). Because each
vertex group injects into π1G, each Xv is graphically isomorphic to the
Cayley graph of G

qv with respect to the generating set J
qv.

Step 2: subdivided edges. — Given an undirected edge E of T , pick an
orientation e ∈ E and let α = qe, µ = α+, and ω = α−. Fix an element
g ∈ π1G so that gGω = Xe− and gtαGµ = Xe+ . For each a ∈ Gα, add a
subdivided edge between gτα(a) ∈ gGω = Xe− and gtατα(a) ∈ gGµ = Xe+ .
By Definition 2.8(3), if x = gτα(a), then xtα = gτα(a)tα = gtατα(a). Hence,
all such x and xtα are joined by a subdivided edge and the addition of
these subdivided edges does not rely on our specific choice of representative
g ∈ π1G. Since t−1

α = tα, the addition of these subdivided edges is also
independent of the orientation chosen for E.

Step 3: edges spaces. — Let E be an undirected edge of T with ori-
entation e. Let e+ = v, e− = w, and qe = α. For each subdivided edge
added between Xv and Xw there is a middle vertex. Let a, b be two of
these middle vertices and x, y the vertices of Xv adjacent to them. To com-
plete the Bass–Serre space, we add an edge between any two such a, b if
x−1y ∈ τα(Jα) in π1G. This is independent of the orientation for E because
if p, q are the vertices of Xw adjacent to a and b respectively, then p = xtα
and q = ytα. Thus p−1q = t−1

α x−1ytα, which implies x−1y ∈ τα(Jα) if and
only if p−1q ∈ τα(Jα) by Definition 2.8(3).

TOME 0 (0), FASCICULE 0



16 Mark HAGEN, Jacob RUSSELL, Alessandro SISTO & Davide SPRIANO

For each (directed) edge e in T , we use Xe to denote the (undirected)
graph whose vertices are all of the middle vertices of the subdivided edges
between Xe+ and Xe− with the edges defined as above. We call Xe the
edge space for e and note that Xe = Xe. Each edge space Xe is graphically
isomorphic to the Cayley graph of the edge group G

qe with generating set
J

qe. We let τe : Xe → Xe+ denote be the map that associates to each middle
vertex the only vertex of Xv adjacent to it, and we define τe analogously.
Figure 2.1 gives a schematic of the edge spaces and τe maps.

The Bass–Serre space X for the graph of groups G is the space con-
structed from taking all the vertex spaces in Step 1, adding in all the
subdivided edges from Step 2, and then adding in all the edges of the edge
spaces in Step 3. The group π1G acts on the disjoint union of the vertex
spaces by left multiplication. This action can be extended to the subdi-
vided edges and edge spaces to give an action of π1G of X by isometries.
The edge space maps τe and τe are equivariant with respect to this action.

Remark 2.11. — For every x, y ∈ Xe, we have dX(x, τe(x)) = 1 and
dXe+ (τe(x), τe(y)) ⩽ dXe

(x, y) + 2.
 

Xv

Xe

Xw

v e w

τe(Xe)

Figure 2.1. The cosets corresponding to the edge e are connected by
a subdivided edge. In the picture, we assume that e+ = v. To every
edge of Xe corresponds an edge in Xv, Xw, but additional edges might
be present.
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While the inclusion of the vertex and edge spaces in to the Bass–Serre
space are simplicial injections, their images maybe very distorted in the
total metric on X. However, as there are only finitely many vertex and
edge groups, we have uniform control over this distortion

Lemma 2.12. — Let G be a graph of groups with Bass–Serre tree T and
Bass–Serre spaceX. There exists a monotone diverging function h: [0,∞) →
[0,∞) so that for each vertex v and edge e of T we have

dXv
(x, y) ⩽ h

(
dX(x, y)

)
and dXe

(x, y) ⩽ h
(
dX(x, y)

)
for any x, y ∈ Xv or x, y ∈ Xe.

Proof. — For each v ∈ T (0), define hv : [0,∞) → [0,∞) to be

hv(r) = max
{x,y∈X:dXv (x,y)⩽r}

{dXv
(x, y)}.

Because X is locally finite and π1G acts transitively on the vertices of the
vertex and edge spaces respectively, hv exists and is a monotone diverging
function. We similarly define he for each edge e of T . If two vertices, v
and w, or two edges, e and f , are in the same π1G-orbit then hv = hw

and he = hf . Since π1G acts of T with finitely many orbits of edges and
vertices, we can find the desired h by taking the minimum over all of these
finitely many orbits. □

Croke and Kleiner introduce the following class of admissible graphs of
groups to abstract the properties of the graphs of groups structure of the
fundamental groups of non-geometric graph manifolds [20]. This will be the
class of graphs of groups that we will study.

Definition 2.13. — Let G = (Γ,{Gµ},{Gα},{τα}) be a graph of groups.
We say G is admissible if the following hold:

(1) Γ contains at least 1 edge.
(2) Each vertex group Gµ has center Zµ that is a infinite cyclic group,

and Gµ/Zµ = Fµ is a non-elementary hyperbolic group.
(3) Each edge group Gα is isomorphic to Z2.
(4) If α is an edge with µ = α+ and ω = α−, then ⟨τ−1

α (Zµ), τ−1
α (Zω)⟩

is a finite index subgroup of Gα
∼= Z2.

(5) If α1,α2 are distinct edges with α+
1 = α+

2 , then
• for each g ∈ π1G, gτα1(Gα1)g−1 is not commensurable with
τα2(Gα2);

• for each g ∈ π1G − τα1(Gα1), gτα1(Gα1)g−1 is not commensu-
rable with τα1(Gα1) .
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We conclude this section with a few basic consequence of Definition 2.13.
First we apply a theorem of Bowditch to obtain that the hyperbolic quo-
tients, Fµ, are actually hyperbolic relative to the subgroups coming from
the incident edge groups.

Lemma 2.14. — Let G be an admissible graph of groups. For each vertex
µ, let πµ be the quotient map πµ : Gµ → Fµ, where Fµ is the quotient
Gµ/Zµ. The group Fµ is hyperbolic relative to the collection {πµ(τα(Gα)) :
α is an edge with α+ = µ}.

Proof. — Let Iµ be the set of edges α of G with α+ = µ and let Aα =
τα(Gα) for each α ∈ Iα. We want to show that {πµ(Aα) : α ∈ Iµ} is an
almost malnormal collection of quasiconvex subgroups as this implies Fµ

is relatively hyperbolic by [15, Theorem 7.11].
We first establish that πµ(Aα) is virtually cyclic for each α ∈ Iµ. By

construction, πµ(Aα) is the quotient of Aα by Aα ∩Zµ. Since Aα
∼= Z2 and

Fµ is hyperbolic, Aα must intersect Zµ in a non-trivial subgroup. Hence
πµ(Aα) must be virtually cyclic. Note, this implies each πµ(Aα) is quasi-
convex in Fµ as virtually cyclic subgroups of hyperbolic groups are always
quasiconvex.

We now show the set {πµ(Aα) : α ∈ Iµ} is an almost malnormal col-
lection of subgroups of Fµ. Since each πµ(Aα) is virtually cyclic, if the
collection fails to be almost malnormal, there must be α1, α2 ∈ Iµ so that
some conjugate of πµ(Aα1) is commensurable to πµ(Aα2) in Fµ. Because
Zµ

∼= Z and each Aα
∼= Z2, this would imply a conjugate of Aα1 is com-

mensurable to Aα2 in π1G. As this would contradict Definition 2.13(5), we
must have that {πµ(Aα) : α ∈ Iµ} is an almost malnormal. The lemma
now follows by applying [15, Theorem 7.11]. □

Lastly, we note that by choosing appropriate infinite generating sets for the
vertex groups Gµ, we can make Cayley graphs that are quasi-isometric to
the hyperbolic groups Fµ as well as the electrification of Fµ by the cyclic
subgroups from the incident edge groups. Recall each vertex group is a
central extension Zµ → Gµ → Fµ where Zµ is cyclic and Fµ is hyperbolic.

Lemma 2.15. — Let G be an admissible graph of groups. Let Iµ be the
set of edges α of G with α+ = µ, then let

Eµ =
⋃

α∈Iµ

τα(Gα).

For each finite generating set Jµ of Gµ we have:
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(1) The quotient map πµ : Gµ → Fµ induces a quasi-isometry

πµ : Cay(Gµ, Jµ ∪ Zµ) −→ Cay(Fµ, πµ(Jµ)),

in particular Cay(Gµ, Jµ ∪Zµ) is hyperbolic and hyperbolic relative
to the collection {gτα(Gα) : α ∈ Iµ and g ∈ Gµ}.

(2) The quotient map πµ : Gµ → Fµ induces a quasi-isometry

πµ : Cay(Gµ, Jµ ∪ Eµ) −→ Cay(Fµ, πµ(Jµ ∪ Eµ)).

Hence, Cay(Gµ, Jµ∪Eµ) is hyperbolic and will be a quasi-tree when-
ever Fµ is virtually free.

The quasi-isometry constants are independent of G.

Proof. — The fact that the map are quasi-isometries follows from
Lemma 2.5. The first relative hyperbolicity follows from Lemma 2.14. For
the second, since Fµ is hyperbolic relative to the subgroups {πµ(τα(Gα)) :
α ∈ Iµ} (Lemma 2.14), the graph Cay(Fµ, πµ(Jµ∪Eµ)) is hyperbolic. More-
over, if Fµ is virtually free, then Cay(Fµ, πµ(Jµ)) is a quasi-tree. Hence
the fact that Cay(Fµ, πµ(Jµ ∪ Eµ)) is a quasi-tree is a consequence of
Lemma 2.4. □

2.3. Hierarchically hyperbolic groups

As we will not directly require the full definition of a hierarchically hyper-
bolic space, we will only review the necessary data to define a hierarchically
hyperbolic group. We direct the reader to [8] or [53] for complete details
on the HHS axioms.

Fix E ⩾ 1. An E-hierarchically hyperbolic space (HHS) structure on
a geodesic metric space X starts with a set S indexing a collection of
E-hyperbolic spaces {C(V )}V ∈S. For each V ∈ S, there is an (E,E)-
coarsely Lipschitz, E-coarsely surjective projection map φV : X → C(V ).
The set S is also equipped with three combinatorial relations: nesting (⊑),
orthogonality (⊥), and transversality (⋔). To be a hierarchically hyperbolic
space structure for X , the set S and these relations and projections need
to satisfy a number of axioms. The most relevant for us are:

• Every pair of distinct elements of S is related by exactly one of ⊑,
⊥, or ⋔.

• ⋔ and ⊥ are both symmetric, while ⊑ is a partial order.
• If V ⊥ W and U ⊑ V , then U ⊥ W .
• If V Ĺ W or V ⋔ W , then there exists a distinguished subset
ρV

W ⊆ C(W ) with diameter at most E.
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We use S to denote the entire HHS structure (the spaces, projections,
relations, and distinguished subsets) and the pair (X ,S) to denote the
hierarchically hyperbolic space X equipped with the specific HHS structure
S. An HHS structure can be transferred across a quasi-isometry f : Y → X ,
by replacing the projection maps φV with φV ◦f . In particular, if a finitely
generated group G acts metrically properly and coboundedly on an HHS
(X ,S), then S is also a hierarchically hyperbolic space structure for G
equipped with any word metric (or equivalently any Cayley graph of G
with respect to a finite generating set). However, the maps and relations
defining S need not be equivariant with respect to the action of G. If the
HHS structure is compatible with the group action, then we can have the
following stronger definition of a hierarchically hyperbolic group.

Definition 2.16. — Suppose a finitely generated group G is acting
isometrically on an E-hierarchically hyperbolic space (X ,S). We say S is
an E-hierarchically hyperbolic group structure if

(1) G acts metrically properly and coboundedly on X .
(2) There is an ⊑, ⊥, and ⋔ preserving action of G on the index set S

by bijections.
(3) S has finitely many G-orbits.
(4) For each V ∈ S and g ∈ G, there exists an isometry gV : C(V ) →

C(gV ) satisfying the following for all V,U ∈ S and g, h ∈ G.
• The map (gh)V : C(V ) → C(ghV ) is equal to the map ghV ◦
hV : C(V ) → C(hV ).

• For each x ∈ X , gV (φV (x)) = φgV (g · x).
• If V ⋔ U or V Ĺ U , then gV (ρV

U ) = ρgV
gU .

We say G is a hierarchically hyperbolic group (HHG) if there exists an
HHS (X ,S) so that S is an E-HHG structure for G for some E ⩾ 1.

Modulo the incompleteness of our description of a hierarchically hyper-
bolic space structure, the above definition of a hierarchically hyperbolic
group is precise.

There are examples of finitely generated groups that have hierarchically
hyperbolic space structures, but do not have any hierarchically hyperbolic
group structures. In fact, there are groups that are not HHGs, but have
finite index subgroups that are HHGs [44].

We will need the following proposition, originally due to Paul Plummer,
to check that certain 3-manifold groups are not HHG.

Proposition 2.17 (Invariant quasiflats for virtually abelian subgroups).
Let (G,S) be an HHG. Let A ⊂ G be a virtually Zk subgroup for some
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k ⩾ 1. Then there exists ℓ ⩾ k and U1, . . . , Uℓ ∈ S such that the following
hold:

(1) {U1, . . . , Uℓ} is A-invariant.
(2) Ui⊥Uj for 1 ⩽ i < j ⩽ ℓ.
(3) There exists L < ∞ such that diam(φV (A)) ⩽ L for V ∈ S −

{U1, . . . , Uℓ}.
(4) For each i ⩽ ℓ, the image φUi

(A) of A in C(Ui) is a quasi-line.

Hence the (A-invariant) hierarchically quasiconvex hull FA of A is quasi-
isometric to Zℓ.

Hierarchically quasiconvex hulls are discussed in [8, Section 6].

Proof of Proposition 2.17. — We adopt the standard convention that
for a, b ∈ G and V ∈ S, dV (a, b) denotes dV (φv(a), φV (b)). Let 1 denote
the identity in G and equip both A and G with word metrics from finite
generating sets.

Apply [44, Theorem 5.1] to obtain a nonempty A-invariant set of elements
U1, . . . , Uℓ ∈ S such that

• Ui⊥Uj for 1 ⩽ i < j ⩽ ℓ;
• if W ∈ S has the property that φW (A) is unbounded, then W ⊑ Ui

for some i;
• φUi

(A) is unbounded for each i ⩽ ℓ.

Each φUi(A) is a quasiline. — Since ℓ < ∞, there is a finite-index sub-
group Ä ⩽ A such that Ä ·Ui = Ui for all i. Assume, by passing to a further
finite-index subgroup, that Ä ∼= Zk. In particular, Ä acts on each of the
E-hyperbolic spaces C(Ui).

Since Ä has finite index in A, and φUi
is (E,E)-coarsely lipschitz and

Ä-equivariant, we have that φUi(A) and Ä · φUi(1) lie at finite Hausdorff
distance. In particular, the above choice of the Ui implies the orbit Ä ·
φUi(1) is unbounded for each Ui. [16, Proposition 3.1] therefore provides
four options for the action of Ä on C(Ui): focal, general, horocyclic, or
lineal. We verify the the action must be lineal.

Since Ä is abelian, it does not contain a free sub-semigroup and hence
the action on C(Ui) action cannot be focal or general. By [24, Theorem 3.1],
any infinite-order element of Ä is loxodromic on C(Ui), so the action is not
horocyclic. Hence the action is lineal. In particular, the orbit Ä · φUi

(1),
with the metric inherited from C(Ui), is (C,C)-quasi-isometric to Z and
C-quasiconvex, where C depends on Ä and the HHS constant E. Up to en-
larging C, we can assume that φUi(A) is a C-quasiconvex (C,C)-quasiline.
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Moreover, since there are finitely many i, we can assume that the same
constant C works for all i.

Bounding remaining domains. — We now bound the diameter of φV (A),
V ̸∈ {U1, . . . , Uℓ}.

Claim 2.18. — There exists L ⩾ 0 such that diam(φV (A)) ⩽ L for all
V ∈ S − {U1, . . . , Uℓ}.

Proof of Claim 2.18. — It suffices to prove the claim for the finite-
index subgroup Ä of A, since the maps φV are all (E,E)-coarsely lip-
schitz. Choose a1, . . . , ak ∈ A such that a1, . . . , ak generate the finite-
index subgroup Ä isomorphic to Zk. For any g ∈ G, let Big(g) be the
set {W ∈ S : diam(φW (⟨g⟩)) = ∞}. By [23, Lemma 6.7], Big(g) is a fi-
nite, pairwise orthogonal subset of S for any g ∈ G. Moreover, Big(g) is
non-empty whenever g has infinite order by [23, Proposition 6.4].

We claim that Big(ai) is a non-empty subset of {U1, . . . , Uℓ} for all i. Let
W ∈ Big(ai). By [44, Theorem 5.1] or [23, Lemma 6.3, Proposition 6.4],
there is m ∈ N so that am

i fixes W and has unbounded orbits on C(W ).
By the choice of the Uj , there exists j such that W ⊑ Uj . If W ̸= Uj ,
then W Ĺ Uj . Hence, ρW

Uj
is defined and is a subset of C(Uj) of diameter at

most E. Since Ä has unbounded orbits in C(Uj), there is g ∈ Ä such that
dUj (ρW

Uj
, gρW

Uj
) > 109E. By the definition of an HHG and the fact that Ä

fixes Uj , we have gρW
Uj

= ρgW
Uj

, so gW ̸= W . Now, gam
i g

−1 has unbounded
orbits on C(gW ), but gam

i g
−1 = am

i . Hence, W, gW ∈ Big(ai), but they are
not orthogonal by [23, Lemma 1.5]. This contradicts that the elements of
Big(ai) are pairwise orthogonal. Hence, W = Uj .

Since we have shown that Big(ai) ⊆ {U1, . . . , Uℓ} for all i, [23, Proposi-
tion 6.4] provides a constant D(ai) such that diam(φV (⟨ai⟩)) ⩽ D(ai) for
all V ∈ S − {U1, . . . , Uℓ}. Let D = max1⩽i⩽k D(ai). For any b ∈ Ä, write
b = an1

1 · · · ank

k . Since a−n1
1 V ̸∈ {U1, . . . , Uk}, we have

dV (1, b) ⩽ d
a

−n1
1 V

(1, an2
2 · · · ank

k ) + d
a

−n1
1 V

(1, a−n1
1 )

⩽ d
a

−n1
1 V

(1, an2
2 · · · ank

k ) +D,

and we get dV (1, b) ⩽ kD by induction. This bounds diam(φV (Ä)), which
proves the claim. □

This proves the enumerated statements. The distance formula in a
HHG [8, Theorem 4.5] now shows that the hull FA of A is quasi-isometric
to the product

∏ℓ
i=1 φUi

(A), i.e., to the product of ℓ quasilines, i.e., to Zℓ.
Since Ä ∼= Zk acts properly on FA, we must have k ⩽ ℓ. □
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2.4. Combinatorial hierarchical hyperbolicity

To verify that our admissible groups are hierarchically hyperbolic groups,
we will employ the combinatorial hierarchical hyperbolicity machinery in-
troduced in [5]. This allows us to forgo checking the axioms directly, and
instead extract hierarchical hyperbolicity from an action on a well chosen
simplicial complex. We recall the required definitions and theorems for this
approach.

Definition 2.19 (Join, link, and star). — Let Y be a flag simplicial
complex. If Q,Z are disjoint flag subcomplexes of Y so that every vertex
of Q is joined by an edge to Z, then the join of Q and Z, Q ⋆ Z, is the
subcomplex of Y spanned by Q and Z. Given a simplex ∆ of Y , the link
of ∆, lk(∆), is the subcomplex of Y spanned by the vertices of Y that are
joined by an edge to all the vertices of ∆. The star of ∆, st(∆), is the join
∆⋆ lk(∆). We consider ∅ as a simplex of Y whose link and star are both Y .

Definition 2.20. — Given a flag simplicial complex Y , a Y -graph is
any graph W whose vertices are maximal simplices of Y . Here maximal
means not contained in a larger simplex.

If W is a Y -graph for the flag simplicial complex Y , we define the W -
augmented graph Y +W as the graph with the same vertex set as Y and
with two types of edges:

(1) (Y -edge) If two vertices y1, y2 ∈ Y are joined by an edge in Y , then
y1 and y2 are joined by an edge in Y +W .

(2) (W -edge) If ∆1 and ∆2 are maximal simplices of Y that are joined
by an edge in W , then each vertex of ∆1 is joined by an edge to
each vertex of ∆2 in Y +W .

We note that if a group G acts by simplicial automorphisms on Y that is an
isometry of Y +W , then there is an induced action by isometries of G on W .

Definition 2.21. — Let ∆ and ∆′ be simplices of the flag simplicial
complex Y . We write ∆ ∼ ∆′ if lk(∆) = lk(∆′). We define the saturation
of ∆, Sat(∆), to be the set of vertices of Y contained in a simplex in the
∼-equivalence class of ∆. That is x ∈ Sat(∆) if and only if there exists
∆′ ∼ ∆ so that x is a vertex of ∆′.

Definition 2.22. — Let W be a Y -graph. For each simplex ∆ of Y ,
define Y∆ to be the subgraph of Y +W spanned by the vertices of Y +W −
Sat(∆).

Define C(∆) to be the subgraph of Y∆ spanned by the vertices in lk(∆).
Note, we are taking the link in Y , not in Y +W , and then considering the
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subgraph of Y∆ induced by those vertices. We give C(∆) its intrinsic path
metric (as opposed to the metric induced as a subset of Y∆). By construc-
tion, we have C(∆) = C(∆′) whenever ∆ ∼ ∆′. Note, since ∅ is a simplex
of Y with lk(∅) = Y , we have Y∅ = C(∅) = Y +W .

Definition 2.23. — Let δ ⩾ 0, Y be a flag simplicial complex and W

be a Y -graph. The pair (Y,W ) is a δ-combinatorial HHS if the following
are satisfied.

(I) Any chain of the form lk(∆1) ⊊ lk(∆2) ⊊ · · · has length at most δ.
(II) For each non-maximal simplex ∆ ⊂ Y , the space C(∆) is δ-

hyperbolic.
(III) For each non-maximal simplex ∆, the inclusion C(∆) → Y∆ is a

(δ, δ)-quasi-isometric embedding.
(IV) Whenever ∆ and Ω are non-maximal simplices of Y , there exists a

(possibly empty) simplex Π of lk(∆) such that lk(∆ ⋆ Π) ⊆ lk(Ω)
and for all non-maximal simplices Λ of Y so that lk(Λ) ⊆ lk(∆) ∩
lk(Ω) either
(a) diam(C(Λ)) < δ or;
(b) lk(Λ) ⊆ lk(∆ ⋆Π).

(V) For each non-maximal simplex ∆ ⊂ Y and x, y ∈ lk(∆), if x and
y are not joined by a Y -edge of Y +W , but are joined by a W -edge
of Y +W , then there exits simplices Λx,Λy ⊆ lk(∆) so that x ∈ Λx,
y ∈ Λy, and ∆ ⋆ Λx is joined by an edge of W to ∆ ⋆ Λy.

Theorem 2.24 ([5, Thoerem 1.8]). — Let (Y,W ) be a δ-combinatorial
HHS.

(1) The graph W is a connected and a hierarchically hyperbolic space.
(2) Suppose G is a finitely generated group that acts on Y by simplicial

automorphism. If there are finitely many G-orbits of links of sim-
plices of Y , and the action of G on Y induces a metrically proper
and cobounded action on W , then G is a hierarchically hyperbolic
group.

3. Statements of the main results

We now state the main result of the paper, summarise where the var-
ious parts of the proof are found, and then deduce our application to 3-
manifolds.
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Theorem 3.1. — Let G be an admissible graph of groups. Let S(T )
and W = Wr,R be the spaces from Definitions 5.1 and 5.7. For sufficiently
large choices of r ⩾ 0 and R ⩾ 0, the pair (S(T ),W ) is a δ-combinatorial
HHS with δ determined by G.

Moreover, π1G is an HHG, because π1G acts on S(T ) with finitely many
orbits of links of simplices, and the action on the set of maximal simplices
of S(T ) extends to a metrically proper and cobounded action on W .

Proof. — Item (I) is verified in Lemma 6.4. Item (II) is verified in Propo-
sition 6.8 and Lemma 6.2. Item (III) is immediate when ∆ = ∅ or C(∆) is
bounded, while the other cases are verified in Lemmas 6.14 and Lemma 6.15
(with Corollary 6.1 guaranteeing that all cases are covered). Item (IV) is
Lemma 6.6 and, finally, Item (V) is Lemma 6.5.

The statement on orbits of links is verified in Lemma 6.7, while the
metrically proper and cobounded action is shown in Lemma 5.11. The
conclusion that π1G is an HHG then follows from Theorem 2.24. □

Theorem 3.1 proves that non-geometric graph manifolds are HHG.

Corollary 3.2. — If M is a non-geometric graph manifold, then π1M

is a hierarchically hyperbolic group, where the hyperbolic spaces in the
HHG structure are all quasi-isometric to trees.

Proof. — Since π1M has the structure of an admissible graph of groups,
we can apply Theorem 3.1. The hyperbolic spaces in the HHS structure
coming from a combinatorial HHS are the C(∆) (as stated in [5, Theo-
rem 1.18]). These spaces are all quasi-isometric to trees in the case of π1M

by Proposition 6.8 (and Lemma 6.2 for the bounded C(∆)). □

We can now combine Corollary 3.2 and Corollary 4.3 with results from
the literature to classify when a 3-manifold group has an HHG structure
in terms of the geometry of the prime pieces. We say that a flat 3-manifold
is octahedral if it is the quotient of R3 by a 3-dimensional crystallographic
group whose point group is conjugate in GL3(R) into O3(Z).

Theorem 3.3. — Let M be a closed oriented 3-manifold. π1M is a
hierarchically hyperbolic group if and only if M has no Nil, Sol, or non-
octahedral flat manifolds in its prime decomposition.

Proof. — We first show that if M has no Nil, Sol, or non-octahedral flat
manifolds in its prime decomposition, then π1M is an HHG. Since being
hyperbolic relative to HHGs will make π1M an HHG [8, Theorem 9.1], it
suffices to prove that π1M is an HHG whenever M is prime and not a Nil,
Sol, or non-octahedral flat manifold.
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We first analyse the possible geometric cases from the geometrisation
theorem.

• S3, S2 × R,H3. In this case the fundamental group is hyperbolic,
whence a hierarchically hyperbolic group.

• R3. The fact that the fundamental group of a manifold with geom-
etry R3 is an HHG if and only if the manifold is octahedral follows
from [44, Theorem 4.4].

• H2 × R,PSL2(R). In these cases, the fundamental group is a cen-
tral extension of Z by a hyperbolic surface group, so we can apply
Corollary 4.3 to conclude it is an HHG (the H2 × R case was pre-
viously known, see, e.g. [34, Proposition 3.1]). For later purposes,
note that this case also yields HHG fundamental groups when M

is a H2 × R manifold with toroidal boundary.

In the non-geometric case, π1M is hyperbolic relative to subgroups each
of which is either Z2 or the fundamental group of a non-geometric graph
manifold (this is a consequence of [21, Theorem 0.1] and is stated explicitly
as [4, Theorem 9.12]; see also [14, Corollary E]). Each peripheral is therefore
an HHG, so the conclusion follows from [8, Theorem 9.1].

We now assume π1M has an HHG structure S and show M cannot have
a Nil, Sol, or non-octahedral flat manifold in its prime decomposition. If
M is prime and has either Nil or Sol geometry, then π1M cannot be an
HHG since it would not have quadratic Dehn function, contradicting [8,
Corollary 7.5]. If M is prime and is a non-octahedral flat manifold, then
π1M is not an HHG by [44, Theorem 4.4].

For the non-prime case, let M1# · · · #Mn be the prime decomposition of
M . Then π1M is hyperbolic relative to π1M1, . . . , π1Mn. As the peripheral
subgroups in a relative hyperbolic group, each π1Mi is strongly quasiconvex
in π1M . Combining [48, Proposition 5.7] and [8, Proposition 5.6], we have
that restricting the projections in the HHG structure S to the subgroup
π1Mi produces an HHS structure for π1Mi (but not necessarily an HHG
structure). As before, this says Mi cannot have Nil or Sol geometry.

To rule out non-octahedral flat geometry, suppose Mi is a flat manifold.
Then, π1Mi is virtually Z3 and Proposition 2.17 says there are U1, . . . , Uℓ ∈
S so that

• {U1, . . . , Uℓ} is pairwise orthogonal and π1Mi-invariant;
• diam(φV (π1Mi)) is uniformly bounded for all V ∈ S−{U1, . . . , Uℓ};
• for each i ∈ {1, . . . , ℓ}, φUi

(π1Mi) is a quasi-line in C(Ui);
• the hierarchically quasiconvex hull of π1Mi is quasi-isometric to Zℓ.
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Since π1Mi is strongly quasiconvex in π1M , it is undistorted and the
hierarchically quasiconvex hull of π1Mi is uniformly close to π1Mi in π1M .
Hence π1Mi acts properly and cocompactly on its hierarchically quasicon-
vex hull. As π1Mi it virtually Z3, this implies the number ℓ in the bulleted
properties is 3. Hence, we can make an HHG (and not just HHS) structure
for π1Mi by using the three quasilines φU1(π1Mi), φU2(π1Mi), φU3(π1Mi)
and a finite number of bounded diameter spaces (this is the standard HHG
structure on Z3 with the φU3(π1Mi) replacing the x, y, z axes). By [44, The-
orem 4.4], this means Mi must be an octahedral flat manifold. □

Remark 3.4 (Concrete description of octahedral flat 3-manifolds). —
Combining [28] and [33], a crystallographic group is octahedral (in any
dimension) if and only if it is cocompactly cubulated if and only if it is
Helly. In [44], it is shown that for crystallographic groups, this is equivalent
to being an HHG. However, the octahedral flat 3-manifolds can be explicitly
listed, following Scott [49]. Specifically, if M is a compact orientable flat
3-manifold, M is octahedral if and only if is one of the following:

• the 3-torus;
• made by gluing opposite faces of a cube with a 1

2 or 1
4 twist, on one

pair;
• made by gluing opposite faces of a hexagonal prism with a 1

3 -twist
of the hexagonal faces;

• the Hantzsche–Wendt manifold, which has point group (Z/2Z)2.
The third one is tricky to visualise as octahedral, but here is an explanation
in pictures instead of matrices. Consider the tiling of E3 by hexagonal
prisms; this is the universal cover of M and so π1M acts freely with quotient
the 3-manifold described above. In Figure 3.1, we show one of these cells, P .

Figure 3.1. The 1
3 -twist prism manifold is octahedral. The set of planes

through lines of the same colors are preserved by the 1
3 -twist.
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Consider the six coloured segments in the figure, three in each of the
two hexagonal faces of P . As indicated by the colours/labels, these come
in three pairs of parallel segments, with each hexagonal face contributing
one of the segments in each pair. Each parallel pair lies in a uniquely de-
termined plane in E3. This set of three planes is invariant under an order
3 rotation of P about the central vertical line. Hence the π1M -orbit of
this family of 3 planes is a set of planes in E3 falling into three parallelism
classes. Cubulating the resulting wallspace (see e.g. [19]) therefore gives a
proper cocompact action of π1M on the standard tiling of R3 by 3-cubes,
whence π1M is octahedral by [28] or [33]. One can also directly compute a
basis invariant under the point group.

According to [49], there is only one more compact oriented flat 3-manifold.
This is also constructed from a hexagonal prism by identifying opposite
faces, but the hexagons are identified using a 1

6 twist. (So, one can still
cubulate π1M as above, but this gives an action on R6, which is not co-
compact.) This manifold is not octahedral since O3(Z) does not have an
orientation-preserving element of order 6.

4. Quasi-lines from quasimorphisms

We now use quasimorphisms to construct the actions on quasi-lines. This
is both an essential ingredient in our construction of a combinatorial HHS
for an admissible graph of group and the key to proving that central ex-
tensions of Z by hyperbolic groups are HHGs.

We first build quasimorphisms for central extensions where the center is
unbounded.

Lemma 4.1. — Suppose that the central extension of groups Z ι−→ G
π−→

F corresponds to a bounded element of H2(F,Z). Then there exists a quasi-
morphism ϕ : G → Z which is unbounded on ι(Z).

Proof. — The fact that the cohomology class associated to the cen-
tral extension is bounded implies that there exists a (set-theoretic) sec-
tion s : F → G so that there are only finitely many possible values of
s(f1)s(f2)s(f1f2)−1 as f1, f2 vary in F . Hence, if we define c ∈ H2(F,Z)
by c(f1, f2) = ι−1 (

s(f1)s(f2)s(f1f2)−1)
, then the absolute value of c(f1, f2)

is bounded independently of f1, f2.
We now define ϕ. Any x ∈ G can be written in a unique way as s(fx)ι(tx)

for fx ∈ F and tx ∈ Z. Hence we can set ϕ(x) = tx. To show that
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ϕ is a quasimorphism note that, since ι(Z) is central and s(f1)s(f2) =
ι(c(f1, f2))s(f1f2), we have

xy= s(fx)ι(tx)s(fy)ι(ty) = s(fx)s(fy)ι(tx+ty) = s(fxfy)ι(c(fx, fy)+tx+ty).

Hence, ϕ(xy) = ϕ(x) +ϕ(y) + c(fx, fy), and we are done since the absolute
value of c(fx, fy) is uniformly bounded. □

We now use quasimorphisms to show that the vertex groups of an ad-
missible graph of groups have the desired action of a quasi-line.

Lemma 4.2. — Let G = (Γ, {Gµ}, {Gα}, {τα}) be an admissible graph of
groups. For each edge α of G, denote Cα = τα((τα)−1(Zα−)) < Gα+ . Each
vertex group Gµ has an infinite generating set Sµ so that the following
hold.

(1) Cay(Gµ, Sµ) is quasi-isometric to a line,
(2) the inclusion Zµ ↪→ Cay(Gµ, Sµ) is a Zµ-equivariant quasi-isometry,
(3) for each edge α with α+ = µ, Cα is bounded in Cay(Gµ, Sµ) (in fact,

the bound is uniform over all α, µ since there are finitely many).

Proof. — By [1, Lemma 4.15], if one can find an unbounded homogeneous
quasimorphism ϕ : Gµ → R, then there exists a generating set Sµ such
that Cay(Gµ, Sµ) is quasi-isometric to a line and an element g ∈ G acts
loxodromically if and only ϕ(g) ̸= 0. In particular, items (1), (2) and (3)
are equivalent to the existence of a quasimorphism ϕ : Gµ → R so that
ϕ(Zµ) is unbounded, but ϕ(Cα) is uniformly bounded for all edges α with
α+ = µ (then ϕ is the homogenization of ϕ). Note that each Cα does not
intersect Zµ in Gµ. Hence, the quotient map πµ : Gµ → Fµ is injective on
Cα and we have that πµ(Cα) < πµ(τα(Gα)) is infinite.

We now construct certain auxiliary quasimorphisms. The first one, ϕµ,
is just the homogenization of the quasimorphism from Lemma 4.1, which
we can apply by condition Definition 2.13(2) and the fact that every coho-
mology class of a hyperbolic group is bounded [41]. The other ones are con-
structed as follows. We claim that for each edge α of G with α+ = µ, there
is a homogeneous quasimorphism ψα : Fµ → R so that ψα(πµ(cα)) = 1,
where cα is a fixed generator of Cα, and ψα(cα′) = 0 for all other edges α′

with α′+ = µ.
By Lemma 2.14, Fµ is hyperbolic relative to the subgroups πµ(τα(Gα))

for edge of G with α+ = µ. In particular the subgroups πµ(τα(Gα)) are
(jointly) hyperbolically embedded in Fµ. We can then appeal to [35, Theo-
rem 4.2] to find the required quasimorphism. (The construction of Epstein–
Fujiwara [26] should also be applicable to construct such quasimorphisms).
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Let ϕα = ψα ◦ πµ and observe that

ϕ := ϕµ −
∑

α+=µ

ϕµ(cα)ϕα

satisfies all the required properties. Thus,ϕ is the desired quasimorphism. □

To prove the first two bullet points of Lemma 4.2, we do not need the full
definition of an admissible graph of groups. That is, if we have a central
extension of groups Z ↪→ G

π
↠ F corresponds to a bounded element of

H2(F,Z), then [1, Lemma 4.15] says the quasi-morphism from Lemma 4.1
produces a generating set S for G so that Cay(G,S) is a quasi-line where
the inclusion of the central Z is a Z-equivariant quasi-isometry. This con-
struction allows us to prove all such central extension are HHG.

Corollary 4.3. — If a group G is a central extension Z ↪→ G
π
↠ F

where Z is an infinite cyclic group and F is a hyperbolic group, then G is
a hierarchically hyperbolic group.

Proof. — Let z be the generator for Z and J be a finite symmetric gen-
erating set for G that contains z. We will identify F with the quotient
G/Z and write elements of F as coset of Z. As described in the paragraph
before Corollary 4.3, there is a generating set S for G so that Cay(G,S)
is a quasi-line and the inclusion of Z into Cay(G,S) is a Z-equivariant
quasi-isometry. Let L = Cay(G,S) and H = Cay(F, π(J)). We will prove
that the diagonal action of G on L×H is metrically proper and cobounded
(where we fix, say, the ℓ1-metric on said product). This will imply that G
is an HHG as any group acting metrically properly and coboundedly on a
product of hyperbolic spaces preserving the factors is an HHG; see [8, Sec-
tion 8.3] or [34, Proposition 3.1].

To prove coboundedness, let r be large enough that every point in L is
within r of an element of Z. Hence, for any vertex (k, hZ) of L×H, there
is a power zn of z so that dL(k, znh) ⩽ 2r. Thus znh · (1, Z) = (znh, hZ)
is within 2r of (k, hZ) and hence the action of G of L×H is cobounded.

Moving on to metric properness, let BL(r) and BH(r) be the balls of
radius r ⩾ 0 around the identity element in L and H respectively. Since
G acts coboundedly on L × H, every bounded diameter set of L × H is
contained in some G-translate of BL(r)×BH(r) for some r. Hence it suffices
to prove that the set of g ∈ G such that g(BL(r)×BH(r))∩BL(r)×BH(r) ̸=
∅ is finite.

If g(BL(r) × BH(r)) ∩ (BL(r) × BH(r)) ̸= ∅, then gB∗(r) ∩ B∗(r) ̸= ∅
for ∗ = L or H. The set {g ∈ G : gBH(r) ∩BH(r) ̸= ∅} is contained in the
set {g ∈ G : dH(gZ, Z) ⩽ 2r}. However, because F is finitely generated,
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the later is the union of finitely many cosets of Z. Now, since orbit maps of
the action of Z on L are quasi-isometries, each coset of Z can only contain
finitely many element g for which gBL(r) ∩ BL ̸= ∅. Together, these say
that the set{

g ∈ G : g
(
BL(r) ×BH(r)

)
∩

(
BL(r) ×BH(r)

)
̸= ∅

}
is finite. □

We now translate the content of Lemma 4.2 into the language and
notation of Bass–Serre space. Firstly, let us introduce the analogues of
Cay(Gµ, Sµ).

Definition 4.4 (Space Lv). — Let G = (Γ, {Gµ}, {Gα}, {τα±}) be an
admissible graph of groups. Let X be the Bass–Serre space associated to
G and T be the Bass–Serre Tree of G. For each vertex µ of G, let Sµ be a
generating set of Gµ as in Lemma 4.2. Without loss of generality we can
assume Jµ ⊆ Sµ, where Jµ is the fixed finite generating set of Gµ. For a
vertex v ∈ T with µ = qv, let gGµ be the corresponding coset of Gµ. Define
Lv to be the graph with vertex set gGµ and edges connecting x, y ∈ gGµ

if x−1y ∈ Sµ. Since Lv is obtained from Xv by adding extra edges to the
same vertex set, there is a distance-non-increasing map pv : Xv → Lv that
is the identity on the vertices.

Proposition 4.5. — Let G be an admissible graph of groups with Bass–
Serre tree T and Bass–Serre space X. Let e be an edge of T , with v = e+

and w = e−. Let g, h ∈ G be such that gZ
qw ⊆ τe(Xw) ⊂ Xw and hZ

qv ⊆ Xv.
There exists ξ ⩾ 1, depending only on G, so that:

(1) diam(pv ◦ τe ◦ τ−1
e (gZ

qw)) ⩽ ξ.
(2) The restriction of pv to hZ

qv (seen with the induced metric of Xv) is
a (ξ, ξ)-quasi-isometry. In particular, the cosets hZ

qv are undistorted
in Xv.

(3) Let x ∈ Xv. Then

dXv
(x, τe ◦ τ−1

e (gZ
qw)) ⩽ ξdLv

(pv(x), pv ◦ τe ◦ τ−1
e (gZ

qw)) + ξ

Proof. — Item (1) is a verbatim translation of Lemma 4.2(3) in the set-
ting of Bass–Serre spaces. The bound is independent of e, g, h since there
are finitely many orbits of vertices and edges.

For the proof of (2), fix a representative h of hZ
qv. This determines a map

Z
qv → hZ

qv defined as z 7→ hz. Note that this maps is not canonical, as it de-
pends on the choice of h, but this will not be a problem. We consider three
different metrics on the set Z

qv: the intrinsic word metric dZ on Cay(Z
qv), the
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restriction of (Xv, dXv
) using the inclusion Z

qv → hZ
qv ⊆ Xv and the restric-

tion of (Lv, dLv
) using the map pv. In particular, by choosing an appropriate

generating set on Cay(Z
qv), the maps Cay(Z

qv) → (hZ
qv, dv) → (hZ

qv, dL) are
all distance non-increasing. By Lemma 4.2(2), the composition is a quasi-
isometry, yielding that the pv|hZ

qv
: (hZ

qv, dv) → Lv is a quasi-isometry.
For the proof of (3), we will denote τe ◦ τ−1

e (gZ
qw) by Ce. Let x ∈

τe(Xe) and x′ ∈ Ce so that dXv (x,Ce) = dXv (x, x′). Now, there exist
g ∈ G so that x is contained in the coset gZ

qv in Xv. Because we have
proved Item (2), there is κ ⩾ 1, depending only on G so that the restric-
tion of pv to gZ

qv is a (κ, κ)-quasi-isometry. In particular, there must be
x ∈ Ce so that dLv

(pv(x), pv(gZ
qv)) ⩽ κ. Moreover, we can choose κ so

that diam(pv(Ce)) ⩽ κ as well. Using that pv : Xv → Lv is distance non-
increasing, we now have

dLv (x, x′) ⩽ dXv (x, x′) ⩽ dXv (x, x) ⩽ κdLv (pv(x), pv(x)) + κ

⩽ κdLv
(pv(x), pv(x′)) + κ2 + κ,

which implies

dLv (pv(x), pv(Ce)) ⩽ dXv (x,Ce) ⩽ κdLv (pv(x), pv(Ce)) + κ2 + κ.

The result follows by taking ξ = κ2 + κ. □

We remark that the statements of Proposition 4.5 are concerned only
with the metrics of the vertex spaces Xv and not on the metric on all of X,
where Xv and Xe maybe distorted. In the sequel, we will often use Propo-
sition 4.5 to establish a uniform bound on distances in Xv or Xe and then
use Lemma 2.12 to translate this into a uniform bound on distances in X.

5. Defining a combinatorial HHS: a blow-up of the
Bass–Serre tree

In this section, we describe how to construct the simplicial complex and
graph that make a combinatorial HHS for an admissible graph of group.
We prove that this construction satisfies the requirements of Theorem 2.24
in Section 6.

For the remainder of this section, let G = (Γ, {Gµ}, {Gα}, {τα}) be an
admissible graph of groups (Definition 2.13) and fix G = π1G. As in Sec-
tion 2.2, we fix generating sets Jµ and Jα for the vertex and edge groups of
G. Let T denote the Bass–Serre tree of G and X the Bass–Serre space from
Definition 2.10. For vertices v and edges e of T , Xv and Xe will denote
the vertex and edge spaces of X respectively. Recall that T (0) is the set
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{gGµ : g ∈ G,µ ∈ V (G)} and that for each v ∈ T (0), the elements of X(0)
v

are precisely the elements of the coset gGµ = v. For an edge e of T , the
maps τe and τe denote the maps from the edge space Xe into the vertex
spaces Xe+ and Xe− = Xe+ described in Definition 2.10.

We also fix the generating sets Sµ from Lemma 4.2 for the vertex groups
Gµ that produce Cayley graphs that are quasi-lines. Accordingly, for each
vertex v ∈ T (0) we have the quasi-line Lv from Definition 4.4, which is the
Cayley graph of the coset gGµ = v with respect to the generating set Sµ.
As described in Definition 4.4, there is a 1–Lipschitz map pv : Xv → Lv.

The simplicial complex for our combinatorial HHS will be the following
complex S(T ) that is a “blow-up” of the Bass–Serre tree T to include the
vertices of each vertex space Xv at each vertex v ∈ T .

Definition 5.1. — Let Q =
⊔

v∈T (0) X
(0)
v . Define the function ν : T (0)⊔

Q → T (0) as the identity on T (0) and as ν(s) = v if s ∈ Xv.
Let S(T ) be the flag simplicial complex with vertex set T (0) ⊔ Q and

the following two types of edges. First, each s ∈ Q is connected to ν(s).
Second, two vertices s, t ∈ S(T ) are connected if ν(s), ν(t) are adjacent in T .
Observe that ν extends to a simplicial map S(T ) → T that we still denote ν.

Having constructed our simplicial complex, we now need to define a
graph W whose vertices are the maximal simplices of S(T ). We start be
describing the maximal simplices of S(T ).

Lemma 5.2 (Maximal simplicies in S(T )). — The maximal simplices of
S(T ) are exactly the simplices of the form {s, ν(s), t, ν(t)}, where s, t ∈
S(T )(0) − T (0) and ν(s), ν(t) are adjacent in T . We denote such a simplex
by Σ(s, t).

Proof. — Consider a simplex Σ = {s, ν(s), ν(t), t} of S(T ), where
ν(s), ν(t) are adjacent in T . Suppose that Σ is non-maximal. There then
exists a vertex u of S(T ) that is adjacent to each of s, ν(s), t, ν(t). Since ν is
simplicial, this means that ν(u) is equal to, or adjacent to, each of ν(s), ν(t).
Since T is triangle-free and ν(s), ν(t) are adjacent, ν(u) cannot be adjacent
to both ν(s) and ν(t), so, without loss of generality, ν(u) = ν(s). Since
u is different from s and ν(s), we therefore have that ν−1(ν(s)) contains
a 3-cycle with vertices s, u, ν(s). This contradicts the definition of S(T ).
Thus Σ is a maximal simplex.

Conversely, let Σ be a maximal simplex of S(T ). Since ν : S(T ) → T is
simplicial, ν(Σ) is either a vertex of T or an edge of T . If ν(Σ) is a vertex,
then T has some vertex v adjacent to ν(Σ) as T is a connected graph
with at least two vertices. But then v ⋆ Σ is a simplex of S(T ) properly
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containing Σ. Hence ν(Σ) must be an edge joining two vertices, ν(s) and
ν(t), of T . So, Σ has the form ∆s ⋆ ∆t, where ∆s is a simplex projecting
to ν(s) and ∆t projects to ν(t). Maximality of Σ implies that ∆s,∆t are
edges, as required. □

Our goal is to define the edges in W so that G has a metrically proper
and cobounded action on W , and so that we can verify the conditions of
a combinatorial HHS. To accomplish the former, we want to associate to
each maximal simplex Σ(s, t) a uniformly bounded diameter subset of X
and then declare two maximal simplices to be joined by any edge if their
corresponding bounded diameter subsets are close in X. To facilitate this,
we use the following “coarse level sets” of the map pv : Xv → Lv from
Definition 4.4.

Definition 5.3 (“Level surfaces”). — Let v ∈ T (0) and s ∈ X
(0)
v . For

r ⩾ 0, define σr(s) to be the set

σr(s) := {x ∈ Xv : dLv
(pv(s), pv(x)) ⩽ r}.

While we will not use this fact directly, it is helpful to think of the vertex
spaces Xv as having a product structure in which the subspaces parallel to
one factor are the σr(s) and the subspaces parallel to the other factors are
cosets of the gZµ. Thus, if one compares to the motivating case of a graph
manifold, we can think of the σr(s) as the “level surfaces” of the vertex
spaces and the gZµ (which are quasi-isometric to the Lv) can be thought
of as “lines”.

The intersection of these “level surfaces” gives us a bounded diameter
subset of X associated to a maximal simplex.

Definition 5.4 (Coarse points of maximal simplices). — Let Nc(·) de-
note the c-neighborhood of a set in X. Given s, t ∈ S(T )(0) − T (0) so that
ν(s) and ν(t) are joined by an edge e of T with e+ = ν(s), define

Pr(s, t) := N1(σr(s)) ∩ N1(σr(t)).

Since σr(s) and σr(t) are in different vertex spaces (Xv vs Xw), Pr(s, t) is
precisely the set of vertices x ∈ Xe so that τe(x) ∈ σt(s) and τe(x) ∈ σr(t).

Lemma 5.5. — There exists r0 > 0 such that for all r ⩾ r0 there exists
ξ ⩾ 0 so that the following holds. Let s, t ∈ S(T )(0) − T (0) be such that
ν(s), ν(t) are joined by an edge of T . Then

• Pr(s, t) is non-empty and has diameter at most ξ;
• the map (s, t) → Pr(s, t) is a (ξ, ξ)-coarsely Lipschitz, ξ-coarse map

from Lν(s) × Lν(t) to X.
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Proof. — Let v = ν(s) and w = ν(t), then let e be the edge of T from
e− = w to e+ = v. The key tool for the proof is the following quasi-isometry
from Xe to Lv × Lw.

Claim 5.6. — For each edge e of T , the diagonal map Φe : Xe → Le+ ×
Le− given by

Φe(x) = (pe+ ◦ τe(x), pe− ◦ τe(x))
is a uniform quasi-isometry with Φe(g ·x) = g ·Φe(x) for each g ∈ StabG(e)
and x ∈ Xe.

Proof. — Let e+ = v, e− = w, then let µ = qv, ω = qw, and α = qe. Equip
Gα with the metric coming from Cay(Gα, Jα) and gtαZµ, gZω with the met-
rics as subsets of Xv. By Proposition 4.5(2), this metric is quasi-isometric
to any intrinsic metric on the cosets coming from a finite generating set of
Zµ and Zω.

Let g ∈ G so that w is the coset gGω and v is the coset gtαGµ. If
we let zµ and zω be arbitrary elements of Zµ and Zω respectively, define
ϕ : gtαZµ × gZω → Gα by

(gtαzµ, gzω) 7−→ τ−1
α (zµ)τ−1

α (zω).

Definition 2.13 says Gα
∼= Z2 and that ⟨τ−1

α (Zµ), τ−1
α (Zω)⟩ is a finite index

subgroup of Gα. Hence, ϕ is a quasi-isometry.
Now define a map θ : Gα → Xe by θ(a) = τ−1

e (gτα(a)). The construction
of the Bass–Serre space tells us θ gives an isometry θ : Cay(Gα, Jα) → Xe.
Moreover, θ(a) also equals τ−1

e (gtατα(a) for each a ∈ Gα. Thus, we have

pv ◦ τe(θ(ϕ(gtαzµ, gzω))) = pv(gtαzµ)
and

pw ◦ τe(θ(ϕ(gtαzµ, gzω))) = pw(gzω)

for each zµ ∈ Zµ and zω ∈ Zω. As pv|gtαZµ
and pw|gZω

are uniform quasi-
isometries by Proposition 4.5(2), pv × pw : gtαZ × gZω → Lv × Lw is a
quasi-isometry. Hence,

(pv × pw) ◦ (τe × τe) = (pv × pw) ◦ ϕ−1 ◦ θ−1

is a quasi-isometry (here ϕ−1 is any quasi-inverse of ϕ that inverts ϕ on its
image).

The constants of all these quasi-isometries can be chosen independent of
α because G has finitely many edges. □

Let Φe : Xe → Lv × Lw be the quasi-isometry

x −→ (pv(τe(x)), pw(τe(x)))
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from Claim 5.6. Because Φe is coarsely onto, there exists x ∈ Xe and r0 > 0
so that pv ◦ τe(x) is within R0 of pv(s) in Lv and pw ◦ τe(x) is within r0 of
pw(t) in Lw. Thus, x ∈ N1(σr(s)) ∩ N1(σr(t)) = Pr(s, t) is non-empty for
each r ⩾ r0.

When Pr(s, t) is non-empty, then Φe(Pr(s, t)) ⊆ pv(σr(s)) × pw(σr(t)),
which is a bounded diameter subset of Lv ×Lw. Since Φe is a quasi-isometry
and the inclusion of Xe into X is 1-Lipschitz, Pr(s, t) is then a bounded
diameter subset of both Xe and X.

Finally, the map Ψe : Lv ×Lw → Xe given by (s, t) → Pr(s, t) is a quasi-
inverse of Φe. Since the inclusion of Xe into X is 1-Lipschitz, the extension
Ψe into X will be coarsely Lipschitz (and in fact uniformly so since there
are only finitely many orbits of edges). □

We can now define the edges in our graph W , relying on the “level
surfaces” σr(s) from Definition 5.3 and coarse points Pr(s, t) that arise as
their intersections as in Definition 5.4.

Definition 5.7. — (W -edges.) For r,R > 0, let W = Wr,R be the
graph defined as follows. The vertices of W are the maximal simplices of
S(T ). Two simplices Σ(s, t) and Σ(s′, t′) are adjacent if and only if one of
the following holds.

• ν(s) = ν(s′) and dX(Pr(s, t), Pr(s′, t′)) ⩽ R.
• s = s′ and dX(σr(t), σr(t′)) ⩽ R+ 2.

Remark 5.8. — In both cases, being joined by an edge of W implies that
the two maximal simplices share a common vertex of T .

The first type of edge of W is needed to assure that W is quasi-isometric
to the Bass–Serre space X. The second type is needed to arrange a fine
combinatorial constraint in the definition of combinatorial HHS. To prove
that G acts metrically properly on W we start by showing the second type
of edges gives a similar bound to the first type.

Proposition 5.9. — There exists r1 ⩾ 0 so that for each r ⩾ r1, there
exists a monotone diverging function Φ: [0,∞) → [0,∞) so that the follow-
ing holds. Consider two vertices v1, v2 of the Bass–Serre tree T at distance 2
from each other, with w being the vertex at distance 1 from both. Suppose
that t1, t2, s ∈ S(T )(0) − T (0) are such that ν(ti) = vi and ν(s) = w. Then

dX(Pr(s, t1), Pr(s, t2)) ⩽ Φ(dX(σr(t1), σr(t2))).

Proof. — The bulk of the technical work of the proposition is contained
in the following claim.
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Claim 5.10. — There exist r1 ⩾ 0 so that for every r ⩾ r1 there is a
constant c ⩾ 0 and a monotone diverging function Φ′ : [0,∞) → [0,∞) so
that the following holds. Let s, t ∈ S(T )(0) − T (0) so that v = ν(t) and
w = ν(s) are joined by an edge e of T with e+ = v and e− = w. Let µ = qv

and ω = qw .
(1) If g ∈ G is so that gZµ ⊆ Xv, then σr(t) ∩ gZµ ̸= ∅. Equivalently,

if gZω ⊆ Xw, then σr(s) ∩ gZω ̸= ∅.
(2) There exist g ∈ G (depending on t), so that gZω ⊆ τe(Xe) and

τe(τ−1
e (gZω)) ⊆ σr(t) ∩ τe(Xe) ⊆ Nc(τe(τ−1

e (gZω)).

(3) For each x ∈ σr(t) there exists x′ ∈ τe(Xe) ∩σr(t) with dX(x, x′) ⩽
Φ′(dX(x, τe(Xe))).

(4) If g1, g2 ∈ G so that giZω ⊆ Xw for i = 1, 2, then

dX(g1Zω ∩ σr(s), g2Zω ∩ σr(s)) ⩽ Φ′(dX(g1Zω, g2Zω)).

Proof.

Proof of (1). — By Proposition 4.5(2), the restriction of pv to any coset
gZµ ⊆ Xv is a uniform quasi-isometry. In particular, pv(gZµ) uniformly
coarsely covers Lv. Hence, there is some r1 ⩾ 0 so that for all r ⩾ r1,
pv(σr(t)) ∩ pv(gZµ) ̸= ∅, which implies σr(t) ∩ gZµ ̸= ∅.

Proof of (2). — The set of cosets gZω so that gZω ⊆ τe(Xe) partition
τe(Xe). Since τe is injective, the images of these cosets under τ−1

e will
partition Xe. Since pv ◦τe(Xe) coarsely covers Lv (Proposition 4.5(2)), this
partition implies there must be an r′

1 ⩾ 0 and a coset gZω ⊂ τe(Xe) so
that pv(σr′

1
(t))∩pv(τeτe(gZω)) ̸= ∅. By Proposition 4.5(1), the diameter of

pv(τeτe(gZω)) is uniformly bounded. Hence there is some r1 ⩾ r′
1, so that

whenever r ⩾ r1, we have

τeτ
−1
e (gZω) ⊆ σr(t) ∩ τe(Xe).

Now consider x ∈ σr(t) ∩ τe(Xe). By construction,

dLv (pv(x), pv(τeτ
−1
e (gZω))) ⩽ 2r,

so the fact that x is uniformly close in Xv to τe(τ−1
e (gZµ)) follows from

Proposition 4.5(3). Since the inclusion Xv → X is distance non-increasing,
there is c ⩾ 0 depending on G and r so that dX(x, τe(τ−1

e (gZµ)) ⩽ c.
Proof of (3). — Let r1 be the lower bound from the proof of Item (1)

so that for all r ⩾ r1, σr(t) ∩ gZµ ̸= ∅ when gZµ ⊆ Xv. Fix x ∈ σr(t), and
let x ∈ τe(Xe) be a point realizing dX(p, τe(Xe)). There exists some coset
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gZµ ∈ τe(Xe) such that x ∈ gZµ (because the cosets partition Xv). Let x′

be a point of the intersection σr(t) ∩ gZµ. As x, x′ ∈ σr(t), we have

|dLv
(pv(x), pv(x)) − dLv

(pv(x), pv(x′))| ⩽ r.

By Proposition 4.5(2), the map pv : gZµ → Lv is a (κ, κ)-quasi-isometry
for some κ ⩾ 1 determined by G. As x and x′ both belong to gZµ, we have

dX(x, x′) ⩽ dXv (x, x′) ⩽ κdLv (pv(x), pv(x′)) + κ

⩽ κdLv
(pv(x), pv(x)) + κr + κ

⩽ κ2dXv
(x, x) + κ3 + κr + κ.

By applying Lemma 2.12, the above bound on dX(x, x′) in terms of
dXv

(x, x) produces a diverging monotone function Φ′ : [0,∞) → [0,∞) so
that dX(x, x′) ⩽ Φ′(dX(x, x)). The triangle inequality now yields

dX(x, x′) ⩽ dX(x, x) + dX(x, x′) ⩽ dX(x, x) + Φ′(dX(x, x)).

Since dX(x, x) = dX(x, τe(Xe)), this completes the proof of (3).
Proof of (4). — Let r1 be the lower bound from the proof of Item (1)

so that for all r ⩾ r1, σr(s) ∩ gZω ̸= ∅ when gZω ⊆ Xw. Given g1Zω and
g2Zω in Xw, let xi ∈ giZω so that dX(x1, x2) = dX(g1Zω, g2Zω). Let z1, z2
be the elements of Zω so that xi = gizi for i = 1, 2.

We can assume that x1 ∈ σr(s) ∩ g1Zω by the following argument. Sup-
pose z is the element of Zω so that g1z is a point in σr(s) ∩ g1Zω. Because
Zω is central in Gω, we have

zz−1
1 x1 = zz−1

1 g1z1 = g1z ∈ σr(s) ∩ g1Zω

and
zz−1

1 x2 = zz−1
1 g2z2 = g2zz

−1
2 z1 ∈ g2Zω.

Hence zz−1
1 x1 ∈ σr(s) and zz−1

1 x2 are points in g1Zω and g2Zω that realise
dX(g1Zω, g2Zω).

We can now proceed by a very similar argument as Item (3) using Lw

instead of Lv. Let y2 be a vertex in σr(s) ∩ g2Zω. After replacing gZµ with
g2Zω and Lv with Lw in the proof of Item (3), we can repeat the same
calculations with x1 = x, x2 = x, and y2 = x′, to produce

dX(x1, y2) ⩽ dX(x1, x2) + Φ′(dX(x1, x2)).

Since x1 ∈σr(s)∩g1Zω, y2 ∈σr(s)∩g2Zω, and dX(x1, x2) = dX(g1Zω, g2Zω),
this completes the proof of (4) with the same function Φ′ as in the proof
of (3). □
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We now use Claim 5.10 to prove Proposition 5.9. Let t1, t1, s ∈ S(T )(0) −
T (0) be such that ν(ti) = vi, ν(s) = w and dT (v1, v2) = 2 with w the only
vertex at distance one from both. Let ei be the edge of T such that e+

i = vi,
e−

i = w. Let r ⩾ r1 where r1 ⩾ 0 is the lower bound on r from Claim 5.10.
Consider points xi ∈ σr(ti) so that

dX(x1, x2) = dX(σr(t1), σr(t2)) := d.

We have to show that the Pr(s, t1) and Pr(s, t1) are at most some function
of d apart in X. Because the edge spaces separate X, we have

dX(xi, τei
(Xei

)) ⩽ d.

By Claim 5.10(3), there are points x′
i ∈ τei(Xei) ∩ σr(ti) such that

dX(x′
1, x

′
2) ⩽ d+ 2Φ′(d).

Setting ω = qw, Claim 5.10(2) gives us c ⩾ 0 and gi ∈ G so that each
giZω ⊆ Xw and

τe(τ−1
e (giZω)) ⊆ σr(ti) ∩ τe(Xe) ⊆ Nc(τe(τ−1

e (giZω)).

Since the map τe ◦ τ−1
e moves points distance at most 2, we have

dX(g1Zω, g2Zω) ⩽ dX(x′
1, x

′
2) + 2(c+ 2) ⩽ d+ 2Φ′(d) + 2c+ 4.

Applying Claim 5.10(4), we have points x′′
i ∈ giZµ ∩ σr(s) with

dX(x′′
1 , x

′′
2) ⩽ Φ′(dX(g1Zµ, g2Zµ)) ⩽ Φ′(d+ 2Φ′(d) + 2C + 4).

The points x′′
i are not quite in Pr(s, ti), but because τe(τ−1

e (giZω)) ⊆
σr(ti) ∩ τe(Xe), we have

τ−1
ei

(x′′
i ) ∈ τ−1

ei
(σr(ti)).

Since x′′
i ∈ σr(s) ∩ giZω, we also have

τ−1
ei

(x′′
i ) ∈ τ−1

ei
(σr(s)).

Hence
τ−1

ei
(x′′

i ) ∈ Pr(s, ti),

which implies

dX(Pr(s, t1), Pr(s, t2)) ⩽ Φ′(d+ 2Φ′(d) + 2C + 4) + 2,

as desired for Proposition 5.9. □
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Lemma 5.11. — Let r0 and r1 be as in Lemma 5.5 and Proposition 5.9
respectively. For all r > max{r0, r1} there is R0 = R0(r) ⩾ 0 so that

• for all R > R0 the graph Wr,R is connected;
• the G-action on Wr,R by g · Σ(s, t) = Σ(gs, gt) is metrically proper

and cobounded.

Proof. — Fix r ⩾ max{r0, r1} and let W = Wr,R for a choice of R
decided below.
W is connected. — Because the Bass–Serre tree T is connected, given

any two maximal simplices Σ(s, t),Σ(s′, t′) of S(T ), we can find a sequence
of maximal simplices Σ(si, ti) so that ν(Σ(si, ti)) produces a path in T

from ν(Σ(s, t)) to ν(Σ(s′, t′)). Hence, it suffices to prove that two vertices
Σ(s, t),Σ(s′, t′) ∈ W with ν(s) = ν(s′) can connected by a path in W .

First assume ν(s) = ν(s′) and ν(t) = ν(t′). Then Pr(s, t) and Pr(s′, t′)
are both subsets of Xe. Let e be the edge of T between ν(s) and ν(t) and let
h be an element of G so that StabG(e) = hG

qeh
−1. Because StabG(e) acts

transitively on the vertices of Xe, there is k ∈ StabG(e) so that Pr(ks, kt)∩
Pr(s′, t′) ̸= ∅ and hence Σ(ks, kt) is joined by a W -edge to Σ(s′, t′). Because
StabG(e) is generated by the finite set hJ

qeh
−1, Σ(s, t) will be connected

to Σ(ks, kt), and hence Σ(s′, t′), if Σ(gs, gt) is connected to Σ(s, t) by a
W -edge for each g ∈ hJ

qeh
−1. There exists R1 ⩾ r depending only on J

qe

so that dXe
(Pr(s, t), Pr(gs, gt)) ⩽ R1 for all g ∈ hJ

qeh
−1. Thus, Σ(gs, gt) is

connected to Σ(s, t) by a W -edge for each g ∈ hJ
qeh

−1 provided R ⩾ R1.
Now assume ν(s) = ν(s′), but ν(t) ̸= ν(t′). Let e1 be the edge of T from

ν(t) to ν(s) and e2 be the edge of T from ν(t′) to ν(s′) = ν(s). Let v = ν(s)
and h be an element of G so that

StabG(v) = hG
qvh

−1.

Because StabG(v) acts transitively on the vertices of Xv, there is k ∈
StabG(v) so that

k · τe1(Pr(s, t)) ∩ τe2(Pr(s′, t′)) ̸= ∅.

Thus, dX(Pr(ks, kt), Pr(s′, t′)) ⩽ 2. Hence, if R ⩾ 2, then Σ(ks, kt) is
joined by a W -edge to Σ(s′, t′). Because StabG(v) is generated by the fi-
nite set hJ

qvh
−1, Σ(s, t) will be connected to Σ(ks, kt) if Σ(gs, gt) is con-

nected to Σ(s, t) by a W -edge for each g ∈ hJ
qvh

−1. There exist R2 ⩾ r

depending only on J
qv so that dX(τe1(Pr(s, t)), gτe1(Pr(s, t))) ⩽ R2 for all

g ∈ hJ
qvh

−1. Thus, dX(Pr(gs, gt), Pr(s, t)) ⩽ R2 + 2 for all g ∈ hJ
qvh

−1 and
hence Σ(gs, gt) is connected to Σ(s, t) be a W -edge for each g ∈ hJ

qvh
−1

whenever R ⩾ R2 + 2.
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Because R1 and R2 depend only on the choice of finite generating set for
the vertex and edge groups of G, they can be chosen to be uniform for each
vertex and edge of G. Thus,W is connected whenever R ⩾ R0 = R1+R2+2.
G acts properly. — Let KW be a bounded subset of W and let KX

be the subset of X that is the union
⋃

Σ(s,t)∈KW
Pr(s, t). We note that

when we have W -adjacent maximal simplices Σ(s, t),Σ(s′, t′) then
dX(Pr(s, t), Pr(s′, t′)) is uniformly bounded. Indeed, if the W -edge is as
in the first bullet of Definition 5.7, this is clear, and otherwise this follows
from Proposition 5.9. Therefore, KX is a bounded subset of X. Since the
action of G on X is metrically proper, the set {g ∈ G : KX ∩ gKX ̸= ∅} is
finite. Now,

{g ∈ G : KW ∩ gKW ̸= ∅} ⊆ {g ∈ G : KX ∩ gKX ̸= ∅}

because whenever Σ(s, t) and gΣ(s, t) are both in KW , Pr(s, t) and gPr(s, t)
are both contained in KX . As the latter set is finite, the claim follows.
G acts coboundedly. — Since W is connected and G acts cofinitely

on the edges of T , it suffices to prove that for any edge e of T , any two
maximal simplices of S(T ) that contain the edge e have StabG(e) translates
that are W -adjacent. Let Σ(s, t) and Σ(s′, t′) be two maximal simplices
that contain the edge e. Since StabG(e) acts transitively on the vertices
of Xe, there exists g ∈ StabG(e) so that Pr(gs, gt) ∩ Pr(s′, t′) ̸= ∅. Thus,
dX(Pr(gs, gt), Pr(s′, t′)) ⩽ R and Σ(gs, gt) is W -adjacent to Σ(s′, t′) as
desired. □

6. Verification of combinatorial HHS axioms

We now verify that the pair (S(T ),W ) from Section 5 is a combinatorial
HHS. For our admissible graph of groups G, we fix the same notation as
the beginning of Section 5 and let S(T ) be the simplicial complex from
Definition 5.1 for G. We continue to use Σ(s, t) to denote the maximal
simplex of S(T ) determined by s, t ∈ S(T )(0) − T (0) (see Lemma 5.2) and
let σr(s) and Pr(s, t) be the sets from Definition 5.3 and 5.4 respectively.

Fix r ⩾ 0 and R ⩾ 0 large enough that Lemma 5.11 ensures the graph
Wr,R is connected and has a metrically proper and cobounded action of G.
Moreover, choose R to be larger than 2ξ where ξ = ξ(r) is the constant
from Lemma 5.5. With these values of r and R fixed, we let W = Wr,R.

Our proof that (S(T ),W ) is a combinatorial HHS is spread over three
subsections. Section 6.1 contains a description of the links of the non-
maximal simplices of S(T ) and verifies parts (I), (IV), and (V) of the
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definition of a combinatorial HHS (Definition 2.23). This section also in-
cludes a proof that the action of G on S(T ) has finitely many orbits of links
of simplices. Section 6.2 proves the augmented links C(∆) for simplices are
hyperbolic, while Section 6.3 prove that they quasi-isometrically embed in
the space Y∆. These are condition (II) and (III) of Definition 2.23.

6.1. Simplices, links, and the combinatorial conditions

We now describe the combinatorics of simplices and their links in S(T )
and then verify three of the conditions for (S(T ),W ) to be a combinatorial
HHS. In what follows, lk(·) denotes the link in S(T ), while lkT (·) denotes
the link in |T |, the unoriented graph obtained from T by replacing each
pair of oriented edges with an unoriented edge. Similarly, we use dT (· , ·) to
denote the distance in |T | between two vertices of T .

A basic consequence of the description of maximal simplices of S(T )
(Lemma 5.2), is that non-empty, non-maximal simplices come in one of the
following types.

Corollary 6.1. — Every non-maximal, non-empty simplex ∆ of S(T )
is one of the following 8 types

Type 1: ∆ = {v} for some v ∈ T (0)

Type 2: ∆ = {s} for some s ∈ S(T )(0) − T (0)

Type 3: ∆ = {v, w} for some v, w ∈ T (0)

Type 4: ∆ = {s, t} for some s, t ∈ S(T )(0) − T (0)

Type 5: ∆ = {s, v} for some v ∈ T (0) and s ∈ S(T )(0) − T (0) with
ν(s) ̸= v

Type 6: ∆ = {s, ν(s), t} for some s, t ∈ S(T )(0) − T (0)

Type 7: ∆ = {s, ν(s)} for some s, t ∈ S(T )(0) − T (0)

Type 8: ∆ = {s, ν(s), v} for some v ∈ T (0) and s ∈ S(T )(0) − T (0) with
ν(s) ̸= v.

Proof. — Since every non-maximal simplex can be completed to a
maximal simplex by adding vertices, the above list is a consequence of
Lemma 5.2 □

By examining each type of simplex, we also obtain a description of the
links of each type of simplex. Figure 6.1 contains a schematic of each type
of simplex along with its link and will be a useful reference through this
section.
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Figure 6.1. A schematic of each type of simplex and its link. The
simplex is drawn in black with the vertices of the link highlighted in
blue. Below, a schematic of the link is drawn in blue. To avoid clutter,
most edges between vertices s, t with ν(s) ̸= ν(t) are missing, as can
be seen in the links of Type 1 and Type 2.

Lemma 6.2. — Let ∆ be a non-maximal, non-empty simplex of S(T ).
The link of ∆ is determined by the type of ∆ as follows, where v, w ∈ T (0)

and s, t ∈ S(T )(0) − T (0):
Type 1: if ∆ = {v}, then lk(∆) is the join of {s∈ S(T )(0)−T (0) : ν(s) = v}

with the span of {t ∈ S(T )(0) : ν(t) ∈ lkT (v)}.
Type 2: if ∆ = {s}, then lk(∆) is the join of {ν(s)} and the span of

{t ∈ S(T )(0) : ν(t) ∈ lkT (ν(s))}.

Type 3: if ∆ = {v, w}, then lk(∆) is the join of {s ∈ S(T )(0) − T (0) :
ν(s) = v} with {t ∈ S(T )(0) − T (0) : ν(t) = w}.

Type 4: if ∆ = {s, t}, then lk(∆) is the edge between ν(s) and ν(t).
Type 5: if ∆ = {s, w}, then lk(∆) is the join of {ν(s)} and {t ∈ S(T )(0)−

T (0) : ν(t) = w}.
Type 6: if ∆ = {s, ν(s), t}, then lk(∆) is the vertex ν(t).
Type 7: if ∆ = {s, ν(s)}, then lk(∆) is spanned by {t ∈ S(T )(0) : ν(t) ∈

lkT (v)}.
Type 8: if ∆ = {s, ν(s), v}, then lk(∆) is X(0)

v = {t ∈ S(T )(0) − T (0) :
ν(t) = v}.
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In particular, if ∆ is not of Type 7 or Type 8, then C(∆) has diameter at
most 3, by virtue of being a single vertex or a non-trivial join with some
added edges.

Proof. — All cases are a straightforward exercise using the definitions of
edges of S(T ). The “in particular” clause follows as C(∆) is obtained from
adding edges to lk(∆). □

When the link of a simplex is not a non-trivial join, we will need to under-
stand its saturation (Definition 2.21) in order to understand the space Y∆.

Lemma 6.3. — Let ∆ be a non-empty, non-maximal simplex of S(T ).
(1) If ∆ = {s, ν(s)} is a simplex of Type 7, then

Sat(∆) = {ν(s)} ∪ {s′ ∈ S(T )(0) − T (0) : ν(s′) = ν(s)}.

(2) If ∆ = {s, ν(s), v} is a simplex of Type 8, then

Sat(∆) = {u ∈ T (0) : dT (v, u) ⩽ 1} ∪ {t ∈ S(T )(0) −T (0) : dT (v, ν(t)) = 1}.

Proof.
Case 1. — ∆ = {s, ν(s)} is a simplex of Type 7. First, suppose that s′

is a vertex with ν(s) = ν(s′) and s′ ̸= ν(s), so ∆′ = {s′, ν(s)} is a simplex
of S(T ). If u ∈ S(T ) is a vertex adjacent to both s′ and ν(s′) = ν(s), then
ν(u) is adjacent to ν(s), which makes u adjacent to s. Hence u ∈ lk(∆),
and we have lk(∆′) ⊆ lk(∆). By a symmetrical argument, lk(∆′) = lk(∆).
Thus, every simplex of the form {s′, ν(s)} with ν(s) = ν(s′) and ν(s) ̸= s′

has the same link as ∆. In particular, every such s′ is in Sat(∆) and ν(s)
is in Sat(∆).

Conversely, suppose that ∆′ is a simplex with lk(∆′) = lk(∆). Then
ν(∆′) = ν(s) as lkT (ν(∆)) = lkT (ν(s)). Now, ∆′ cannot be ν(s) ∈ S(T ),
because then its link would contain vertices s′ with ν(s) = ν(s′), which
are not in lk(∆). On the other hand, if ∆′ = s′ for some s′ ∈ S(T ) with
ν(s′) = ν(s), then lk(∆′) would contain ν(s), which is not in lk(∆). So
∆′ must be equal to {s′, ν(s)} for some s′ ̸= ν(s) with ν(s) = ν(s′). By
definition, Sat(∆) is the union of these {s′, ν(s)}, which completes the proof
that

Sat(∆) =
⋃

ν(s′)=ν(s)

{s′, ν(s)}.

Case 2. — ∆ = {s, ν(s), v} is a simplex of Type 8. Let u ∈ Sat(∆).
If u ∈ T (0), then u is adjacent to or equal to v in S(T ) and hence in T .
If u ∈ S(T )(0) − T (0), then ν(u) is adjacent to or equal to v. Conversely,
suppose that u ∈ T (0) and dT (u, v) = 1. Choose any vertex t ∈ ν−1(u)
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with t ̸= u. Then {u, t, v} is a simplex with link lk(∆). Next, suppose that
u ∈ S(T )(0) −T (0) and dT (v, ν(u)) ⩽ 1. Then ∆′ = {u, ν(u), v} is a simplex
with lk(∆′) = lk(∆). Together, these show the

Sat(∆) = {u ∈ T (0) : dT (v, u)⩽ 1}∪{t∈ S(T )(0)−T (0) : dT (v, ν(t)) = 1}. □

We now verify conditions (I), (IV), (V) from Definition 2.23 for (S(T ),W )
to be a combinatorial HHS.

Lemma 6.4. — If ∆1, . . . ,∆n are simplices of S(T ) such that lk(∆1) ⊊
· · · ⊊ lk(∆n), then n ⩽ 5.

Proof. — Corollary 6.1 lists all types of non-maximal, non-empty sim-
plices of S(T ). Examining the links for each of these different types of sim-
plices (Lemma 6.2) shows that if lk(∆) ⊊ lk(∆′), then ∆ must have strictly
more vertices that ∆′. Thus, any chain of strictly nested links of simplices
must have length at most 5 (recall, lk(∅) = S(T ) by definition). □

Lemma 6.5. — Let ∆ be a simplex of S(T ) and x, y ∈ lk(∆)(0) be
vertices that are not adjacent in S(T ), but are adjacent in S(T )+W . Then
there exist two maximal simplices Σx,Σy ⊆ st(∆) that respectively contain
x and y such that Σx and Σy are adjacent in W .

Proof. — Let ∆ be a simplex of S(T ) and x, y ∈ lk(∆)(0) that are not
adjacent in S(T ), but are adjacent in S(T )+W . Let sx, tx and sy, ty be the
elements of S(T ) − T so that x ∈ Σ(sx, tx), y ∈ Σ(sy, ty) and Σ(sx, tx) is
W -adjacent to Σ(sy, ty). Without loss of generality, assume x and y are
respectively contained in the edges {tx, ν(tx)} and {ty, ν(ty)}. It suffices to
find s ∈ S(T ) −T so that ∆ ⊆ st(s) and the simplices Σ(s, tx) and Σ(s, ty)
are W -adjacent.

First assume that ν(x) ̸= ν(y). Since x and y are not joined by an
S(T )-edge, ν(x) cannot be joined to ν(y) by an edge in T . Thus, there
must exist s ∈ S(T )(0) − T (0) so that ∆ is contained in the edge {s, ν(s)}
and ν(x), ν(y) ⊆ lk(ν(s)). The simplices Σ(s, tx) and Σ(s, ty) are therefore
W -adjacent, since Σ(sx, tx) and Σ(sy, ty) being W -adjacent implies that
dX(σr(tx), σr(ty)) ⩽ R+ 2 in both cases of edges in W .

Now assume that ν(x) = ν(y). Since x and y are not joined by an S(T )-
edge, both x and y must be elements of S(T )(0) −T (0). This implies that ∆
is contained in a 2-simplex of the form {s, ν(s), ν(x)} where s ∈ S(T ) − T

with ν(s) ⊆ lk(ν(x)). Since x ̸= y and Σ(sx, tx) is W -adjacent to Σ(sy, ty),
we must have tx = x, ty = y, and dX(σr(x), σr(y)) ⩽ R + 2 in both case
of edges in W . Thus, the simplices Σ(s, x) and Σ(s, y) are connected by an
edge in W . □
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Lemma 6.6. — For any non-maximal simplices ∆ and Ω of S(T ) there
exists a (possibly empty) simplex Π of lk(∆) such that

lk(∆ ⋆Π) ⊆ lk(Ω)

and for all non-maximal simplices Λ of S(T ) so that

lk(Λ) ⊆ lk(∆) ∩ lk(Ω)

either
(1) lk(Λ) is a non-trivial join or a vertex; or
(2) lk(Λ) ⊆ lk(∆ ⋆Π).

Proof. — First of all, we will implicitly assume throughout the proof
that the link of the empty simplex is not contained in lk(∆) ∩ lk(Ω), for
otherwise we have ∆ = Ω = ∅, and we can take Π to be empty as well.

Let ∆ and Ω be as in the statement, and let U denote the union of all
lk(Λ) ⊆ lk(∆)∩lk(Ω) such that lk(Λ) is neither a non-trivial join or a single
vertex. It suffices to show U = lk(∆ ⋆ Π) for some simplex Π. Note that if
Λ is a non-empty simplex of S(T ) so that lk(Λ) is not a single vertex nor
a non-trivial join, then Λ is either a Type 7 or Type 8 simplex.

We say that a subgraph X of S(T ) satisfies property P if the following
holds. For all vertices v of T , if there exist two vertices x, y ∈ X with ν(x),
ν(y) at distance 1 from v in T , then we have that X contains the entire
Type 7 link of a simplex {s, ν(s) = v}.

We make two preliminary observations about this property. First, if two
subgraphs satisfy property P , then their intersection does as well. Secondly,
given a subgraph X satisfying property P , the (possibly empty) union of
all links of Type 7 or Type 8 contained in X satisfies property P .

By inspection of the list of possible links of a non-empty simplex
(Lemma 6.2 and Figure 6.1), we can check that links satisfy property P .
In view of the observations above, given simplices ∆ and Ω, the subgraph
U of lk(∆) considered above also satisfies property P .

To conclude the proof, we go through the list of possible links one more
time and we check that, given any simplex ∆ and any union U of links of
Type 7 or Type 8 contained in lk(∆) satisfying property P , we have

U = lk(∆ ⋆Π).

(Note that U = lk(∆ ⋆Π) is equivalent to U being a link as a subgraph of
lk(∆), and note also that if U is empty then it suffices to take Π to be a
maximal simplex in lk(∆).) □

We conclude this subsection by verifying that the action of G on S(T )
has finitely many orbits of link of simplices.
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Lemma 6.7. — The action of G on S(T ) has finitely many orbits of
links of simplices.

Proof. — Let ∆ be a simplex of S(T ). If ∆ is maximal, then lk(∆) = ∅,
and if ∆ = ∅, then lk(∆) = S(T ), and we are done.

If ∆ is spanned entirely by vertices of T (Type 1 or Type 3), then ∆, and
hence lk(∆), belongs to one of finitely many G-orbits. Similarly, because
the G-stabiliser of a vertex v ∈ T (0) acts cofinitely on the set X(0)

v = {s ∈
S(T )(0) − T (0) : ν(s) = v}, there are finitely many G-orbits of vertices of
S(T ) (Type 2 simplices) and simplices of Type 7, i.e., ∆ = {s, ν(s)} for
s ∈ S(T )(0) − T (0). Hence, there finitely many G-orbits of these types of
simplices and their links.

If ∆ is of Type 4 or Type 6, then lk(∆) is either an unoriented edge or
a vertex of T (Lemma 6.2), of which there are finitely many G-orbits of
both.

If ∆ = {s, ν(s), v} is a simplex of Type 8, then lk(∆) is

X(0)
v = {t ∈ S(T )(0) − T (0) : ν(t) = v}.

There are only finitely many G-orbits of these sets as there are finitely
many G-orbits of vertices in T .

Finally, let ∆1 = {s1, v1} and ∆2 = {s2, v2} be two simplices of Type 5.
For each ∆i, there is an oriented edge ei of T from ν(si) to vi. If g ∈ G so
that ge1 = e2, then lk(g∆1) = lk(∆2) (even though g∆1 might not equal
∆2). As there are finitely many G-orbits of edges of T , this shows there are
only finitely many G-orbits of links of Type 5 simplices.

Examining the lists of types of simplices in Corollary 6.1, we see that the
preceding discussion exhausts all the possibilities. □

6.2. Hyperbolicity of non-join links

Recall from Section 2.3 that C(∆) is the graph obtained from lk(∆)
by adding an edge between every pair of of vertices x, y for which there
exists maximal simplices Σx, Σy that are joined by an edge of W and
contain x and y respectively. In this section, we verify that each C(∆) is
hyperbolic, which is condition (II) of Definition 2.23 for (S(T ),W ) to be a
combinatorial HHS. Since there are only finitely many G-orbits of the C(∆)
by Lemma 6.7, the hyperbolicity constant will automatically be uniform
over all simplices of S(T ) (although this fact is independently explicit in
our proof). We only need to verify C(∆) is hyperbolic for the empty simplex
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and simplices of Type 7 and 8 as Lemma 6.2 showed C(∆) has diameter 2
in all other cases.

Proposition 6.8 (Unbounded augmented links are hyperbolic). — Let
∆ be a simplex of S(T ).

(1) If ∆ = ∅, then S(T )+W = C(∅) is (G-equivariantly) quasi-isometric
to |T |. Hence S(T )+W is a quasi-tree.

(2) If ∆ = {s, ν(s), v} is a simplex of Type 8, then the identity map on
vertices gives a uniform quasi-isometry from C(∆) to the quasi-line
Lv.

(3) If ∆ = {s, ν(s)} is a simplex of Type 7, then C(∆) is uniformly
hyperbolic. Moreover, if every vertex group in G is virtually free,
then C(∆) is quasi-isometric to a tree.

Proof. — We prove the three case separately.
Proof of (1). — The inclusion |T | → S(T )+W is simplicial and hence

Lipschitz, thus it suffices to find a coarsely Lipschitz quasi-inverse for the
inclusion. This quasi-inverse is provided by the map ν : S(T )(0) → T (0),
where S(T )(0) is equipped with the metric inherited from S(T )+W . To show
that the map ν is coarsely Lipschitz it suffices to prove that dT (ν(x), ν(y))
is uniformly bounded whenever x, y ∈ S(T )(0) are joined by an edge of
S(T )+W .

If x and y are joined by an edge of S(T ) then ν(x) and ν(y) are equal or
joined by an edge of S(T ) as well, hence dT (ν(x), ν(y)) = 1. Now assume
x, y are joined by a W -edge. This means that x, y respectively belong to
maximal simplices Σ(s, t) and Σ(s′, t′) that are adjacent in W . The defini-
tion of edges of W (Definition 5.7), allows us to assume that ν(s) = ν(s′)
without loss of generality. Hence ν(x) and ν(y) are both either equal to
ν(s) or joined by an edge of T to ν(s). Hence dT (ν(x), ν(y)) ⩽ 2 as desired.

Since ν and the inclusion are G-equivariant, the quasi-isometry is also
G-equivariant. This completes the proof of (1).

Proof of (2). — Let ∆ = {s, ν(s), v} be a Type 8 simplex, and let µ = qv.
By Lemma 6.2, the vertex set of C(∆) is exactly lk(∆), which is the set of
vertices

X(0)
v = {t ∈ S(T )(0) − T (0) : ν(t) = v}.

Recall that Lv is a copy of the vertex space Xv with extra edges between
vertices that make Lv a quasi-line. Let I : C(∆)(0) → L

(0)
v be the identity

on the vertex set.
We first show that I−1 sends edges of Lv to edges of C(∆).
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Claim 6.9. — If t1, t2 ∈ L
(0)
v are joined by an edge of Lv, then I−1(t1)

and I−1(t2) are joined by an edge of C(∆). In particular, C(∆) is connected
and I−1 is 1-Lipschitz.

Proof. — Let t1, t2 ∈ L
(0)
v be joined by an edge of Lv. By Lemma 5.5,

the there is a (ξ, ξ)-coarsely Lipschitz ξ-coarse map Lν(s) × Lv → X that
sends (s, t1) to Pr(s, t1) and (s, t2) to Pr(s, t2). Because we chose R to be
greater that 2ξ, this implies dX(Pr(s, t1), Pr(s, t2)) ⩽ R. Thus, the maximal
simplices {s, ν(s), t1, v} and {s, ν(s), t2, v} are joined by an edge in W ,
which implies t1, t2 are joined by an edge in C(∆). □

We now prove that I is also coarsely Lipschitz. This will complete the
proof of (2).

Claim 6.10. — The map I is coarsely Lipschitz.

Proof. — It suffices to show that whenever t1, t2 ∈ C(∆)(0) are adjacent
in C(∆), that I(t1) and I(t2) are uniformly close in Lv. Since lk(∆) contains
no edges in this case, the only way t1, t2 can being joined by an edge in C(∆)
is for them to be joined by a W -edge. Since t1, t2 both belong to lk(∆),
Lemma 6.5 provides maximal simplices Σt1 = {s, ν(s), v, t1} and Σt2 =
{s, ν(s), v, t2} that are joined by an edge inW . By the definition of the edges
of W , we have dX(σr(t1), σr(t2)) ⩽ R+2. Using Lemma 2.12, there is then
a constant κ ⩾ 1 (determined by r and G) so that dXv

(σr(t1), σr(t2)) ⩽ κ.
As the map pv : Xv → Lv is distance non-increasing, I(ti) ∈ pv(σr(ti)),
and diam(pv(σr(ti))) ⩽ 2r, we have

dXv
(σr(t1), σr(t2)) ⩽ κ =⇒ dLv

(I(t1), I(t2)) ⩽ κ+ 4r. □

Proof of (3). — Let ∆ = {s, ν(s)} be a simplex of Type 7, and let v =
ν(s). By multiplying by an element of G, we can assume that StabG(v) =
Gµ for some vertex µ ∈ G.

Let Y be the graph obtained from lkT (v) by joining distinct x, y ∈
lkT (v)(0) by an edge if and only if there exist x′, y′ ∈ lk(∆)+W with
ν(x′) = x, ν(y′) = y, and x′, y′ adjacent in C(∆). Note that Gµ acts
on Y , and ν : S(T )(0) → T (0) induces a Gµ-equivariant simplicial map
η : C(∆) → Y .

We first show Y is connected and quasi-isometric to C(∆).

Claim 6.11. — The graphs C(∆) and Y are connected.

Proof. — Because there is a simplicial surjection η : C(∆) → Y , connect-
edness of C(∆) will imply connectedness of Y .

Let x, y ∈ C(∆)(0) and let Σx,Σy be maximal simplices of S(T ) con-
taining x and y respectively. Since x, y ∈ lk(∆), we can use Lemma 6.5 to
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assume that Σx,Σy are maximal simplices of the star of ∆. By Lemma 5.11,
there is a path Σx = Σ0,Σ1, . . . ,Σn = Σy in W , where each Σi is a maximal
simplex of S(T ) and Σi,Σi+1 are joined be an edge of W for 0 ⩽ i ⩽ n− 1.
We now argue by induction on n that x can be joined to y by a path in C(∆).

If n = 0, then both x, y are contained in Σx and hence are either equal or
are adjacent in S(T ) and therefore in S(T )+W . Since x, y ∈ lk(∆), either
x = y or x, y are adjacent in C(∆) by Lemma 6.5.

If n = 1, then Σ0 is joined by an edge of W to Σ1, hence x, y ∈ lk(∆) are
either equal or adjacent in S(T )+W . Thus, by Lemma 6.5, x, y are either
equal or adjacent in C(∆).

Suppose n > 1. Since Σ0 and Σn are simplices of the star of ∆, the edges
ν(Σ0) and ν(Σn) contain v. Let v−1 be the vertex of ν(Σ0) different from v,
and let vn+1 be the vertex of ν(Σn) different from v. Since x, y ∈ lk(∆), we
must have ν(x) = v−1 and ν(y) = vn+1. If ν(x) = v−1 = vn+1 = ν(y), then
x, y are in the link of the Type 8 simplex ∆′ = {v−1, s, ν(s)}. Claim 6.9
therefore implies x is connected to y as C(∆′) has an injective simplicial
inclusion into C(∆).

Now suppose ν(x) ̸= ν(y). This implies v−1 and vn+1 must lie in differ-
ent components of T − {v}. The definition of edges in W (Definition 5.7)
ensures that the edges ν(Σi) and ν(Σi+1) share a vertex vi for each all
i ∈ {0, . . . , n− 1}. The sequence v−1, v0, . . . , vn, vn+1 is then a sequence of
vertices of T where consecutive vertices are either equal or adjacent in T .
Because v−1 and vn+1 are in different components of T − {v}, there exists
i ∈ {1, . . . , n − 1} such that ν(Σi) contains v. Choose z ∈ Σ(0)

i such that
ν(z) ∈ ν(Σi) − {v}. Then z ∈ lk(∆), and z is contained in the maximal
simplex Σi. The sequence Σ0, . . . ,Σi is a path in W with i < n, and has
x ∈ Σ0, z ∈ Σi. So, by induction, x can be joined to z by a path in C(∆).
Similarly, considering Σi, . . . ,Σn shows that z can be joined by a path in
C(∆) to y. So x, y are connected in C(∆), as required. □

We now prove that Y is quasi-isometric to C(∆).

Claim 6.12. — The map η : C(∆) → Y induced by ν is a quasi-isometry
with constants independent of ∆.

Proof. — As mentioned above, η is simplicial and hence 1-Lipschitz. Con-
sider the composition of inclusions

Y (0) ↪−→ T (0) ↪−→ S(T )(0).

The image of this map is in lk(∆), and the map is a quasi-inverse for η. Now,
if x, y ∈ Y (0) are Y -adjacent, then let Σ(s, x′) and Σ(t, y′) be W -adjacent
simplices where ν(x′) = x, ν(y′) = y, and ν(s) = ν(t) = v. Then ν(x′) = x
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and ν(y′) = y are adjacent in C(∆), so the map Y → C(∆) ⊆ S(T ) induced
by the above inclusions is uniformly coarsely Lipschitz. Thus η is a quasi-
isometry. □

In view of Claim 6.12, it suffices to prove that Y is δ-hyperbolic (and
that Y is uniformly quasi-isometric to a tree when the vertex groups are
Z-by-virtually free). For this we use the action of Gµ on Y .

Claim 6.13. — The action of Gµ on Y is cocompact.

Proof. — Because Gµ acts on Y with finitely many orbits of vertices,
it suffices to prove that for each vertex u ∈ Y , there are finitely many
StabGµ

(u)-orbits of edges of Y incident to u. Note, StabGµ
(u) = StabG(eu)

where eu is the (oriented) edge of T from u to v.
Let y be an element of Y that is joined by an edge of Y to u. Let eu

and ey be the (oriented) edges of T from u or y to v respectively. By
construction of Y , each of u and y are contained in a maximal simplex
of S(T ) that contains v and are adjacent in W . The definition of edges
in W then requires that the edge space Xey

must intersect the (R + 2)-
neighborhood of Xeu

inside the Bass–Serre space X. Hence, each vertex y
of Y that is adjacent to u in Y has a corresponding edge spaces Xey of
X that is within R + 2 of Xeu

. We will argue that there are only a finite
number of StabGµ(u)-orbits of such edge spaces, which implies there is a
finite number of StabGµ

(u)-orbits of vertices of Y adjacent to u.
Because StabGµ

(u) = StabG(eu) acts cocompactly on Xeu
, it also acts

cocompactly on the (R + 2)-neighborhood of Xeu
. Since two edges spaces

intersect if and only if they are equal, there can only be a finite num-
ber of StabGµ(u)-orbits of vertex spaces of X that intersect the (R + 2)-
neighborhood of Xeu

as desired. □

Claims 6.11 and 6.13 show that Y is a connected graph (hence a length
space) with a cocompact action by Gµ. Let {yi} be a finite set of ver-
tices of Y containing exactly one element of each Gµ-orbit, and let H be
the collection of stabilisers in Gµ of the vertices yi. Given our fixed finite
generating set Jµ of Gµ, [18, Theorem 5.1] implies that any orbit map
Gµ → Y induces a quasi-isometry Γ → Y (with constants just depending
on Jµ), where Γ is the Cayley graph of Gµ with respect to the infinite set
Jµ ∪ {H}H∈H. If y is a vertex of Y , then the stabiliser in Gµ of y is exactly
the stabiliser of some edge e of T with e+ = v. Hence, each H ∈ H is
conjugate to the image of some edge group τα(Gα) where α+ = µ. Thus Γ
is quasi-isometric to the Cayley graph of Gµ with respect to the generating
set Jµ ∪ {τα(Gα) : α+ = µ}. By Lemma 2.15 the later is always hyperbolic
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and is a quasi-tree when Fµ is virtually free. As Γ is quasi-isometric to Y ,
this completes the proof of (3). □

6.3. Quasi-isometric embedding of augmented links

The goal of this section is to check condition (III) of Definition 2.23,
that is, that each augmented link C(∆) is quasi-isometrically embedded in
the corresponding space Y∆ from Definition 2.22. Because there are finitely
many orbits of links of simplices by Lemma 6.7, we will be able to choose
the quasi-isometry constants uniformly over all simplices ∆.

Because the quasi-isometric embedding condition automatically holds
when C(∆) is bounded, we only have to check simplices of Type 7 and 8.

6.3.1. Type 7 links

Lemma 6.14. — There exists κ ⩾ 1 so that if ∆ = {s, ν(s)} ⊂ S(T ) is a
simplex of Type 7, then C(∆) is (κ, κ)-quasi-isometrically embedded in Y∆.

Proof. — By Lemma 2.2, it suffices to define a coarsely Lipschitz coarse
retraction ρ : Y∆ → C(∆), with constants independent of ∆. We define ρ
on the vertex set as follows: for y ∈ Y

(0)
∆ , we let ρ(y) be the unique vertex

of T (regarded as a vertex of S(T )) at distance 1 from ν(s) and on the
geodesic in T from ν(y) to ν(s). This is well-defined because T is a tree
and y ̸= ν(s) if y ∈ Y

(0)
∆ = S(T )(0) −Sat(∆). Moreover, because ρ coincides

with ν on the vertices of C(∆), the distance between ρ(y) and y is at most
1 for vertices y ∈ C(∆). Hence, C(∆) will be a coarse retract if ρ is coarsely
Lipschitz.

If we can uniformly bound dC(∆)(ρ(y1), ρ(y2)) whenever y1, y2 are joined
by a edge of Y∆, then ρ can be extended to a coarsely Lipschitz map
Y∆ → C(∆). We will obtain dC(∆)(ρ(y1), ρ(y2)) ⩽ 3 for such y1, y2.

If y1, y2 are joined by an S(T )-edge, then ν(y1) and ν(y2) are either equal
or joined by an edge of T . Since ν(yi) ̸= ν(s) for each i = 1, 2, this implies
ρ(y1) = ρ(y2) because T is a tree. Hence we have dC(∆)(ρ(y1), ρ(y2)) = 0. If
instead y1, y2 are joined by a W -edge, then ν(y1) and ν(y2) lie at distance
at most 2 in T by Definition 5.7. If ν(y1) and ν(y2) are at most 1 apart in
T , then ρ(y1) = ρ(y2) as in the previous case. If the ν(y1) and ν(y1) are
exact 2 apart in T , then there exists a unique vertex z ∈ T at distance 1
from both ν(y1) and ν(y2). If z ̸= ν(s), then ν(y1) and ν(y1) are in the
same component of T −ν(s), which implies ρ(y1) = ρ(y2). If z = ν(s), then
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y1 and y2 are in lk(∆). By Lemma 6.5, this implies y1 and y2 are joined
by an edge in Y∆. Because ρ(yi) = ν(yi), we have dC(∆)(ρ(y1), ρ(y2)) ⩽
dC(∆)(ρ(y1), y1) + dC(∆)(y1, y2) + dC(∆)(y2, ρ(y2)) ⩽ 3. □

6.3.2. Type 8 links

We now consider simplices of the form ∆ = {s, ν(s), v}, where s ∈
S(T )(0) − T (0) and v ∈ T (0) − {ν(s)}.

Lemma 6.15. — There exists κ ⩾ 1 with the following property. Let
∆ = {s, ν(s), v} be a Type 8 simplex of S(T ). The inclusion of C(∆) into
Y∆ is a (κ, κ)-quasi-isometric embedding.

By Proposition 6.8(1), the Type 8 simplices are the simplices whose
augmented links, C(∆), are quasi-isometric to the quasi-lines Lv. As in
the previous case, we will show quasi-isometric embedding by providing a
coarse retraction. However, since the identity map on vertices gives a quasi-
isometry Lv → C(∆), it suffices to build a coarsely Lipschitz coarse map
η : Y∆ → Lv, that is the the identity on the vertices L(0)

v = X
(0)
v ⊆ Y

(0)
∆ .

To define this map, we need to assign to each vertex space Xu of X a
projection onto a hyperbolic space. Given u ∈ T (0), let ϑ = qu and choose
a coset representative g for gGϑ; recall the vertices of Xu are the elements
of gGϑ. We now define a graph Hu as follows: the vertices of Hu are the
elements of gGϑ and there is an edge between two elements x, y if x−1y ∈
Jϑ ∪ Zϑ, where Jϑ is our fixed finite generating set for Gϑ and Zϑ is the
center of Gϑ. Since Hu is a copy of Xu with extra edges attached, there
is a simplicial inclusion ιu : Xu → Hu. By construction, multiplying every
vertex of Hu by g−1 produces an isometry to the Cayley graph of Gϑ with
respect to the generating set Jϑ ∪ Zϑ. Thus, Lemma 2.15 implies that Hu

is a hyperbolic graph.
Lemma 2.15 also shows that Hu is hyperbolic relative to the collection

{ιu(τe(Xe)) : e an edge of T with e+ = u}.

For an edge e with e+ = u, define ℓe := ιu ◦ τe(Xe). As a peripheral subset
in a relatively hyperbolic space, each ℓe has a coarse closest point projection
pe : Hu → ℓe; see, e.g., [52]. This map is coarsely Lipschitz with constants
independent of e or u.

The key property about the ℓe that we shall need is that they have a
coarsely Lipschitz map onto Le− . One can show that this is in fact a quasi-
isometry, but it will not be needed in the proof.
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Lemma 6.16. — Let v, u ∈ T (0) and e be an edge of T with e+ = v and
e− = u. Let ψe : ℓe → Lv be the map given by restricting pv ◦ τe ◦ τ−1

e ◦ ι−1
u

to ℓe. Equipping ℓe with the induced metric from Hu, the map ψe : ℓe → Lv

is coarsely Lipschitz with constants determined by G.

Proof. — Let ϑ = qu and α = qe. Recall Jϑ and Jα are our fixed generating
sets for the vertex groups Gϑ and the edge group Gα.

Let g ∈ G so that the vertices of Xu (and Hu) are the elements of gGϑ.
Since ιu ◦ τe : Xe → Hu is a simplicial map, ℓe = ιu ◦ τe(Xe) is a connected
subgraph of Hu. Hence it suffices to verify that whenever x, y ∈ ℓe differ
by an edge of Hu, that dLv

(ψe(x), ψe(y)) is uniformly bounded. Let x, y be
vertices of ℓe that differ by an edge of Hu. Hence x−1y is either an element
of Jϑ or of Zϑ.

If x−1y ∈ Jϑ, then x, y are elements of τe(Xe) that are joined by an
edge of Xu. Hence x−1y ∈ Jϑ ∩ τα(Gα). Since there is a uniform bound on
the number of elements of τα(Jα) that are needed to write any element of
Jϑ ∩τα(Gα), there is a uniform bound on the distance between τ−1

e ◦ ι−1
u (x)

and τ−1
e ◦ ι−1

u (y) in Xe (independence of α and ϑ comes from considering
the finitely many vertices and edges of G). Since pv and τe are distance
non-increasing from Xv and Xe respectively, this shows dLv (ψe(x), ψe(y))
is uniformly bounded.

If instead x−1y ∈ Zϑ, then x, y are elements of the same coset gZϑ

and gZϑ ⊆ τe(Xe). Proposition 4.5(1) provides a uniform bound on the
diameter of pv ◦ τe ◦ τ−1

e (gZϑ) in Lv. Hence dLv (ψe(x), ψe(y)) as uniformly
bounded. □

We can now use the map ψe from Lemma 6.16 to define a map ρv for
vertices of T that are at least distance 2 from v. We start with the case
where w ∈ T (0) is exactly distance 2 from v. In this case, there is a unique
vertex u at distance 1 from both v and w. If f is the oriented edge of T
from w to u and e is the oriented edge from u to v, define βf

e to be pe(ℓf ).
We then define

ρv(w) := ψe(βf
e ) = pv ◦ τe ◦ τ−1

e ◦ ι−1
u (βf

e ).

To define ρv(w) when w is more than 2 away from v in T , let w be the
unique vertex of T that is distance exactly 2 from v and on the geodesic in
T from w to v. Define ρv(w) := ρv(w).

The first thing to verify is that ρv(w) is uniformly bounded.

Lemma 6.17. — There exist κ0 ⩾ 0 so that for any v ∈ T (0), if w ∈ T (0)

with dT (v, w) ⩾ 2, then diam(ρv(w)) ⩽ κ0.
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Proof. — By the definition of ρv, it suffices to verify the lemma when
dT (v, w) = 2. Let u be the unique vertex of T that is distance 1 from both
v and w. Let e be the edge of T from u to v and f be the edge from w to u.
Since ℓe and ℓf are distinct peripheral subsets in the relatively hyperbolic
space Hu, there is a uniform bound on the diameter of pe(ℓf ) = βf

e ; see,
e.g., [52]. Because the map ψe is coarsely Lipschitz (Lemma 6.16), this
implies ρv(w) = ψe(βf

e ) will be uniformly bounded in Lv. □

Next we verify that when two vertex spaces Xw and Xw′ are close in X,
we have that ρv(w) and ρv(w′) are close in Lv. This will be a key step to
showing that pairs of vertices of Y∆ that are joined by a W -edge are sent
to uniformly bounded diameter set in Lv.

Lemma 6.18. — For every q ⩾ 0 there exists κ1 ⩾ 0 such that the fol-
lowing holds for each v ∈ T (0). Let w,w′ be vertices of T with dT (w,w′) ⩽ 2
and dT (w, v), dT (w′, v) ⩾ 2. If dX(Xw, Xw′) ⩽ q, then

dLv
(ρv(w), ρv(w′)) ⩽ κ1.

Proof. — Let w be the vertex of T at distance exactly 2 from v and along
the geodesic from w to v, let u be the unique vertex of T at distance 1 from
v and w. Let f and e be the oriented edges of T from u to v and from w

to u respectively. Define w′, u′, f ′, e′ analogously, using w′ rather than w.
If w = w′, then ρv(w) = ρv(w′) by definition and we are done. Otherwise,

because dT (w,w′) ⩽ 2, we must have w = w and w′ = w′ and u = u′. This
implies e = e′ as well.

Because each edge and vertex space of X separates X,

dX(Xw, Xw′) ⩽ q =⇒ dX(τf (Xf ), τf ′(Xf ′)) ⩽ q.

Applying Lemma 2.12 produces a κ = κ(r,G) ⩾ 1 so that

dXu
(τf (Xf ), τf ′(Xf ′)) ⩽ κ.

As the map ιu : Xu → Hu is distance non-increasing, we have dHu(ℓf , ℓf ′) ⩽
κ. Because pe is coarsely Lipschitz, there is now a uniform bound on the
distance between βf

e and βf ′

e . Since ψe : ℓe → Lv is a coarsely Lipschitz
(Lemma 6.16), this implies dLv (ρv(w), ρv(w′)) is uniformly bounded as
well. □

We now present the proof of the quasi-isometric embedding of C(∆)
into Y∆.

Proof of Lemma 6.15. — By Proposition 6.8, the identity map on ver-
tices is a quasi-isometry Lv → C(∆) with constants independent of ∆.
Hence, the composition of this quasi-isometry with a coarsely Lipschitz
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coarse map η : Y∆ → Lv that is the the identity on the vertices L(0)
v =

X
(0)
v ⊆ Y

(0)
∆ will produce a coarse retraction Y∆ → C(∆). By Lemma 2.2,

this suffices to prove the inclusion is a quasi-isometric embedding.
By Lemma 6.3, Sat(∆) = {v} ∪ {t ∈ S(T ) : ν(t) ∈ lkT (v)}. Since Y (0)

∆ =
S(T )(0) − Sat(∆), we have

Y
(0)

∆ =
{
t ∈ S(T )(0) − {v} : ν(t) = v or dT (ν(t), v) ⩾ 2

}
.

We now use the ρv(w) from above to define the desired map η : Y∆ → Lv.
If t ∈ Y

(0)
∆ and dT (ν(t), v) ⩾ 2, then we can define η(t) = ρv(ν(t)) ⊆ Lv.

If instead ν(t) = v, then t is a vertex of both Xv and Lv, and we define
ηv(t) = pv(t) = t ∈ Lv. Lemma 6.16 ensures diam(η(t)) ⩽ κ0 for all
t ∈ Y

(0)
∆ . We can extend this definition of η to a coarsely Lipschitz map

on all of Y∆ if we can show that dLv (η(t1), η(t2)) is uniformly bounded
whenever t1 and t2 are joined by an edge of Y∆.

Let t1, t2 ∈ Y
(0)

∆ be joined by an edge. By the definition of the W -
edge (Definition 5.7), this implies dT (ν(t1), ν(t2)) ⩽ 2. First assume both
ν(t1) and ν(t2) are v. Thus t1, t2 ∈ C(∆) and are joined be an edge. Since
η(t1) = t1 and η(t2) = t2, the quasi-isometry between C(∆) and Lv ensures
dLV

(η(t1), η(t2)) is uniformly bounded.
Next suppose neither ν(t1) or ν(t2) equals v. If dT (ν(t1), ν(t2)) = 0,

then η(t1) = η(t2) by definition. If dT (ν(t1), ν(t2)) = 1, then, with out loss
of generality, the geodesic in T from ν(t1) to v must contain ν(t2). Since
each ν(ti) are at least distance 2 from v, the definition of ρv(·) then im-
plies η(t1) = ρv(ν(t1)) = ρv(ν(t2)) = η(t2). Finally, if dT (ν(t1), ν(t2)) = 2,
then the edge between t1 and t2 must be a W -edge. This implies Xν(t1) and
Xν(t2) are uniformly close inX. Hence the desired bound on dLv (η(t1), η(t2))
is a consequence of Lemma 6.18.

Finally consider the case where ν(t1) = v, but ν(t2) ̸= v. In this case,
dT (ν(t1), ν(t2)) = 2, and so the edge between t1 and t2 must be a W -edge.
Hence, dX(σr(t1), σr(t2)) ⩽ R + 2 in either case of Definition 5.7. Let u
be the vertex distance 1 from both v = ν(t1) and ν(t2), then let f be the
oriented edge of T from ν(t2) to u and e be the oriented edge from u to ν(t1).

Let σe = τ−1
e (σr(t1)) and σf = τ−1

f
(σr(t2)). Our choice of r is large

enough that Lemma 5.5 ensures σe and σf are both non-empty. Recalling
that ψe is the restriction of pv ◦ τe ◦ τ−1

e ◦ ι−1
u , we have that

(∗) ψe(ιu ◦ τe(σe)) = pv(σr(t1)).

Claim 6.19. — There exists κ′ ⩾ 1 depending only on G so that dHu
(ιu◦

τe(σe), βf
e ) ⩽ κ′.
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Proof. — Because dX(σr(t1), σr(t2)) ⩽ R+ 2, we have

dX(τe(σe), τf (σf )) ⩽ R+ 6.

Applying Lemma 2.12 produces κ = κ(R,G) ⩾ 1 so that

dXu
(τe(σe), τf (σf )) ⩽ κ.

As ιu : Xu → Hu is distance non-increasing, we have

dHu(ιu ◦ τe(σe)), ιu ◦ τf (σf )) ⩽ κ.

Recall that βf
e = pe(ℓf ), that pe is a coarse closest point projection to

ℓe, which is a quasiconvex subset of a hyperbolic space. Hence, there is
some κ′, determined by κ and the hyperbolicity constant, so that dHu

(ιu ◦
τe(σe), βf

e ) ⩽ κ′. □

Since ψe is a coarsely Lipschitz, Claim 6.19 plus (∗) implies that

ψe(βf
e ) = η(t2)

is uniformly close to pv(σr(t1)). Since t1 ∈ σr(t1) and diam(pv(σr(t1))) ⩽
2r, this implies η(t2) is uniformly close to η(t1) = pv(t1) in Lv as de-
sired. □
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