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HOMOLOGY OF INFINITY-OPERADS

by Eric HOFFBECK & Ieke MOERDIJK (*)

Abstract. — In a first part of this paper, we introduce a homology theory for
infinity-operads and for dendroidal spaces which extends the usual homology of
differential graded operads defined in terms of the bar construction, and we prove
some of its basic properties. In a second part, we define general bar and cobar
constructions. These constructions send infinity-operads to infinity-cooperads and
vice versa, and define a bar-cobar (or “Koszul”) duality. Somewhat surprisingly,
this duality is shown to hold much more generally between arbitrary presheaves
and copresheaves on the category of trees defining infinity-operads. We emphasize
that our methods are completely elementary and explicit.

Résumé. — Dans une première partie, nous introduisons une théorie de l’ho-
mologie pour les infini-opérades et les espaces dendroïdaux, qui étend l’homologie
usuelle des opérades différentielles graduées définie au moyen de la construction
bar, et nous prouvons certaines de ses propriétés de base. Dans une seconde partie,
nous définissons des constructions bar et cobar générales. Ces constructions en-
voient les infini-opérades sur des infini-coopérades et vice versa, et définissent une
dualité bar-cobar (ou « de Koszul »). De façon assez surprenante, cette dualité est
encore vraie pour des préfaisceaux et copréfaisceaux quelconques sur la catégorie
des arbres définissant les infini-opérades. Nous insistons sur le caractère élémentaire
et explicite de nos méthodes.

Introduction

The goal of this paper is to introduce a homology theory for infinity-
operads and dendroidal spaces, and prove some of its fundamental proper-
ties. In particular, we will prove a bar-cobar (sometimes called “Koszul”)
duality in a general context. Our homology extends the classical homology
of differential graded operads, first introduced by Ginzburg–Kapranov [9]
in terms of the bar construction on differential graded operads.

Keywords: Koszul duality, infinity-operads, dendroidal sets.
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930 Eric HOFFBECK & Ieke MOERDIJK

More specifically, we will consider a category A of trees, closely related
to the category Ω [13] used to model infinity-operads, but modified to
deal with operads which are trivial in arities zero and one. We introduce
a homology theory for presheaves of chain complexes on A, which takes
values in symmetric sequences of graded abelian groups. This theory enjoys
the standard properties of a homology theory such as invariance under
quasi-isomorphism and the existence of long exact sequences and spectral
sequences. Furthermore, in the case where the presheaf arises as the nerve
of an operad, our theory agrees with the classical bar homology of the
operad. For example, in the specific case of the associative operad, our
complex calculating the homology can directly be related to the dual of
the complex given by the Stasheff polytopes, while for the commutative
operad, it is the homology of the partition complex, as in the paper of
Fresse [6]. In fact, if the presheaf comes from a general operad in Sets
(as in the case of the nerves of the associative and commutative operads),
our homology is closely related to the generalised partition complexes of
Vallette [15]. If the presheaf arises from the restriction of a dendroidal space
to the smaller category A of trees, our homology theory is an invariant of
the Quillen model structure defining infinity-operads, in the sense that it
can be viewed as a left Quillen functor on this model category.

We next prove a duality theorem for arbitrary presheaves on the category
A. In order to do so, we define for a presheaf M on the category A of trees
a copresheaf B(M), which extends the complex calculating the homology
of M mentioned above. We also define a dual cobar construction B∨ which
assigns a presheaf to any copresheaf. The duality result then states for any
presheaf M that B∨(B(M)) is quasi-isomorphic to M (as presheaves, i.e.
naturally in A). We emphasize that this result holds for arbitrary presheaves
M , not just for nerves of operads. In this sense, it reflects a property of
the category A. Our proof of duality is completely explicit, elementary and
short. Nonetheless, in the strict case where M is the nerve of an actual
operad, we recover the duality result first proved by Getzler–Jones [8] and
by Ginzburg–Kapranov [9], see also [11]. Extending what happens in these
references, our construction yields an infinity-cooperad B(M) in case the
presheaf M has the structure of an infinity-operad (and dually, the con-
struction B∨ maps infinity cooperads back to infinity-operads.) The rel-
evant notion of cooperad arising naturally here is closely related to that
occurring in the papers of Ching [3, 4] and the preprint of Fresse–Guerra [7],
for example.
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HOMOLOGY OF INFINITY-OPERADS 931

A duality theorem for operads in spectra has been proved earlier by
Ching, using the same category A of trees. Although Ching works with
strict operads and his proof in terms of the Boardman–Vogt resolution is
different, it is likely that his methods extend to infinity operads in spectra,
and we expect there to be a common generalisation of his results and ours.

We mentioned that our homology can be seen as defining a homology
theory for dendroidal sets or spaces, behaving well with respect to the
model structure for simplicial or topological infinity operads (see [5]). In
this context, our homology theory should be distinguished from the one
defined by Bašić and Nikolaus [2]. Their homology does not extend the ho-
mology of operads but extends the usual one of simplicial sets, and in fact
is an invariant of their stable model structure modeling connective spectra
(see Bašić-Nikolaus [1]). A concrete difference is that for representable den-
droidal sets (i.e., free operads generated by trees) our homology counts the
vertices of a tree (see Corollary 3.6 below), while theirs counts the leaves.
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We began the work on this paper when the second author was visiting the
Université Paris 13 as “professeur invité” in 2017, and he is grateful to this
institution. He would also like to thank Gijs Heuts for helpful discussion.
We thank the referee for useful remarks that helped improve the exposition.

1. Definitions

Recall the category Ω of rooted trees from [13], parametrising the cate-
gory dSets of dendroidal sets. This category Ω contains many subcategories
which are relevant in different contexts. Here we consider two such, viz. the
full subcategory Ω◦

r of open and reduced trees and a non-full subcategory
A ⊂ Ω◦

r . This category Ω◦
r has as its objects all trees T in Ω all of whose

vertices have valence (i.e. number of inputs) at least 2. The category A has
the same objects. The morphisms S → T in A are those morphisms in Ω
which preserve the root and induce a bijection between the sets of leaves.
Any such morphism factors as an isomorphism S ∼−→ S′ followed by an
inner face map S′ ↣ T , i.e. an “inclusion” of a tree S′ obtained from T

by contracting some inner edges. Note that the category A falls apart into
disjoint pieces A(ℓ) of trees with ℓ leaves, where the corolla Cℓ is a minimal
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932 Eric HOFFBECK & Ieke MOERDIJK

object. For a tree T , we denote by E(T ) the set of its inner edges and by
Vert(T ) the set of its vertices. Note that for T with at least one vertex,

|E(T )| ⩽ ℓ(T )− 2,

where ℓ(T ) is the number of leaves of T .
We will be interested in various categories of presheaves on A and Ω◦

r .

Example 1.1.
(1) Let P be an operad with values in a cocomplete symmetric monoidal

category M. We will mostly be interested in the case where M is
the category of modules over a commutative ring R, or the cate-
gory Ch of (not necessarily bounded) chain complexes of such (such
operads will be called linear operads), or the category of simplicial
sets, and the reader can keep one of these cases in mind for defi-
niteness. The usual dendroidal nerve N(P ) defines a presheaf on A
with values inM. Its value on a tree T can loosely be described as
the tensor product

N(P )(T ) =
⊗
v

P (|v|),

where this tensor product ranges over the vertices v of T and |v| is
the number of input edges of v in T . A more precise definition re-
quires either a definition of operads as taking values P (U) on finite
sets U or a quotient of the form

N(P )(T ) =
(∐

π

⊗
v

P (|v|)
)
/ ∼,

where the sum is over planar structures π on T , and |v| is now the
ordered set of inputs of v linearly ordered by π, while the quotient is
by the group of (non-planar) automorphisms of T . We refer to [10]
for details.

Our restriction to the subcategory A ⊂ Ω implies that N(P )
ignores the objects P (0) and P (1), so this notion is only appropri-
ate for operads which are reduced, that is where P (0) is empty or
zero and P (1) consists of the identity operation only. In the linear
case, P (1) = R. This restriction is not essential, as one can always
replace the ground ring R by P (1), as in [9].

(2) Recall that a dendroidal set (or dendroidal space) is a presheaf on
the category Ω with values in Sets (or in sSets, respectively). Its
restriction to a presheaf on A or on Ω◦

r will still be referred to as a
dendroidal set (or space). For an open and reduced dendroidal space
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HOMOLOGY OF INFINITY-OPERADS 933

X : (Ω◦
r)op → sSets, we obtain a functor Z[X] : (Ω◦

r)op → Ch by
taking the usual chain complex Z[X(T )] of each simplicial set X[T ].
This functor can be restricted to the smaller category A ⊂ Ω◦

r .

For two trees S and R, and a leaf a of S, we will write S ◦aR for the tree
obtained by grafting R on top of S at the leaf a. Thus, the inner edges of
S ◦a R are those of S, those of R and a.

Definition 1.2. — A functor M : Aop → Ch will be called a linear
∞-preoperad if M comes equipped with structure maps

θ = θS,R,a : M(S ◦a R) −→M(S)⊗M(R)

which are natural in S and R (in the sense that for β : S → S′ and
γ : R→ R′ in A, the diagram

M(S ◦a R) θ // M(S)⊗M(R)

M(S′ ◦a′ R′)

OO

θ // M(S′)⊗M(R′)

OO

commutes, where a′ = βa), and satisfy the natural associativity axioms
(see [12]). The functor M is called a linear ∞-operad if these maps θ are
moreover quasi-isomorphisms.

Example 1.3.

(1) If P is a linear operad, then for the nerve of P , the maps θ are
isomorphisms.

(2) If X : Aop → sSets is (the restriction to A of) a dendroidal Se-
gal space (see Section 4), then H∗(X) is a linear ∞-operad with
zero differential. Moreover, Z[X] is a linear ∞-operad in a slightly
weaker sense, due to the fact that the Alexander–Whitney map only
respects commutativity up to homotopy.

Remark 1.4. — For M a linear ∞-operad and for Cℓ the corolla with
ℓ leaves, the symmetric collection {H∗(M)(Cℓ)}ℓ∈N is an operad in the
category of graded abelian groups.

Definition 1.5. — A functor Y : A → Ch will be called a linear
∞-precooperad if it comes equipped with maps

∆ = ∆S,R,a : Y (S ◦a R) −→ Y (S)⊗ Y (R)

TOME 75 (2025), FASCICULE 3



934 Eric HOFFBECK & Ieke MOERDIJK

which are natural in S and R and satisfy coassociativity axioms. The func-
tor Y is then called a linear ∞-cooperad if these maps ∆ are moreover
quasi-isomorphisms.

Example 1.6. — For C a linear cooperad, we can construct a functor
N∨(C) : A→ Ch by the same formula as for the nerve of an operad. This
functor has the natural structure of a linear ∞-cooperad.

Remark 1.7. — Parallel to Remark 1.4, for a linear ∞-precooperad Y

the collection {Y (Cℓ)}ℓ∈N is already a linear cooperad (without taking the
homology).

2. Dendroidal homology

We want to define and study a notion of dendroidal homology, which
takes values in symmetric sequences of abelian groups. Let us first recall
the category

Σ-mod =
∏
ℓ⩾2

ChZ[Σℓ]

of symmetric sequences of chain complexes. An object A of Σ-mod is a
family {A(ℓ)}ℓ⩾2 where each A(ℓ) is a chain complex of Σℓ-modules. We
define

DC : ChAop
−→ Σ-mod

to be the functor assigning to a presheaf M on A the symmetric sequence
of complexes whose ℓ-th component in degree p ⩾ −1 is

DCp(M)(ℓ) =
( ⊕
T,α,e

M(T )
)

coinv

where

• T ranges over trees with exactly p+ 1 inner edges and at least one
vertex

• α : Cℓ ↣ T is a morphism in A
• e = (e0, . . . , ep) is an enumeration of the inner edges of T

and the coinvariants are taken for the action of the groupoid H given
by the semi-direct product of the groupoid of extensions Cℓ ↣ T and

ANNALES DE L’INSTITUT FOURIER
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isomorphisms between them

Cℓ
  

α′
  

// α // T

θ ≀
��

T ′

and the symmetric group Σ[p] = Σ{0,...,p} (permuting the ei’s and acting
by the sign representation). Notice that the morphism α is the same as an
enumeration of the leaves of T and commutativity of the diagram above
corresponds to θ respecting this enumeration. We write elements as (rep-
resented by) quadruples

(T, α, e, x)

where e is as above and x ∈M(T ). As we take the coinvariants with respect
to the H-action, we make the following two identifications: First,

(T, α, e, θ∗x′) = (T ′, θα, θe, x′)

for x′ ∈ M(T ′), θ : T ∼−→ T ′ and θe the induced enumeration of the inner
edges of T ′. And secondly

(T, α, e, x) = (−1)τ (T, α, eτ, x)

for any permutation τ ∈ Σ[p] and the composition [p] τ→ [p] e→ E(T ). The
Σℓ-action is given by precomposition, identifying Σℓ with the automor-
phisms of Cℓ.

Before taking coinvariants, one can define a simplicial face map ∂i which
maps the summand M(T ) for (T, α, e) to M(∂eiT ) for the following tuple:

(∂eiT, ∂
∗
ei

(α), (e0, . . . , êi, . . . , ep)),

where the map ∂ei : ∂ei(T ) ↣ T is the face contracting ei, the map ∂∗
ei

(α) :
Cℓ ↣ ∂ei

(T ) is the unique morphism in A for which α = ∂ei
◦ ∂∗

ei
(α), and

the map M(T ) → M(∂eiT ) is the restriction ∂∗
ei

given by the presheaf
structure on M . The simplicial identities are clearly satisfied. Moreover
the simplicial operators clearly commute with the differential of M .

Let us check that these face maps induce a well-defined differential on
the quotient. First, we have the following commutative square which shows
that the action by the groupoid of tree isomorphisms is compatible with

TOME 75 (2025), FASCICULE 3



936 Eric HOFFBECK & Ieke MOERDIJK

the differential:

T ′
θ

∼ // T

∂eiT
′

OO
∂(ei)

OO

∼ // ∂θ(ei)T.

OO
∂θ(ei)

OO

Next, let us show the compatibility of the Σ[p]-action. For a given tree T
and a map α : Cℓ → T , let us write M(T )e for the copy of M(T ) given by T
and the enumeration e = (e0, . . . , ep). Then for a given e and i = 0, . . . , p,
and any τ ∈ Σ[p], there is a commutative square

M(T )e
(−1)τ

//

(−1)j∂∗
ej

��

M(T )eτ

(−1)i∂∗
(eτ)i

��

M(∂ej
T )

(−1)τ′
// M(∂(eτ)i

T )

where j = τi, and τ ′ is the restriction of τ (so that (−1)τ ′ = (−1)i+j(−1)τ
for i and j as above).

Notice that the complex is naturally augmented by

DC−1(M) =
⊕
ℓ⩾2

M(Cℓ)

where Cℓ is the ℓ-corolla. One obtains a double complex⊕
p,q

DCp(Mq)

where p ⩾ −1 and q ⩾ 0, by taking as horizontal differential the map
induced on the coinvariants by the alternating sum of the face maps

∂ =
∑

(−1)i∂ei
: DCp(M) −→ DCp−1(M)

and vertical differential ∂int induced by the one of M ,

∂int(T, α, e, x) = (−1)p+1(T, α, e, ∂M (x)).

The homology of the total complex will be denoted

DH∗(M)

(with ∗ ⩾ −1), and called the dendroidal homology of M .

ANNALES DE L’INSTITUT FOURIER
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3. Examples and basic properties

In this section we relate our homology theory to the usual homology of
operads and to the homology of categories.

Example 3.1. — Let P be a linear (reduced) operad. We have seen that
its nerve N(P ) is a presheaf on A with values in Ch. The homology of
P (as defined for instance by Ginzburg–Kapranov [9]) is the homology
of its bar construction B(P ) = (T c(sP ), ∂), the quasi-cofree cooperad on
the suspension of the augmentation ideal of P , with a differential which
contracts one edge at a time. Up to a degree shift, the underlying symmetric
sequence (in arities larger than 1) is nothing but our complex defined above.
Thus the homology of P is (up to a shift) the dendroidal homology of N(P ).

Example 3.2. — As a particular case of the above remark, for P = Ass

the associative operad, our complex allows us to directly compute the den-
droidal homology of N(Ass) and thus recover the homology of Ass. The
complex DC∗(Z[NAss]) decomposes as a sum over ℓ ⩾ 2, the number of
leaves. For a fixed ℓ and in degree p, it is the free abelian group on planar
trees with ℓ leaves and p + 1 inner edges (p ⩾ −1) equipped with an enu-
meration of the leaves. For a fixed enumeration, this complex is dual to that
of the cellular homology of the Stasheff polytope, which is a contractible
CW-complex of dimension ℓ−2. So normally the homology would be Z[Σℓ]
in degree ℓ − 2 and 0 elsewhere. But our grading is shifted by −1, so the
homology of the summand DC

(ℓ)
∗ (Z[NAss]) is Z[Σℓ] in degree p = ℓ − 3

and zero elsewhere.
Similarly, for P = Com the commutative operad, our complex allows us

a direct computation, see also Remark 3.10 below.

Proposition 3.3. — Dendroidal homology has the following basic
properties.

(1) If M → M ′ is a quasi-isomorphism, then the induced map
DH∗(M)→ DH∗(M ′) is an isomorphism.

(2) For a filtered colimit M = limαMα, the canonical map from
limαDH∗(Mα) to DH∗(M) is an isomorphism.

(3) For any short exact sequence 0→M ′ →M →M ′′ → 0, there is a
long exact sequence

· · · −→ DHn(M ′) −→ DHn(M) −→ DHn(M ′′) −→ DHn−1(M ′) −→ · · ·

TOME 75 (2025), FASCICULE 3



938 Eric HOFFBECK & Ieke MOERDIJK

(4) For any presheaf M on A with values in Ch, its homology DH∗(M)
decomposes according to the number ℓ of leaves in a tree, as

DH∗(M) =
⊕
ℓ⩾2

DH
(ℓ)
∗ (M).

This decomposition is functorial in M .

Proof.

(1). — First, for each p ⩾ −1, the map DCp(M•) → DCp(M ′
•) is a

quasi-isomorphism, and this gives a quasi-isomorphism of double complexes
and hence a quasi-isomorphism between the total complexes.

(2). — Obvious.
(3). — This follows from the fact that such a short exact sequence in-

duces a short exact sequence of double complexes

0 −→ DCp(M ′
q) −→ DCp(Mq) −→ DCp(M ′′

q ) −→ 0.

(4). — The double complex DC∗(M) already decomposes according to
the number of leaves, and the differentials respect this decomposition. □

Remark 3.4. — Let us observe that the definition of DH∗(M) as the ho-
mology of the total complex of a double complex (bigraded by p ⩾ −1 and
q ⩾ 0) gives two spectral sequences which we record for completeness: For
M a presheaf on A with values in Ch, there are natural spectral sequences

E2
p,q = DHp(Hq(M)) −→ DHp+q(M)

and
E2
p,q = Hq(DHp(M)) −→ DHp+q(M).

For the convergence of these, even if M is unbounded, note that for a fixed
number of leaves ℓ, the spectral sequences live in a strip −1 ⩽ p ⩽ ℓ− 3.

Proposition 3.5. — For a representable functor A(−, R) given by a
tree R,

DH(ℓ)
p (ZA(−, R)) =

{
Z[Σℓ] if p = −1 and R ≃ Cℓ
0 otherwise.

Proof. — The complex in degree p is the free abelian group on equiva-
lence classes of pairs

Cℓ
α
↣ T

β
↣ R, (e0, . . . , ep)

ANNALES DE L’INSTITUT FOURIER



HOMOLOGY OF INFINITY-OPERADS 939

where e0, . . . , ep enumerate inner edges of T and the equivalence relation
is for permutations of the ei’s (with a sign) as well as isomorphisms given
by commutative diagrams

Cℓ //
α //

  

α′
  

T // β //

≀θ
��

R

T ′
?? β′

??

all as above. The differential is
∑p
i=0(−1)i∂i where

∂i(Cℓ
α
↣ T

β
↣ R, (e0, . . . , ep)) = (Cℓ ↣ ∂eiT ↣ R, (e0, . . . , êi, . . . , ep))

with the induced maps. The composition βα remains the same over equiv-
alence classes and under ∂i, thus the complex falls apart into a direct sum
over morphisms γ : Cℓ ↣ R. For a fixed γ, choose a linear ordering of
the inner edges of R. Then the summand for γ can be identified with the
complex which in degree p is the free abelian group on the set of sequences

e0 < · · · < ep (p ⩾ −1)

of such edges in the chosen order, with usual differential

∂(e0, . . . , ep) =
∑

(−1)i(e0, . . . , êi, . . . , ep).

If R has at least one inner edge, the complex is acyclic: we can choose a
maximal element in the order, call it m. Then the map h defined by

h(e0, . . . , ep) =
{

0 if ep = m

(−1)p+1(e0, . . . ep,m) if ep < m.

is a contracting homotopy, so the homology vanishes. If R is a corolla, on
the other hand, the complex is concentrated in degree −1, and is just Z.
So

DH−1(ZA(−, R)) =
⊕

Cℓ
∼−→R

Z,

which is Z[Σℓ] when R is a corolla with ℓ leaves and 0 otherwise. □

Corollary 3.6. — For a representable functor Ω◦
r(−, T ) given by a

tree T ,

DHp(ZΩ◦
r(−, T )) =

{⊕
v∈Vert(T ) Z[Σinputs(v)] if p = −1

0 otherwise.

TOME 75 (2025), FASCICULE 3



940 Eric HOFFBECK & Ieke MOERDIJK

Proof. — It suffices to notice that the restriction to A ⊂ Ω◦
r of Ω◦

r(−, T )
decomposes as a sum of representables. Writing j : A → Ω◦

r for the inclu-
sion,

j∗Ω◦
r(−, T ) =

∐
R⊂T

A(−, R)

where the coproduct ranges over external faces R ↣ T of T . Indeed, any
map S → T in Ω◦

r decomposes uniquely as a map S ↣ R in A followed by
an external face R↣ T . As external faces R→ T where R is a corolla are
in bijective correspondence with vertices of T , the result now follows from
the previous proposition. □

It is possible to express dendroidal homology in terms of the homology
of a pair of categories. Recall that for a category C and a covariant functor
A : C → Ab, the homology H∗(C, A) is defined as the homology of the
chain complex

Cn(C, A) =
⊕

c0→···→cn

A(c0)

where the sum is taken over strings of morphisms c0 → · · · → cn in C. The
differential is ∂ =

∑
(−1)i∂i where ∂i maps the summand for c0 → · · · → cn

to the one for c0 → · · · → ĉi → · · · → cn by the identity of A(c0) if i ̸= 0
and by A(c0)→ A(c1) if i = 0. If D ⊂ C is a subcategory, the homology of
the pair H∗(C,D;A) is defined to be that of the quotient complex

0 −→ C∗(D, A) −→ C∗(C, A) −→ C∗(C,D;A) −→ 0,

as usual.
If A is a contravariant functor on C, we write C∗(C, A) for C∗(Cop, A),

and similarly for H∗(C, A) and for pairs.

Proposition 3.7. — For a given ℓ ⩾ 2, consider the category Cℓ/A
and its full subcategory Cℓ//A on the non-isomorphisms Cℓ ↣ T . Then for
M : Aop → Ab and its restriction to Cℓ/A,

DH
(ℓ)
∗ (M) = H∗+1(Cℓ/A, Cℓ//A;M).

Proof. — Consider the double complex (with values in chain complexes)

Cp,q =
( ⊕
Cℓ↣R↣T0↣···↣Tq

M(Tq)
)
/ ∼

where q ⩾ 0, p ⩾ −1, Cℓ
e
↣ R ↣ T0 ↣ · · ·↣ Tq is in A, e = (e0, . . . , ep)

enumerates inner edges of R, and we make identifications for permutations

ANNALES DE L’INSTITUT FOURIER
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of the ei’s (with signs) and isomorphisms of the kind

R %%

%%
≀

��

Cℓ
99

99

%%

%%

. T0 // // · · · // // Tq.

R′
99

99

The differential in the p-direction is the alterning sum of ∂i’s, as defined
in the previous proof. The vertical differential in the q-direction is the
simplicial one on the part T0 ↣ · · ·↣ Tq.

For p and Cℓ
e
↣ R fixed, the complex computes the homology of R/A

with coefficients in M , so this contracts to M(R). Since the quotient is by
a simple groupoid (see Appendix), we obtain that Hq(Cp,−) = 0 for q > 0
and Hq(Cp,−) = DCp(M) if q = 0. We conclude that the total complex
computes DHp(M).

For q fixed, we get a sum over Cℓ
γ
↣ T0 ↣ · · · ↣ Tq of complexes

computing the dendroidal homology of the representables A(−, T0). This
vanishes when γ is not an isomorphism (ie. when γ is a morphism in Cℓ//A),
as we just saw, so for fixed q

Hp(C−,q) =
{ ⊕

Cℓ
∼−→T0↣···↣Tq

M(Tq) if p = −1
0 if p ̸= −1.

So the spectral sequence of the double complex with

E1
p,q = Hp(C−,q)

collapses, and the differential d1 : E1
p,q → E1

p,q−1 is induced by the verti-
cal differential. Thus (E1

−1,q, d
1) is the complex computing the homology

H∗(Cℓ/A, Cℓ//A;M). □

Remark 3.8. — A similar statement of course follows for a presheaf M
with values in chain complexes and the corresponding hyperhomology of a
pair of categories.

Remark 3.9. — There is a long exact sequence induced by the short exact
sequence of complexes

0 −→ C∗(Cℓ//A;M) −→ C∗(Cℓ/A;M) −→ C∗(Cℓ/A, Cℓ//A;M) −→ 0.

Moreover Cℓ/A has an initial object. Thus DH(ℓ)
∗ (M) is H∗(Cℓ//A;M) for

∗ ⩾ 1.
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Remark 3.10. — If M is a constant presheaf, then in positive degrees
DH

(ℓ)
∗ (M) is the homology of the classifying space of Cℓ//A, which is re-

lated to the partition poset of {1, . . . , ℓ}. This applies in particular to the
nerve of the commutative operad. This partition poset is homotopy equiva-
lent to a wedge of spheres, see Robinson–Whitehouse [14]. Operadic parti-
tion posets (see [15]) can be recovered as Cℓ//A/N(P ), that is the category
of objects strictly under the corolla and over N(P ).

4. Homology of dendroidal spaces

For X an open reduced dendroidal space, we denote by DC∗(X) and
DH∗(X) the complex DC∗(Z[X]) and its homology (see Example 1.1(2)).
The results of the previous section imply the following corollaries.

Corollary 4.1. — For an open and reduced dendroidal space X and
for a pushout along a monomorphism

U //
��

��

X
��

��

V // Y

there is a natural long exact Mayer–Vietoris sequence

· · · → DHn(U)→ DHn(V )⊕DHn(X)→ DHn(Y )→ DHn−1(U)→ · · · .

Proof. — This follows from Proposition 3.3(3) because the pushout yields
a short exact sequence

0 −→ Z[U ] −→ Z[V ]⊕ Z[X] −→ Z[Y ] −→ 0. □

Corollary 4.2. — For an open and reduced dendroidal set X, there
is a natural isomorphism

DH∗(X) = H∗+1(A/X,A>0/X;Z).

where A/X is the category of elements of X and A>0 is the full subcategory
of A on trees with at least one inner edge.

The categories dSets and dSpaces of dendroidal sets and spaces carry
various Quillen model structures. The main ones are the operadic model
structure on dSets and the model structure for complete Segal dendroidal
spaces on dSpaces. These two model structures are Quillen equivalent to
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each other, as well as to the natural model structure on simplicial op-
erads. We refer to [5] or [10] for precise statements and further details.
Similar statements hold for presheaves on the smaller category Ω◦

r of open
and reduced trees. These categories of presheaves are denoted ordSets and
ordSpaces – open and reduced dendroidal sets and spaces. The Quillen
model structures mentioned above restrict to these smaller categories, and
make them Quillen equivalent to each other and to the category of sim-
plicial operads P which are open (no nullary operation) and reduced (the
spaces of unary operations are weakly contractible).

The remarks above motivate the study of the homology of objects in
ordSpaces. For a tree T , we write y(T ) for the corresponding representable
functor Ω◦

r(−, T ), viewed as a discrete dendroidal space, open and reduced
if T is. The relevant model structure is the localisation of the generalised
Reedy model structure, localised by the so-called Segal maps

y(S) ∪a y(T ) ↣ y(S ◦a T )

for two trees S and T and the grafting S ◦a T of T onto a leaf a in S.
The cofibrations in this category are the normal monomorphisms: those
monomorphisms X ↣ Y for which each automorphism group Aut(T ) of
a tree T acts freely on the complement of the image of X(T ) in Y (T ).
The fibrant objects in this model category are the ∞-operads, in other
words, Reedy fibrant objects X of ordSpaces for which the Segal maps
X(S ◦e T )→ X(S)×X(η) X(T ) are all weak equivalences, see [5].

The theory of Quillen model categories enables us to express the funda-
mental properties of dendroidal homology in a possibly more informative
way. The category Σ-mod carries a projective model structure, in which the
weak equivalences and fibrations are induced from those of chain complexes,
and in which the cofibrations are the maps A → B which are monomor-
phisms with projective cokernel (i.e., each A(ℓ) ↣ B(ℓ) has a projective
Z[Σℓ]-module as a cokernel).

In the following theorem, the category Σ-mod has components only in
homological degrees greater than or equal to −1.

Theorem 4.3. — The functor DC : ordSpaces → Σ-mod is a left
Quillen functor with respect to the model structures mentioned above.

Proof. — We need to check that the functor DC has a right adjoint,
that it maps Reedy cofibrations to cofibrations and Reedy weak equiva-
lences to weak equivalences (i.e., quasi-isomorphisms), and that is sends
the localising trivial cofibrations of the form

(∗) (y(S) ∪a y(T )) ⊠ V ∪ (y(S ◦a T )) ⊠ U −→ (y(S ◦a T )) ⊠ V
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to weak equivalences. Here S ◦a T is a grafting as above, and U ↣ V is a
monomorphism of simplicial sets. Moreover, for a dendroidal set D and a
simplicial set U , we write D ⊠ U for the dendroidal space

D ⊠ U(T )n = D(T )× Un =
∐

d∈D(T )

Un.

Now, first of all, DC preserves all small colimits, hence has a right adjoint
for general categorical reasons. This right adjoint R : Σ-mod→ ordSpaces

is defined by

R(A)(T )n = Hom(DC(y(T ) ⊠ ∆[n]), A)

where the Hom is that of Σ-mod. See the remark below for an elaboration
of this description of R.

Next, for a Reedy cofibration X ↣ Y , i.e. a normal monomorphism, the
cokernel of DC(X)(ℓ) → DC(Y )(ℓ) in bidegree (p, q) is ⊕

α:Cℓ↣T,e

Z[Y (T )q \X(T )q]


coinv

where α ranges over morphisms in A and e = (e0, . . . , ep) are enumerations
of the inner edges of T , while we have identified X(T ) with its image
in Y (T ). The coinvariants are by isomorphisms under Cℓ (as in the first
diagram of Section 2) and permutations of the ei’s. The action by θ ∈ Σℓ
sends a generator (T, α, e, y) to (T, αθ, e, y).

We claim that this action is free if X ↣ Y is normal. Indeed, if one has
(T, α, e, y) = (T, αθ, e, y), then there exists a (unique) factorisation

Cℓ // // T

Cℓ

θ

OO

// // T

τ

OO

for which y = τ∗y. If y does not belong to the image of X then τ is the
identity by normality, and hence so is θ. This shows that DC preserves
cofibrations.

Next, DC preserves Reedy weak equivalences. Indeed, if X ↣ Y has the
property that each X(T ) → Y (T ) is a weak equivalence of simplicial sets,
then the first item of Proposition 3.3 shows that DC(X) → DC(Y ) is a
homology isomorphism.
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Finally, we need to check that DC maps each trivial cofibration of the
form (∗) above to a quasi-isomorphism. But in a fixed simplicial degree q,
this map is a coproduct of copies of the identity on y(S ◦a T ) and copies
of the inclusion y(S) ∪a y(T )→ y(S ◦a T ). Since such an inclusion induces
a bijection on vertices, Corollary 4.1 on the Mayer–Vietoris sequence to-
gether with Corollary 3.6 shows that for a fixed q, this map induces an
isomorphism in homology. Thus, by the spectral sequence, DC sends (∗)
to a quasi-isomorphism. □

Remark 4.4. — Recall for a chain complex B the Dold–Kan simplicial
set R(B) defined by

R(B)n = Hom(N∗(∆[n]), B),

where N∗(∆[n]) is the normalised chain complex of ∆[n]. If Σℓ acts on B,
then it also acts on R(B). In particular, R can be viewed as a functor from
Σ-mod to symmetric sequences of simplicial sets. Now

DC(y(T ) ⊠ ∆[n])m =
⊕

p+q=m−1
DCp(y(T ))⊗ Z[∆[n]]q

By Corollary 3.6, the right hand side is quasi-isomorphic as a symmetric
collection to ⊕

|v|=ℓ

Z[Cℓ]⊗N∗(∆[n])

where v ranges over vertices of T and |v| is the number of inputs of v. So
for A is in the proof above

R(A)(T ) ≃
∏

|v|=ℓ

R(A(ℓ)).

Remark 4.5. — This theorem is false for the covariant and Picard model
structures, see [10] or [2] where the Picard model structure is called the
basic model structure. Indeed, one readily checks that for the tree T =
Cv ◦e Cw with a single inner edge connecting a bottom vertex v to a top
vertex w, the “top horn” Λv(T ) = ∂e(T ) ∪ ∂w(T ) ↣ T does not induce
an isomorphism in homology (it is the map Z ⊕ Z → Z ⊕ Z, which is the
identity on the first component and zero on the second component).

5. Bar construction

The goal of this section is to extend the bar construction of operads to
the present context, and give a reformulation in terms of the homology of
categories.
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For a presheaf M : Aop → Ch, we define a covariant functor B∗(M)(−)
from A to double chain complexes. For S ∈ A, define

Bp(M)(S) =
( ⊕
α:S↣T,d,e

M(T )
)
/HS ,

where
• α : S ↣ T is a morphism in A
• d = (d0, . . . , dq−1) is an enumeration of the inner edges of S
• e = (e0, . . . , ep−1) is an enumeration of the inner edges of T that

do not belong to the image of α,
and HS is the groupoid naturally acting on these data: it is the semi-
direct product of the groupoid of extensions S ↣ T of S and isomorphisms
between them

S
��

α′ ��

// α // T

θ ≀
��

T ′

and the symmetric groups Σq = Σ{0,...,q−1} and Σp.
We will write elements of Bp(M)(S) as (represented by) triples

(α, d | e, x)

where α, d, e are as above and x ∈ M(T ). We omit the tree T from the
notation to keep it simpler. When necessary, we will write these elements as

(α, (d0, . . . , dq−1) | (e0, . . . , ep−1), x).

The fact that Bp(M)(S) is defined as coinvariants for HS comes down to
the following identifications:

(α, d | e, θ∗x′) = (θα, d | θe, x′)

for x′ ∈M(T ′) and α, d, e, θ as above, and

(α, d | e, x) = (−1)σ(−1)τ (α, dσ | eτ, x)

for any permutations σ ∈ Σq and τ ∈ Σp, and where dσ is the composition
{0, . . . , q− 1} σ−→ {0, . . . , q− 1} d−→ E(T ) and eτ is defined in a similar way.

Notation 5.1. — In the formula for ∂ext below, we write (−1)d for (−1)q
with d representing here the length of the sequence rather than the sequence
itself. In the rest of the paper, we will often use this notation when writing
signs.
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The first differential

∂ext : Bp(M)(S) −→ Bp−1(M)(S)

is defined on representing elements by

∂ext(α, d | e, x) =
p−1∑
i=0

(−1)d+i(∂∗
ei

(α), d|(e0 . . . êi . . . ep−1), ∂∗
ei

(x)),

where ∂ei
: ∂ei

(T ) → T is the morphism in A given by contracting the
edge ei, the map ∂∗

ei
(α) : S ↣ ∂ei

(T ) is the unique morphism in A for
which α = ∂ei ◦ ∂∗

ei
(α), and ∂∗

ei
: M(T ) → M(∂ei(T )) is given by the

presheaf structure on M . This map ∂ext is well-defined on coinvariants and
squares to zero. The second differential ∂int is induced by the one of M
and the Koszul sign rule. More precisely, for (α, d | e, x) in Bp(M)(S) and
x ∈Mn(S),

∂int(α, d | e, x) = (−1)d+e(α, d | e, ∂Mx.)
These two differentials anti-commute.

Notation 5.2. — We write Bp,n(M)(S) for the double complex, with dif-
ferentials ∂ext and ∂int. Later in Notation 5.9 we will consider a shifted
total complex.

Remark 5.3. — As the category A falls apart into pieces A(ℓ) of trees
with ℓ leaves, so does the functor B∗(M). Moreover, we can recover DC
from B, in the following way:

DC∗(M) =
∏
ℓ⩾2
B∗+1(M)(Cℓ).

(Notice the shift, which as we will see later, is motivated by an induced
structure of cooperad, see Proposition 5.10.)

Remark 5.4. — Using the result of the appendix, the same complex can
be given in terms of invariants:

Bp(M)(S) =

 ∏
S↣T,d|e

M(T )

inv

Notice that this expression is obviously covariantly functorial in A: for
ω ∈ Bp(M)(S), a morphism γ : S → S′ in A, α : S′ ↣ T , d an enumeration
of the inner edges of S′ and e an enumeration of the inner edges of T not in
the image of α, the induced map γ∗ : Bp(M)(S)→ Bp−c(M)(S′) is given by

γ∗(ω)α,d|e = (−1)τωαγ,d′|d′′e
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where τ is a permutation acting on the enumeration d such that τd =
(d′, d′′) with d′ an enumeration of the edges of S (which can be seen as
edges of S′ via γ) and d′′ the edges in S′ “contracted by γ”. Notice that γ∗
preserves the degree if we take the degree of Bp(M)(S) to be p + q where
q is the number of inner edges of S (i.e. “d+ e” in Notation 5.1).

In terms of coinvariants, the morphism γ∗ : Bp(M)(S) → Bp−c(M)(S′)
obtained by covariant functoriality from a morphism γ : S → S′ in A
can be described as follows. For an element of Bp(M)(S) represented by
(α, d | e, x) as above, γ∗(α, d | e, x) = 0 if α : S → T does not factor
through γ : S → S′. If, on the other hand, it does factor, we can write
α = βγ for a unique β. Then, up to isomorphism, S is obtained from S′

by contracting a number c of edges in S′. We refer to this number c as the
codimension of γ, c = codim(γ). The tree S′ is obtained by contracting
p− c edges of T . Up to a permutation τ , we can suppose that, among the
edges (e0, . . . , ep−1), the edges e0, . . . , ec−1 are the edges in the image of β,
while ec, . . . , ep−1 are the edges “contracted by β”. Then

γ∗(α, d | e, x) = (β, (γd0, . . . , γdq−1, β
−1e0, . . . , β

−1ec−1) | (ec, . . . , ep−1), x).

This renders the following diagram commutative, where ρ is the isomor-
phism of the appendix.

S

γ

��

Bp(M)(S)

γ∗

��

ρ

∼
// Bp(M)(S)

γ∗

��

S′ Bp−c(M)(S′)
ρ

∼
// Bp−c(M)(S′).

The description by invariants gives as a consequence:
• For γ : S ↣ S′, the map γ∗ as described above is well-defined on

equivalence classes.
• For γ : S ↣ S′ and γ′ : S′ ↣ S′′, we have (γ′ ◦ γ)∗ = γ′

∗ ◦ γ∗.

Moreover, the map γ∗ commutes with ∂ext. This shows B∗(M) is a well-
defined functor from A to double chain complexes. Since the differential
∂ext commutes with that of M up to sign, taking the homology of B(M)
with respect to ∂ext gives a new functor H∗B(M) : A→ Ch.

Remark 5.5. — Using the notation of the appendix, both differentials
can also be described from the point of view of the invariants. The map
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∂ext from Bp(M)(S) to Bp−1(M)(S) is given by

(∂ext)S↣T,d|e = (−1)d
∫
T↣T ′

f∗(ωS↣T ′,d|fe)

where the integral is over the groupoid of codimension 1 extensions of the
form f : T ↣ T ′ of T , where f is also the name of the unique edge in
T ′ \ T , and where the map S ↣ T ′ is given by the composition of f with
the map α : S ↣ T . The map ∂int from Bp,n(M)(S) to Bp,n−1(M)(S) is
given by

(∂int)S↣T,d|e = (−1)d+e∂M (ωS↣T,d|e).
Both signs here can be interpreted as Koszul signs.

The following two propositions can be proven in the same way as the
analogous statements for DC (see Proposition 3.5 and Proposition 3.7).

Proposition 5.6. — For R a tree and M = Z[A(−, R)], we have

HpB(M)(S) =
{
Z[Iso(S,R)] if p = 0 and S ≃ R
0 otherwise.

Proposition 5.7. — For S ∈ A fixed, consider the category S/A and
its full subcategory S//A on the non-isomorphisms S ↣ T , i.e. maps of
positive codimension. Then for M : Aop → Ab and its restriction to S/A,
there is an isomorphism

H∗B(M)(S) ≃ H∗(S/A, S//A;M).

Since the pair (S/A, S//A) is the product over the vertices v of S of the
pairs (Cv/A, Cv//A), the Künneth formula yields the following corollary.

Corollary 5.8. — For M a torsion-free∞-operad, there is an isomor-
phism between H∗B(M)(S) and

∏
v∈S DH

(ℓv)
∗−1(M) where ℓv is the arity of

a vertex v.

We next observe that our construction sends∞-operads to∞-cooperads
(up to a suspension), as for to the usual operadic bar construction.

Notation 5.9. — For M : Aop → Ch and S a tree, we denote by B(M)(S)
the total complex defined by

Bm(M)(S) =
⊕

m=p+q+n
Bp,n(sM)(S)

where q is the number of inner edges of S and where sM denotes the sus-
pension of M , with the convention sx ∈ (sM)n for x ∈Mn−1. Notice that
for a morphism γ : S → S′ the induced map γ∗ : B(M)(S) → B(M)(S′)
preserves the total degree.
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Proposition 5.10. — Let M : Aop → Ch be an ∞-preoperad. Then
the functor B(M) : A → Ch is naturally an ∞-precooperad. Moreover, if
M is an ∞-operad, then B(M) is an ∞-cooperad.

The next corollary follows from Remark 1.7.

Corollary 5.11. — For M an∞-preoperad, there is an induced coop-
erad structure on Σ-module {DC(ℓ)

∗−1(sM)}, and hence on {DH(ℓ)
∗−1(sM)}.

The proof of the proposition is based on the following lemmas.

Lemma 5.12. — Given a grafting S ◦aR, there is a bijective correspon-
dence between isomorphism classes of extensions S ◦a R

α
↣ T in A, and

pairs of such (S
αS

↣ TS , R
αR

↣ TR). Under this correspondence, T = TS ◦a′TR
where a′ = α(a), and codim(α) = codim(αS) + codim(αR).

Proof. — This is an immediate consequence of the fact that any injective
morphism in Ω factors uniquely (up to isomorphism) as a composition of
inner face maps followed by a composition of outer face maps (see [10]).
These factorisations are the dotted arrows in the following diagram:

S // //
��
��

S ◦a R
��
��

Roooo
��
��

TS // // T TRoooo

Note that the horizontal maps are in Ω◦
r but not in A. □

A corollary of this lemma is the following.

Lemma 5.13. — Given a grafting S ◦a R as above, there is a canonical
quasi-isomorphism:( ∏
S↣TS ,d|e

M(TS)
)inv

⊗

( ∏
R↣TR,d|e

M(TR)
)inv

∼−→

( ∏
S◦aR↣T,d|e

M(T )
)inv

.

Similarly, there is a quasi-isomorphism for the descriptions by coinvariants:( ⊕
S↣TS ,d|e

M(TS)
)

∼

⊗

( ⊕
R↣TR,d|e

M(TR)
)

∼

∼←−

( ⊕
S◦aR↣T,d|e

M(T )
)

∼

.

where (−)∼ denotes the coinvariants.
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Proof of the proposition. — Suppose M is a linear∞-operad. We define
a map

∆ : B(M)(S ◦a R) −→ B(M)(S)⊗ B(M)(R),
coming from maps

Bp,n(sM)(S ◦a R) −→
⊕

p1+p2=p,n1+n2=n+1
Bp1,n1(sM)(S)⊗ Bp2,n2(sM)(R)

as follows. An element of Bp,n(sM)(S ◦a R) can be represented as

(S ◦a R
α
↣T, d | e, sx)

where α is a morphism of codimension p, while d enumerates the inner
edges of S ◦a R and e = (e0, . . . , ep−1) those of T which do not lie in the
image of α, and finally x ∈ Mn−1(T ). By permuting the sequence d (and
adapting the sign if necessary), we may assume that d enumerates a first,
then the edges of S, and those of R last, as

d = (a, dS , dR).

For factorisations S
αS

↣ TS and R
αR

↣ TR as in the lemma, we can take TS
and TR to be actual subtrees of T , and the p1 inner edges of TS not in the
image of αS together with the p2 inner edges of TR not in the image of αR
are exactly the inner edges of T not in the image of α. So, by permuting
the ei’s if necessary, we can assume that e = (eS , eR) enumerates the inner
edges of TS before those of TR.

The cooperad structure map ∆ on B(M) is induced by the operad struc-
ture of M (shifted by 1) and the degrafting of S and R: for an element
(α, d|e, sx) in Bp,n(sM)(S ◦a R),

∆(α, d | e, sx) =
∑
±(αS , dS | eS , sθ(1)(x))⊗ (αR, dR | eR, sθ(2)(x))

where ± is a Koszul sign explained below, and where (in Sweedler notation)

θ(x) =
∑

θ(1)(x)⊗ θ(2)(x) ∈Mn1−1(S)⊗Mn2−1(R)

is given by the operad structure of the presheaf M , with the degrees n1
and n2 satisfying n − 1 = (n1 − 1) + (n2 − 1). The sign in the formula is
defined as a Koszul sign. Let us first define the map θ̃ : sM → sM ⊗sM as
(s⊗s)θs−1. Thus θ̃ is a map of degree +1 and θ̃(sx) =

∑
(−1)n1−1sθ(1)(x)⊗

sθ(2)(x) with the same notations as above. The map ∆ is the composition of
applying θ̃ on sx followed by degrafting the trees S and R (which involves
permuting dR with eS) followed by permuting sθ(1)(x) with (αR, dR | eR)
of degree dR + eR. The obtained Koszul sign is then

1 + d+ e+ eSdR + (eR + dR)n1 + n1 − 1.
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Another way to understand this sign is to write

∆(α, (a, dS , dR) | (es, eR), sx) = ±tw((αS , dS | eS), (αR, dR|eR), θ̃(sx))

where ± is the Koszul sign (−1)1+dS+eS+dR+eR+eSdR and tw moves the
first component of θ̃(sx) in the right place (with the appropriate sign) in
order for the result to land in the appropriate tensor product.

We leave it to the reader to check that ∆ is well-defined and satisfies the
required naturality and coassociativity conditions, keeping in mind that θ̃
is anti-associative. Moreover, ∆ is compatible with the differentials; i.e.,
using the Koszul sign convention, the following diagram commutes,

Bp(sM)(S ◦a R) ∆ //

∂ext

��

⊕
p1+p2=pBp1(sM)(S)⊗ Bp2(sM)(R)

∂

��
Bp−1(sM)(S ◦a R) ∆ //⊕

r1+r2=p−1Br1(sM)(S)⊗ Br2(sM)(R)

where the vertical map on the right hand side is

∂ext ⊗ id +(−1)dS+eS+n1 id⊗∂ext.

The same diagram also commutes for the differential ∂int. Moreover, using
the lemma, one can easily check that ∆ is a quasi-isomorphism if θ is. □

Example 5.14. — If M is the nerve of a linear operad P , the collection
{DH(ℓ)

∗−1(sNP )} forms a cooperad, which agrees with the homology of the
usual bar construction H∗(B(P )). Indeed, a direct inspection shows that
B(NP ) is the cooperadic nerve of the usual bar construction of P .

6. Cobar construction

Let Y : A → Ch be a covariant functor. We will define a contravariant
functor B∨(Y ) : Aop → Ch, dual in a sense to the construction of B(M)
above. For an object R of A, we define

B∨
q (Y )(R) =

( ∏
α:R↣S,b,d

Y (S)
)inv

,

where the product ranges over morphisms R
α
↣ S of codimension q, enu-

merations b = (b0, . . . , br−1) of inner edges of R, and enumerations
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d = (d0, . . . , dq−1) of the inner edges of S that do not belong to the image
of α. The invariance is for isomorphisms under R,

R
��

α′ ��

// α // S

θ≀
��

S′

and permutations of the bi’s and dj ’s. Thus an element ω ∈ B∨
q (Y ) assigns

to every α, b, d as above an element

ωα,b|d ∈ Y (S),

subject to the following invariance conditions:
• for an isomorphism θ as above,

θ∗(ωα,b|d) = ωθα,b|θd

• for σ ∈ Σr and the composition bσ : {0, . . . , r − 1} → E(R),

ωα,b|d = (−1)|σ|ωα,bσ|d

• for τ ∈ Σq and dτ : {0, . . . , q − 1} → E(S),

ωα,b|d = (−1)|τ |ωα,b|dτ

The first differential ∂ext : B∨
q−1(Y )(R)→ B∨

q (Y )(R) is defined by

(∂extω)α,b|d =
q−1∑
j=0

(−1)q−1−j(∂dj
)∗(ω∂∗

dj
(α),b|(d0...d̂j ...dq−1))

where ∂∗
dj

(α) is defined by

R
!!

∂∗
dj

(α) !!

// α // S

∂dj
S

∂dj

OO

as before. One readily checks that ∂extω is invariant whenever ω is, and
that ∂ext∂extω = 0.

Just like for the bar construction, B∨
q (Y )(R) is actually a double complex,

with an internal differential ∂int defined by

(∂intω)α,b|d = (−1)b+d∂Y (ωα,b|d).
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Remark 6.1. — For B∨ it is easy to define the differential, but more
involved to define functoriality. Thus as in the case of the B construction,
we first give another description by coinvariants,

B∨
p (Y )(R) =

( ⊕
α:R↣S,b,d

Y (S)
)

coinv

,

isomorphic to B∨
p (Y )(R). From this point of view, the functoriality is easier

to define. Let β : R′ ↣ R be a morphism of codimension c. For a map
α : R→ S, and b, d, y as above, let us define

β∗(α : R↣ S, b | d, y) = (−1)τ (αβ, b′ | α(b′′)d, y)

where b′ are the edges in the image of β, which we view as edges in R′,
and b′′ the edges of R contracted by β, while τ the permutation sending
the enumeration b to the concatenation of b′ and b′′.

We now describe the functoriality in terms of invariants, that is the
map β∗ which fits into the following commutative square, where ρ is the
isomorphism of the appendix:

R′

β

��

B∨
q+c(Y )(R′)

ρ

∼
// B∨

q+c(Y )(R′)

R B∨
q (Y )(R)

β∗

OO

ρ

∼
// B∨

q (Y )(R).

β∗

OO

For ω ∈ B∨
q (Y )(R) and α′ : R′ ↣ S, b′ denoting the edges in R′ and d

those in S not in the image of α′,

β∗(ω)α′,b′|d = 0

if α′ : R′ → S does not factor through β : R′ → R. If it does, we can write
α′ = αβ for a unique α, where (up to isomorphism) α contracts q edges
among the dj ’s, and we can split the sequence d into two sequences, first
the edges of S in the image of R, followed by the remaining edges of S (in
order of occurrence in d). In other words,

dτ = α(b)d′

for a permutation τ ∈ Σq+c. Then

β∗(ω)α′,b′|d = (−1)|τ |ωα,β(b′)b|d′ .
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A direct verification shows:
• The map β∗ commutes with ∂ext.

• For a composition R′′ β′

↣ R′ β
↣ R, we have β′∗(β)∗ = (ββ′)∗.

Remark 6.2. — The differentials of B∨(Y ) can be described in terms of
coinvariants as follows: For a representing element (α : R ↣ S, b | d, y)
where y ∈ Y (S),

∂ext(α : R↣ S, b | d, y) =
∫
f :S↣S′

(fα : R↣ S′, b | df, f∗y)

where the integral is over codimension 1 extensions f : S ↣ S′, where f
also denotes the only new edge, and f∗y is the effect of the covariant func-
toriality Y (S) → Y (S′) on y ∈ Y (S). This renders the following diagram
commutative:

B∨(Y )(R)
ρ

∼
//

∂ext
��

B∨(Y )(R)

∂ext

��

B∨(Y )(R)
ρ

∼
// B∨(Y )(R).

The second differential is given by

∂int(α : R↣ S, b | d, y) = (−1)b+d(α : R↣ S, b | d, ∂Y y).

Notation 6.3. — For Y : A→ Ch and R a tree, we denote by B∨(Y )(R)
the total complex defined by

B∨
m(Y )(R) =

⊕
m=n−(r+q)

B∨
q,n(s−1Y )(R)

where r denotes the number of inner edges of R.

The following proposition is the dual of Proposition 5.10.

Proposition 6.4. — If Y : A → Ch is a linear ∞-cooperad, then
B∨(Y ) : Aop → Ch has the structure of a linear ∞-operad.

Proof. — We define the structure with the point of view of coinvariants,
to make it closer to the case of the bar construction. We define a map

∆ : B∨(Y )(S ◦a R) −→ B∨(Y )(S)⊗ B∨(Y )(R),

coming from maps

B∨
q,n(s−1Y )(S ◦a R) −→

⊕
B∨
q1,n1

(s−1Y )(S)⊗ B∨
q2,n2

(s−1Y )(R)
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where the sum ranges over indices q1 + q2 = q and n1 + n2 = n − 1, as
follows. An element of B∨

q,n(s−1Y )(S ◦a R) can be represented as

(S ◦a R
α
↣T, adSdR | eSeR, s−1y).

The operad structure map ∆ on B∨(Y ) is induced by the cooperad struc-
ture of Y (shifted by −1) and the degrafting of S and R: for an element
(α, adSdR | eSeR, s−1y) in B∨(s−1Y )(S ◦a R),

∆(α, adSdR | eSeR, s−1y) = ±tw(αS , dS |eS , αR, dR | eR, θ̂(s−1y))

where ± is a sign explained below, θ̂ is the map of degree −1 defined
by the composition (s−1 ⊗ s−1)θs, and where tw is the map moving the
first component of θ̂(s−1y) in the right place and then cutting the tensor
product. The sign ± is defined by

(−1)(dS+eS)(dR+eR)+dReS .

One can easily check that this map ∆ is natural in R and S, and is
coassociative, and that the differentials ∂ext and ∂int are coderivations with
respect to ∆. Moreover, ∆ is a quasi-isomorphism if θ is. □

Remark 6.5. — Note that the sign for ∆ does not seem to be a Koszul
sign. However it fits the properties stated at the end of the proof and the
adjunction in the next section.

7. Twisting morphisms

We develop in our context the theory of twisting morphisms, to obtain
an adjunction between the bar and cobar constructions. See [12] for an
account in the usual cases of algebras and linear operads.

The first goal is to show there is a bijective correspondence between maps

φ : B∨(Y ) −→M

in the category of functors from Aop to Ch and

ψ : Y −→ B(M)

in the category of functors from A to Ch and “twisting cocycles”, which
can be either written as

τ̂ : Y (S) −→
(∏

b

M(S)
)inv
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or as

τ :
(⊕

b

Y (S)
)

coinv

−→M(S).

Here b enumerates edges of S, and changes in b act by sign representation
as before. In a first step, we ignore differentials (so take everything with
values in graded abelian groups, for example).

Let us look at φ, given by

φR :

 ⊕
β:R↣S,b|d

s−1Y (S)


coinv

−→M(R)

natural in R. An element (β, b | d, s−1y) on the left is the restriction along
β of an element where β is the identity:

(β, b | d, s−1y) = β∗(id : S −→ S, bd | −, s−1y)

so
φR(β, b | d, s−1y) = β∗φS(idS , bd | −, s−1y).

Hence φ is completely determined by what it does on elements of the form
(idS , b|−, s−1y), which gives the map

τS :
(⊕

b

Y (S)
)

coinv

−→M(S)

defined by τS(b, y) = φS(idS , b | −, s−1y). Conversely, the map φ can be
recovered as φR(β, b | d, s−1y) = β∗τS(bd, y).

The same applies to ψ : Y → B(sM), given by

ψS : Y (S) −→

 ∏
α:S↣T,d|e

sM(T )

inv

.

Indeed, for an element ω on the right,

ωα,d|e = α∗(ωidT ,de|−)

so
ψS(y)α,d|e = ψT (α∗y)idT ,de|−

by naturality. Thus ψ is completely determined by the values ψT (y)idT ,de|−
which gives the map

τ̂S : Y (S) −→
(∏

e

M(S)
)inv

,
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defined by τ̂S(y)(e) = s−1ψS(y)idS ,|−, another form of the same twisting
cocycle. Conversely, ψ can be recovered as ψS(y)α,d|e = sτ̂T (α∗y)(de).

Now let us involve the differentials and find a condition on τ , respec-
tively τ̂ . We need to check that the condition on τ imposed by φ preserving
the differential is the same as the one on τ̂ imposed by ψ preserving the
differential. Let us look at φ first.

( ⊕
β:R↣S,b|d

s−1Y (S)
)

coinv

φR //

∂ext+∂int
��

M(R)

∂M

��( ⊕
β:R↣S,b|d

s−1Y (S)
)

coinv

φR // M(R).

By naturality, it is enough to describe the condition for this diagram to
commute for β = id:

∂MφR(idR, b | −, s−1y)

= φR(∂ext(idR, b | −, s−1y)) + φR(∂int(idR, b | −, s−1y)).

In other words,

∂MτR(b, y)

=
∫
d:R↣R′

φR(d : R↣ R′, b | d, d∗s
−1y) + (−1)bτR(b; s∂s−1Y s

−1y),

or equivalently,

(7.1)
∫
d:R↣R′

d∗τR′(bd, d∗y) = ∂MτR(b, y) + (−1)bτR(b; ∂Y y),

where d denotes at the same time the inclusion morphism R↣ R′ and the
added edge to obtain R′ from R. This equation can be seen as a Maurer–
Cartan equation.
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Now let us look at ψ:

Y (S)
ψS //

∂Y

��

( ∏
α:S↣T,d|e

sM(T )
)inv

∂ext+∂int
��

Y (S)
ψS //

( ∏
α:S↣T,d|e

sM(T )
)inv

.

Again by naturality, ψS∂Y and (∂ext + ∂int)ψS are completely determined
by their values on elements (id, d|−). So the commutativity of the diagram
is equivalent to the condition that for all y ∈ Y (S)

ψS(∂Y y)(idS ,d|−)

= (∂extψS(y))(idS ,d|−) + ∂intψS(y)(idS ,d|−)

= (−1)d
∫
f :S↣S′

f∗(ψS(y)(f :S→S′,d|f)) + (−1)d∂sM (ψS(y)(idS ,d|−))

= (−1)d
∫
f :S↣S′

f∗s(τ̂S′(f∗y)(df)) + (−1)d+1s∂M (τ̂(y)(d))

or equivalently,

(7.2)
∫
f :S↣S′

f∗(τ̂S′(f∗y)(df)) = ∂M (τ̂S(y)(d)) + (−1)dτ̂S(∂Y y)(d),

which is the same Maurer–Cartan equation as Equation (7.1). This proves
the following result.

Proposition 7.1. — There is a bijective correspondence

{φ : B∨(Y ) −→M} ←→ {ψ : Y −→ B(M)} ←→
{
τ̂ : Y −→

(∏
M
)inv

}
where the τ̂ ’s are the twisting cocycles satisfying the above Maurer–Cartan
equation (7.2).

We now consider the unit and the counit morphisms of the adjunction:
η : Y → B(B∨(Y )) and ε : B∨(B(M)) → M . The explicit formulas are the
following. First, the counit is given by

εS(α, a | e, s−1ω) = α∗(s−1(ωidT ,ae|−))
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where α : S ↣ T , a is an enumeration of the inner edges of S and e an
enumeration of the inner edges of T not in the image of α, and ω is in
B(M)(T ). Another way to write ε using only coinvariants is the following

εS(α, a | e, s−1(β, ae | f, sx)) =
{

0 if codim(β) > 0
α∗β∗(x) if codim(β) = 0

where β : T ↣ R and f is an enumeration of the inner edges of R not in T .
For the unit,

ηS(y)α,a|e = s(idT , ae | −, s−1α∗y)

where y is in Y (S), and α, a, e are as above. An equivalent description of
η, with the point of view of coinvariants for both bar and cobar, is

ηS(y) =
∫
a

(idS , a | −, s(idS , a | −, s−1y)).

For a second proof of Proposition 7.1, the reader might wish to check that
these maps η and ε are natural, compatible with differentials and satisfy
the triangle identities.

Proposition 7.2. — The functors B and B∨ are part of an adjunction
between ∞-operads and ∞-cooperads.

Proof. — We need to prove the following four facts. First, the bar con-
struction sends morphisms of ∞-operads to morphisms of ∞-cooperads.
Secondly, the cobar construction sends morphims of ∞-cooperads to mor-
phisms of ∞-operads. Thirdly, ε is a map of ∞-operads. Lastly, η is a map
of ∞-cooperads.

The first two facts follow directly from the definition of the (co)operad
structure in the (co)bar contruction. Let us now prove that ε is a map of
∞-operads. To make the computation more readable, an element of the
form (α, a|e, x) will be denoted by (a|e, x) and we let the reader write the
signs using the previously given formulas. In the following computation,
we consider a grafting S ◦u R mapped into a tree T = TS ◦ TR, a and b

denote respectively enumerations of the inner edges of S and R, and e and
f denote respectively enumerations of the inner edges of TS \S and TR \R,
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and finally x is in M(T ).

∆B∨(uab | ef, s−1(uabef | −, sx))

=± tw(a | e, b | f,∆B(s−1(uabef | −, sx)))

=± tw(a | e, b | f, (s−1 ⊗ s−1)tw(ae | −, bf | −, θ̃(sx)))

=± tw(a | e, b | f, (s−1 ⊗ s−1)tw(ae | −, bf | −, sx1 ⊗ sx2))

= + (a | e, s−1(ae | −, sx1))⊗ (b | f, s−1(bf | −, sx2)).

This is mapped by ε ⊗ ε to e∗(x1) ⊗ f∗(x2) = (ef)∗θ(x) (where e and
f denote here the maps S ↣ TS and R ↣ TR, and ef the associated
map S ◦ R → T ) which is nothing but θε(uab | ef, s−1(uabef | −, sx)) by
naturality of θ. This concludes the proof for ε. The proof that η is a map
of ∞-cooperads can be written in a very similar way. □

8. Duality theorem

In the previous sections, we discussed constructions of B(M) : A → Ch
from M : Aop → Ch, and of B∨(Y ) : Aop → Ch from Y : A → Ch. These
constructions map linear∞-operads to linear∞-cooperads, and vice versa.
The purpose of this section is to prove the following theorem.

Theorem 8.1. — Given two functors M : Aop → Ch and Y : A→ Ch,
the unit and counit η : Y → BB∨(Y ) and ε : B∨B(M) → M are quasi-
isomorphisms.

Before embarking on the proof of the theorem, let us recall some defi-
nitions and simplify some notation. Let us fix an object R ∈ A and work
with the representations by coinvariants for both bar and cobar. Elements
in BB∨(Y )(R) are represented in the form

(a | e, s(b | d, s−1y))

where R α→ S
β→ T , a enumerates the inner edges of R, e those of S not in

the image of α, b those of S, and d those of T not in the image of β, while
finally y ∈ Y (T ). The total degree of such an element is |y| − d. Note that
any equivalence class can be represented in the form where b = ae, as we
will assume from now on. Now, for the sake of this proof, let us fix a and
simplify notation by deleting a and the (de)suspensions from the notation,
so write

(e, d, y) for (a | e, s(ae | d, s−1y)).
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In this notation, the unit ηR can be written as

ηR(y) = (−,−, y) = (a | −, s(a | −, s−1y)).

Proof. — Up to a degreeshift, BB∨(Y )(R) is a double complex Cp,q with
elements

(e, d, y) = ((e0, . . . , ep−1), (d0, . . . , dq−1), y)

and with exterior differential ∂ext of bidegree (−1, 1) given on representing
elements by

∂ext(e, d, y) = (−1)a+p−1
p−1∑
i=0

((e0, . . . , êi, . . . ep−1), (ei, d0, . . . , dq−1), y)

and an internal one ∂int of bidegree (0, 1) (where we ignore the degree of y).
We can picture this complex as

C0,0

∂int

��
C0,1

∂int

��

C1,0

∂int

��

∂ext

oo

C0,2

∂int

��

C1,1

∂int

��

∂ext

oo C2,0

∂int

��

∂ext

oo

. . . . . . . . .

Notice that the rows of the complex split as a sum ranging over isomor-
phism classes of compositions βα : R ↣ T . Let us fix such a summand
in a row, and show its acyclicity. We choose a total ordering on the inner
edges of T \ R and call m the minimal element for this ordering. We can
also suppose that both the ei’s and di’s are respecting this order. There is a
contracting homotopy h : Cp,q → Cp+1,q−1 (for p ⩾ 0 and q > 0) defined by

h((e0, . . . , ep−1), (d0, . . . , dq−1), y) = ((e0, . . . , ep−1, d0), (d1, . . . , dq−1), y)

if m is d0, and 0 otherwise. This map satisfies ∂exth = h∂ext + (−1)a+p Id
for p > 0 and ∂exth = (−1)a Id for p = 0. This means that the positive
rows in the double complex are completely acyclic, and hence the inclusion
of C0,0 into the corresponding total complex is a quasi-isomorphism. But
C0,0 is exactly the image of ηR. This proves that η : Y → B(B∨(Y )) is a
quasi-isomorphism.
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The counit ε : B∨(B(M))→M can be written in coinvariant notation as

εR(b | d, s−1(bd | f, sx)) =
{

0 if codim(f) > 0
d∗f∗(x) if codim(f) = 0

where R → S → T, b, d, f enumerate inner edges of R, S \ R, T \ S, and
x ∈ M(T ), and d, f also denote the morphisms R → S and S → T . For
fixed R and b, this map εR has a non-natural section σR defined by

σR(x) = (b | −, s−1(b | −, sx))

to which we can apply exactly the same argument as for η. This shows that
for a fixed R, σR and thus εR are quasi-isomorphisms. □

Appendix. Invariants and coinvariants

The purpose of this appendix is to explain the notation related to the
isomorphism between invariants and coinvariants used for the alternative
descriptions of the bar and cobar constructions.

Let G be a groupoid acting on a family A = {Ax;x ∈ Ob(G)} in Ch.
There is a canonical map(⊕

x∈G
Ax

)
coinv

ρ−→

(∏
x∈G

ax

)inv

Writing elements of the group of coinvariants as [x, a] where x is an object of
G and a is in Ax, the map ρ is defined for an object y of G by ρ([x, a])y = 0
if there is no arrow from x to y and by g · a for g a morphism from x to y.

Call a groupoid simple if there is at most one morphism between any
two objects (ie. G is an “equivalence relation”). Since the groups of invari-
ants and of coinvariants are both invariant under categorical equivalence
of groupoids, the following proposition is obvious. In fact, it is enough to
ask that G has finitely many connected components.

Proposition. — For a finite simple groupoid G, the map ρ is an iso-
morphism.

This applies to the groupoids H used in the definitions of the bar and
cobar constructions.

As said, we need to be more explicit about the inverse of ρ, denoted∫
x∈G

(−) :
(∏
x∈G

ax

)inv

−→

(⊕
x∈G

Ax

)
coinv
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and we write ∫
x∈G

ω =
∑
C

(
1
|C|

∑
x∈C

[x, ω(x)]
)

(and sometimes simply write ω(x) for [x, ω(x)] in this expression). Here
C ranges over the connected components of G, and |C| is the number of
objects in C. It looks as if we use characteristic zero in this formula, but it
is not really the case. The expression 1

|C|
∑
x∈C ω(x) exists as an element

of
(⊕

x∈GAx
)

coinv, and is represented by (x, ω(x)) for any choice of x ∈ C.
This expression allows us to calculate without making a choice. For ex-

ample, if we have a map f : (
⊕

x∈GAx)coinv → B and ω ∈ (
∏
x∈GAx)inv,

the formula
∫
G
f =

∑
C

1
|C|
∑
x∈C fω(x) now literally makes sense because

fω(x) is constant on connected components, and one checks directly that
f =

∫
G
fρ.
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