Homology of infinity-operads
[Homologie des infini-opérades]
Annales de l'Institut Fourier, Online first, 37 p.

Dans une première partie, nous introduisons une théorie de l’homologie pour les infini-opérades et les espaces dendroïdaux, qui étend l’homologie usuelle des opérades différentielles graduées définie au moyen de la construction bar, et nous prouvons certaines de ses propriétés de base. Dans une seconde partie, nous définissons des constructions bar et cobar générales. Ces constructions envoient les infini-opérades sur des infini-coopérades et vice versa, et définissent une dualité bar-cobar (ou «  de Koszul  »). De façon assez surprenante, cette dualité est encore vraie pour des préfaisceaux et copréfaisceaux quelconques sur la catégorie des arbres définissant les infini-opérades. Nous insistons sur le caractère élémentaire et explicite de nos méthodes.

In a first part of this paper, we introduce a homology theory for infinity-operads and for dendroidal spaces which extends the usual homology of differential graded operads defined in terms of the bar construction, and we prove some of its basic properties. In a second part, we define general bar and cobar constructions. These constructions send infinity-operads to infinity-cooperads and vice versa, and define a bar-cobar (or “Koszul”) duality. Somewhat surprisingly, this duality is shown to hold much more generally between arbitrary presheaves and copresheaves on the category of trees defining infinity-operads. We emphasize that our methods are completely elementary and explicit.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3653
Classification : 18N70, 55N35, 18M70
Keywords: Koszul duality, infinity-operads, dendroidal sets.
Mot clés : Dualité de Koszul, infini-opérades, ensembles dendroidaux.

Hoffbeck, Eric 1 ; Moerdijk, Ieke 2

1 Université Sorbonne Paris Nord, LAGA, CNRS, UMR 7539, F-93430, Villetaneuse (France)
2 Department of Mathematics, Utrecht University, PO BOX 80.010, 3508 TA Utrecht (The Netherlands)
@unpublished{AIF_0__0_0_A116_0,
     author = {Hoffbeck, Eric and Moerdijk, Ieke},
     title = {Homology of infinity-operads},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3653},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Hoffbeck, Eric
AU  - Moerdijk, Ieke
TI  - Homology of infinity-operads
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3653
LA  - en
ID  - AIF_0__0_0_A116_0
ER  - 
%0 Unpublished Work
%A Hoffbeck, Eric
%A Moerdijk, Ieke
%T Homology of infinity-operads
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3653
%G en
%F AIF_0__0_0_A116_0
Hoffbeck, Eric; Moerdijk, Ieke. Homology of infinity-operads. Annales de l'Institut Fourier, Online first, 37 p.

[1] Bašić, Matija; Nikolaus, Thomas Dendroidal sets as models for connective spectra, J. K-Theory, Volume 14 (2014) no. 3, pp. 387-421 | DOI | MR | Zbl

[2] Bašić, Matija; Nikolaus, Thomas Homology of dendroidal sets, Homology Homotopy Appl., Volume 19 (2017) no. 1, pp. 111-134 | DOI | Zbl

[3] Ching, Michael Bar constructions for topological operads and the Goodwillie derivatives of the identity, Geom. Topol., Volume 9 (2005), pp. 833-933 | DOI | MR | Zbl

[4] Ching, Michael Bar-cobar duality for operads in stable homotopy theory, J. Topol., Volume 5 (2012) no. 1, pp. 39-80 | DOI | MR | Zbl

[5] Cisinski, Denis-Charles; Moerdijk, Ieke Dendroidal sets and simplicial operads, J. Topol., Volume 6 (2013) no. 3, pp. 705-756 | DOI | MR | Zbl

[6] Fresse, Benoit Koszul duality of operads and homology of partition posets, Homotopy theory: relations with algebraic geometry, group cohomology, and algebraic K-theory (Contemporary Mathematics), Volume 346, American Mathematical Society, 2004, pp. 115-215 | DOI | MR | Zbl

[7] Fresse, Benoit; Guerra, Lorenzo On a notion of homotopy Segal E -Hopf cooperad (2020) (https://arxiv.org/abs/2011.11333)

[8] Getzler, Ezra; Jones, J. D. S. Operads, homotopy algebra and iterated integrals for double loop spaces (1994) (https://arxiv.org/abs/hep-th/9403055)

[9] Ginzburg, Victor; Kapranov, Mikhail Koszul duality for operads, Duke Math. J., Volume 76 (1994) no. 1, pp. 203-272 | DOI | MR | Zbl

[10] Heuts, Gijs; Moerdijk, Ieke Simplicial and dendroidal homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 3, Springer, 2022 | DOI

[11] Kontsevich, Maxim; Soibelman, Yan Deformations of algebras over operads and the Deligne conjecture, Conférence Moshé Flato 1999, Vol. I (Dijon) (Mathematical Physics Studies), Volume 21, Kluwer Academic Publishers, 2000, pp. 255-307 | MR | Zbl

[12] Loday, Jean-Louis; Vallette, Bruno Algebraic operads, Grundlehren der Mathematischen Wissenschaften, 346, Springer, 2012, xxiv+634 pages | DOI | MR | Zbl

[13] Moerdijk, Ieke; Weiss, Ittay Dendroidal sets, Algebr. Geom. Topol., Volume 7 (2007), pp. 1441-1470 | DOI | MR | Zbl

[14] Robinson, Alan; Whitehouse, Sarah The tree representation of Σ n+1 , J. Pure Appl. Algebra, Volume 111 (1996) no. 1-3, pp. 245-253 | DOI | MR | Zbl

[15] Vallette, Bruno Homology of generalized partition posets, J. Pure Appl. Algebra, Volume 208 (2007) no. 2, pp. 699-725 | DOI | MR | Zbl

Cité par Sources :