A characterization of non-collapsed RCD(K,N) spaces via Einstein tensors
[Une caractérisation des espaces RCD(K,N) non-collapsed via les tenseurs d’Einstein]
Annales de l'Institut Fourier, Online first, 46 p.

Nous étudions le deuxième terme principal dans le développement des métriques c(n)t (n+2)/2 g t induites par le plongement via le noyau de la chaleur dans L 2 sur un espace RCD(K,N) compact. Nous montrons que la propriété de ce terme d’avoir une divergence nulle est vérifiée au sens faible et asymptotique si, et seulement si, l’espace est non-collapsed, quitte à multiplier la mesure de référence par un scalaire. Cela semble nouveau même pour les variétés riemanniennes pondérées, c’est-à-dire munies d’une mesure de référence. De plus, un exemple nous indique que le résultat ne peut pas être généralisé au cas non compact. En ce sens, notre résultat est optimal.

We investigate the second principal term in the expansion of the metrics c(n)t (n+2)/2 g t induced by the heat kernel embedding into L 2 on a compact RCD(K,N) space. We prove that the divergence free property of this term holds in the weak, asymptotic sense if and only if the space is non-collapsed up to multiplying the reference measure by a constant. This seems new even for weighted Riemannian manifolds. Moreover an example tells us that the result cannot be generalized to the noncompact case. In this sense, our result is sharp.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3652
Classification : 53C21, 53C23
Keywords: Einstein tensor, Heat kernel, Spectrum, Ricci curvature.
Mot clés : Tenseur d’Einstein, noyau de la chaleur, spectre, courbure de Ricci.

Honda, Shouhei 1 ; Zhu, Xingyu 2

1 Tohoku University, Sendai (Japan)
2 Institut für Agewandte Mathematik, Universität Bonn, Bonn (Germany)
@unpublished{AIF_0__0_0_A113_0,
     author = {Honda, Shouhei and Zhu, Xingyu},
     title = {A characterization of non-collapsed $\mathrm{RCD}(K,N)$ spaces via {Einstein} tensors},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3652},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Honda, Shouhei
AU  - Zhu, Xingyu
TI  - A characterization of non-collapsed $\mathrm{RCD}(K,N)$ spaces via Einstein tensors
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3652
LA  - en
ID  - AIF_0__0_0_A113_0
ER  - 
%0 Unpublished Work
%A Honda, Shouhei
%A Zhu, Xingyu
%T A characterization of non-collapsed $\mathrm{RCD}(K,N)$ spaces via Einstein tensors
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3652
%G en
%F AIF_0__0_0_A113_0
Honda, Shouhei; Zhu, Xingyu. A characterization of non-collapsed $\mathrm{RCD}(K,N)$ spaces via Einstein tensors. Annales de l'Institut Fourier, Online first, 46 p.

[1] Ambrosio, Luigi; Gigli, Nicola; Savaré, Giuseppe Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR | Zbl

[2] Ambrosio, Luigi; Honda, Shouhei New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, Measure theory in non-smooth spaces (Partial Differential Equations and Measure Theory), De Gruyter Open, 2017, pp. 1-51 | DOI | MR | Zbl

[3] Ambrosio, Luigi; Honda, Shouhei Local spectral convergence in RCD * (K,N) spaces, Nonlinear Anal., Theory Methods Appl., Volume 177 (2018) no. part A, pp. 1-23 | DOI | MR | Zbl

[4] Ambrosio, Luigi; Honda, Shouhei; Portegies, Jacobus W.; Tewodrose, David Embedding of RCD * (K,N) spaces in L 2 via eigenfunctions, J. Funct. Anal., Volume 280 (2021) no. 10, 108968, 72 pages | DOI | MR | Zbl

[5] Ambrosio, Luigi; Honda, Shouhei; Tewodrose, David Short-time behavior of the heat kernel and Weyl’s law on RCD * (K,N) spaces, Ann. Global Anal. Geom., Volume 53 (2018) no. 1, pp. 97-119 | DOI | MR | Zbl

[6] Ambrosio, Luigi; Mondino, Andrea; Savaré, Giuseppe Nonlinear diffusion equations and curvature conditions in metric measure spaces, Mem. Am. Math. Soc., Volume 262 (2019) no. 1270, p. v+121 | DOI | MR | Zbl

[7] Bérard, Pierre; Besson, Gérard; Gallot, Sylvestre Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 373-398 | DOI | MR | Zbl

[8] Braun, Mathias Heat flow on 1-forms under lower Ricci bounds. Functional inequalities, spectral theory, and heat kernel, J. Funct. Anal., Volume 283 (2022) no. 7, 109599, 65 pages | DOI | MR | Zbl

[9] Brena, Camillo; Gigli, Nicola; Honda, Shouhei; Zhu, Xingyu Weakly non-collapsed RCD spaces are strongly non-collapsed, J. Reine Angew. Math., Volume 794 (2023), pp. 215-252 | DOI | MR | Zbl

[10] Bruè, Elia; Pasqualetto, Enrico; Semola, Daniele Rectifiability of RCD(K,N) spaces via δ-splitting maps, Ann. Fenn. Math., Volume 46 (2021) no. 1, pp. 465-482 | DOI | MR | Zbl

[11] Bruè, Elia; Semola, Daniele Constancy of the dimension for RCD(K,N) spaces via regularity of Lagrangian flows, Commun. Pure Appl. Math., Volume 73 (2020) no. 6, pp. 1141-1204 | DOI | MR | Zbl

[12] Chavel, Isaac Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press Inc., 1984, xiv+362 pages | MR | Zbl

[13] Cheeger, Jeff Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | DOI | MR | Zbl

[14] De Philippis, Guido; Gigli, Nicola Non-collapsed spaces with Ricci curvature bounded from below, J. Éc. Polytech., Math., Volume 5 (2018), pp. 613-650 | DOI | Numdam | MR | Zbl

[15] Erbar, Matthias; Kuwada, Kazumasa; Sturm, Karl-Theodor On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., Volume 201 (2015) no. 3, pp. 993-1071 | DOI | MR | Zbl

[16] Garofalo, Nicola; Mondino, Andrea Li–Yau and Harnack type inequalities in RCD * (K,N) metric measure spaces, Nonlinear Anal., Theory Methods Appl., Volume 95 (2014), pp. 721-734 | DOI | MR | Zbl

[17] Gigli, Nicola The splitting theorem in non-smooth context (2013) (https://arxiv.org/abs/1302.5555)

[18] Gigli, Nicola On the differential structure of metric measure spaces and applications, Memoirs of the American Mathematical Society, 236, American Mathematical Society, 2015 no. 1113, vi+91 pages | DOI | MR | Zbl

[19] Gigli, Nicola Nonsmooth differential geometry – an approach tailored for spaces with Ricci curvature bounded from below, Memoirs of the American Mathematical Society, 1196, American Mathematical Society, 2018 | DOI | Zbl

[20] Gilbarg, David; Trudinger, Neil S. Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages | DOI | MR | Zbl

[21] Grigorʼyan, Alexander Heat kernels on weighted manifolds and applications, The ubiquitous heat kernel (Contemporary Mathematics), Volume 398, American Mathematical Society, 2006, pp. 93-191 | DOI | MR | Zbl

[22] Grigorʼyan, Alexander Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, 2009, xviii+482 pages | DOI | MR | Zbl

[23] Hajł asz, Piotr; Koskela, Pekka Sobolev met Poincaré, Memoirs of the American Mathematical Society, 145, American Mathematical Society, 2000 no. 688, x+101 pages | DOI | MR | Zbl

[24] Han, Bang-Xian Ricci tensor on RCD * (K,N) spaces, J. Geom. Anal., Volume 28 (2018) no. 2, pp. 1295-1314 | DOI | MR | Zbl

[25] Heinonen, Juha; Koskela, Pekka; Shanmugalingam, Nageswari; Tyson, Jeremy T. Sobolev spaces on metric measure spaces. An approach based on upper gradients, New Mathematical Monographs, 27, Cambridge University Press, 2015, xii+434 pages | DOI | MR | Zbl

[26] Honda, Shouhei Elliptic PDEs on compact Ricci limit spaces and applications (2015) (https://arxiv.org/abs/1410.3296)

[27] Honda, Shouhei Spectral convergence under bounded Ricci curvature, J. Funct. Anal., Volume 273 (2017) no. 5, pp. 1577-1662 | DOI | MR | Zbl

[28] Honda, Shouhei Bakry–Émery conditions on almost smooth metric measure spaces, Anal. Geom. Metr. Spaces, Volume 6 (2018) no. 1, pp. 129-145 | DOI | MR | Zbl

[29] Honda, Shouhei New differential operator and noncollapsed RCD spaces, Geom. Topol., Volume 24 (2020) no. 4, pp. 2127-2148 | DOI | MR | Zbl

[30] Honda, Shouhei Isometric immersions of RCD spaces, Comment. Math. Helv., Volume 96 (2021) no. 3, pp. 515-559 | DOI | MR | Zbl

[31] Jiang, Renjin The Li–Yau inequality and heat kernels on metric measure spaces, J. Math. Pures Appl., Volume 104 (2015) no. 1, pp. 29-57 | DOI | MR | Zbl

[32] Jiang, Renjin; Li, Huaiqian; Zhang, Huichun Heat kernel bounds on metric measure spaces and some applications, Potential Anal., Volume 44 (2016) no. 3, pp. 601-627 | DOI | MR | Zbl

[33] Ketterer, Christian Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl., Volume 103 (2015) no. 5, pp. 1228-1275 | DOI | MR | Zbl

[34] Lott, John; Villani, Cédric Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl

[35] McKean, Henry P. Jr; Singer, Isadore M. Curvature and the eigenvalues of the Laplacian, J. Differ. Geom., Volume 1 (1967) no. 1, pp. 43-69 | DOI | MR | Zbl

[36] Mondino, Andrea; Naber, Aaron Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc., Volume 21 (2019) no. 6, pp. 1809-1854 | DOI | MR | Zbl

[37] Rajala, Tapio Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differ. Equ., Volume 44 (2012) no. 3-4, pp. 477-494 | DOI | MR | Zbl

[38] Rosenberg, Steven The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds, London Mathematical Society Student Texts, 31, Cambridge University Press, 1997, x+172 pages | DOI | MR | Zbl

[39] Savaré, Giuseppe Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in RCD(K,) metric measure spaces, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 4, pp. 1641-1661 | DOI | MR | Zbl

[40] Souplet, Philippe; Zhang, Qi S. Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds, Bull. Lond. Math. Soc., Volume 38 (2006) no. 6, pp. 1045-1053 | DOI | MR | Zbl

[41] Sturm, Karl-Theodor Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 | MR | Zbl

[42] Sturm, Karl-Theodor Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl., Volume 75 (1996) no. 3, pp. 273-297 | MR | Zbl

[43] Sturm, Karl-Theodor On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl

[44] Sturm, Karl-Theodor On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl

[45] Tewodrose, David A survey on spectral embeddings and their application in data analysis, Sémin. Théor. Spectr. Géom., Volume 35 (2017-2019), pp. 197-244 | DOI | Zbl

Cité par Sources :