[Une caractérisation des espaces non-collapsed via les tenseurs d’Einstein]
Nous étudions le deuxième terme principal dans le développement des métriques induites par le plongement via le noyau de la chaleur dans sur un espace compact. Nous montrons que la propriété de ce terme d’avoir une divergence nulle est vérifiée au sens faible et asymptotique si, et seulement si, l’espace est non-collapsed, quitte à multiplier la mesure de référence par un scalaire. Cela semble nouveau même pour les variétés riemanniennes pondérées, c’est-à-dire munies d’une mesure de référence. De plus, un exemple nous indique que le résultat ne peut pas être généralisé au cas non compact. En ce sens, notre résultat est optimal.
We investigate the second principal term in the expansion of the metrics induced by the heat kernel embedding into on a compact space. We prove that the divergence free property of this term holds in the weak, asymptotic sense if and only if the space is non-collapsed up to multiplying the reference measure by a constant. This seems new even for weighted Riemannian manifolds. Moreover an example tells us that the result cannot be generalized to the noncompact case. In this sense, our result is sharp.
Révisé le :
Accepté le :
Première publication :
Keywords: Einstein tensor, Heat kernel, Spectrum, Ricci curvature.
Mot clés : Tenseur d’Einstein, noyau de la chaleur, spectre, courbure de Ricci.
Honda, Shouhei 1 ; Zhu, Xingyu 2
@unpublished{AIF_0__0_0_A113_0, author = {Honda, Shouhei and Zhu, Xingyu}, title = {A characterization of non-collapsed $\mathrm{RCD}(K,N)$ spaces via {Einstein} tensors}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3652}, language = {en}, note = {Online first}, }
TY - UNPB AU - Honda, Shouhei AU - Zhu, Xingyu TI - A characterization of non-collapsed $\mathrm{RCD}(K,N)$ spaces via Einstein tensors JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3652 LA - en ID - AIF_0__0_0_A113_0 ER -
Honda, Shouhei; Zhu, Xingyu. A characterization of non-collapsed $\mathrm{RCD}(K,N)$ spaces via Einstein tensors. Annales de l'Institut Fourier, Online first, 46 p.
[1] Metric measure spaces with Riemannian Ricci curvature bounded from below, Duke Math. J., Volume 163 (2014) no. 7, pp. 1405-1490 | DOI | MR | Zbl
[2] New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, Measure theory in non-smooth spaces (Partial Differential Equations and Measure Theory), De Gruyter Open, 2017, pp. 1-51 | DOI | MR | Zbl
[3] Local spectral convergence in spaces, Nonlinear Anal., Theory Methods Appl., Volume 177 (2018) no. part A, pp. 1-23 | DOI | MR | Zbl
[4] Embedding of spaces in via eigenfunctions, J. Funct. Anal., Volume 280 (2021) no. 10, 108968, 72 pages | DOI | MR | Zbl
[5] Short-time behavior of the heat kernel and Weyl’s law on spaces, Ann. Global Anal. Geom., Volume 53 (2018) no. 1, pp. 97-119 | DOI | MR | Zbl
[6] Nonlinear diffusion equations and curvature conditions in metric measure spaces, Mem. Am. Math. Soc., Volume 262 (2019) no. 1270, p. v+121 | DOI | MR | Zbl
[7] Embedding Riemannian manifolds by their heat kernel, Geom. Funct. Anal., Volume 4 (1994) no. 4, pp. 373-398 | DOI | MR | Zbl
[8] Heat flow on 1-forms under lower Ricci bounds. Functional inequalities, spectral theory, and heat kernel, J. Funct. Anal., Volume 283 (2022) no. 7, 109599, 65 pages | DOI | MR | Zbl
[9] Weakly non-collapsed RCD spaces are strongly non-collapsed, J. Reine Angew. Math., Volume 794 (2023), pp. 215-252 | DOI | MR | Zbl
[10] Rectifiability of spaces via -splitting maps, Ann. Fenn. Math., Volume 46 (2021) no. 1, pp. 465-482 | DOI | MR | Zbl
[11] Constancy of the dimension for spaces via regularity of Lagrangian flows, Commun. Pure Appl. Math., Volume 73 (2020) no. 6, pp. 1141-1204 | DOI | MR | Zbl
[12] Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, 115, Academic Press Inc., 1984, xiv+362 pages | MR | Zbl
[13] Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., Volume 9 (1999) no. 3, pp. 428-517 | DOI | MR | Zbl
[14] Non-collapsed spaces with Ricci curvature bounded from below, J. Éc. Polytech., Math., Volume 5 (2018), pp. 613-650 | DOI | Numdam | MR | Zbl
[15] On the equivalence of the entropic curvature-dimension condition and Bochner’s inequality on metric measure spaces, Invent. Math., Volume 201 (2015) no. 3, pp. 993-1071 | DOI | MR | Zbl
[16] Li–Yau and Harnack type inequalities in metric measure spaces, Nonlinear Anal., Theory Methods Appl., Volume 95 (2014), pp. 721-734 | DOI | MR | Zbl
[17] The splitting theorem in non-smooth context (2013) (https://arxiv.org/abs/1302.5555)
[18] On the differential structure of metric measure spaces and applications, Memoirs of the American Mathematical Society, 236, American Mathematical Society, 2015 no. 1113, vi+91 pages | DOI | MR | Zbl
[19] Nonsmooth differential geometry – an approach tailored for spaces with Ricci curvature bounded from below, Memoirs of the American Mathematical Society, 1196, American Mathematical Society, 2018 | DOI | Zbl
[20] Elliptic partial differential equations of second order, Classics in Mathematics, Springer, 2001, xiv+517 pages | DOI | MR | Zbl
[21] Heat kernels on weighted manifolds and applications, The ubiquitous heat kernel (Contemporary Mathematics), Volume 398, American Mathematical Society, 2006, pp. 93-191 | DOI | MR | Zbl
[22] Heat kernel and analysis on manifolds, AMS/IP Studies in Advanced Mathematics, 47, American Mathematical Society, 2009, xviii+482 pages | DOI | MR | Zbl
[23] Sobolev met Poincaré, Memoirs of the American Mathematical Society, 145, American Mathematical Society, 2000 no. 688, x+101 pages | DOI | MR | Zbl
[24] Ricci tensor on spaces, J. Geom. Anal., Volume 28 (2018) no. 2, pp. 1295-1314 | DOI | MR | Zbl
[25] Sobolev spaces on metric measure spaces. An approach based on upper gradients, New Mathematical Monographs, 27, Cambridge University Press, 2015, xii+434 pages | DOI | MR | Zbl
[26] Elliptic PDEs on compact Ricci limit spaces and applications (2015) (https://arxiv.org/abs/1410.3296)
[27] Spectral convergence under bounded Ricci curvature, J. Funct. Anal., Volume 273 (2017) no. 5, pp. 1577-1662 | DOI | MR | Zbl
[28] Bakry–Émery conditions on almost smooth metric measure spaces, Anal. Geom. Metr. Spaces, Volume 6 (2018) no. 1, pp. 129-145 | DOI | MR | Zbl
[29] New differential operator and noncollapsed RCD spaces, Geom. Topol., Volume 24 (2020) no. 4, pp. 2127-2148 | DOI | MR | Zbl
[30] Isometric immersions of RCD spaces, Comment. Math. Helv., Volume 96 (2021) no. 3, pp. 515-559 | DOI | MR | Zbl
[31] The Li–Yau inequality and heat kernels on metric measure spaces, J. Math. Pures Appl., Volume 104 (2015) no. 1, pp. 29-57 | DOI | MR | Zbl
[32] Heat kernel bounds on metric measure spaces and some applications, Potential Anal., Volume 44 (2016) no. 3, pp. 601-627 | DOI | MR | Zbl
[33] Cones over metric measure spaces and the maximal diameter theorem, J. Math. Pures Appl., Volume 103 (2015) no. 5, pp. 1228-1275 | DOI | MR | Zbl
[34] Ricci curvature for metric-measure spaces via optimal transport, Ann. Math., Volume 169 (2009) no. 3, pp. 903-991 | DOI | MR | Zbl
[35] Curvature and the eigenvalues of the Laplacian, J. Differ. Geom., Volume 1 (1967) no. 1, pp. 43-69 | DOI | MR | Zbl
[36] Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc., Volume 21 (2019) no. 6, pp. 1809-1854 | DOI | MR | Zbl
[37] Local Poincaré inequalities from stable curvature conditions on metric spaces, Calc. Var. Partial Differ. Equ., Volume 44 (2012) no. 3-4, pp. 477-494 | DOI | MR | Zbl
[38] The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds, London Mathematical Society Student Texts, 31, Cambridge University Press, 1997, x+172 pages | DOI | MR | Zbl
[39] Self-improvement of the Bakry–Émery condition and Wasserstein contraction of the heat flow in metric measure spaces, Discrete Contin. Dyn. Syst., Volume 34 (2014) no. 4, pp. 1641-1661 | DOI | MR | Zbl
[40] Sharp gradient estimate and Yau’s Liouville theorem for the heat equation on noncompact manifolds, Bull. Lond. Math. Soc., Volume 38 (2006) no. 6, pp. 1045-1053 | DOI | MR | Zbl
[41] Analysis on local Dirichlet spaces. II. Upper Gaussian estimates for the fundamental solutions of parabolic equations, Osaka J. Math., Volume 32 (1995) no. 2, pp. 275-312 | MR | Zbl
[42] Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl., Volume 75 (1996) no. 3, pp. 273-297 | MR | Zbl
[43] On the geometry of metric measure spaces. I, Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl
[44] On the geometry of metric measure spaces. II, Acta Math., Volume 196 (2006) no. 1, pp. 133-177 | DOI | MR | Zbl
[45] A survey on spectral embeddings and their application in data analysis, Sémin. Théor. Spectr. Géom., Volume 35 (2017-2019), pp. 197-244 | DOI | Zbl
Cité par Sources :