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A CHARACTERIZATION OF NON-COLLAPSED
RCD(K, N) SPACES VIA EINSTEIN TENSORS

by Shouhei HONDA & Xingyu ZHU (*)

Abstract. — We investigate the second principal term in the expansion of the
metrics c(n)t(n+2)/2gt induced by the heat kernel embedding into L2 on a compact
RCD(K, N) space. We prove that the divergence free property of this term holds
in the weak, asymptotic sense if and only if the space is non-collapsed up to mul-
tiplying the reference measure by a constant. This seems new even for weighted
Riemannian manifolds. Moreover an example tells us that the result cannot be
generalized to the noncompact case. In this sense, our result is sharp.

Résumé. — Nous étudions le deuxième terme principal dans le développement
des métriques c(n)t(n+2)/2gt induites par le plongement via le noyau de la chaleur
dans L2 sur un espace RCD(K, N) compact. Nous montrons que la propriété de ce
terme d’avoir une divergence nulle est vérifiée au sens faible et asymptotique si, et
seulement si, l’espace est non-collapsed, quitte à multiplier la mesure de référence
par un scalaire. Cela semble nouveau même pour les variétés riemanniennes pon-
dérées, c’est-à-dire munies d’une mesure de référence. De plus, un exemple nous
indique que le résultat ne peut pas être généralisé au cas non compact. En ce sens,
notre résultat est optimal.

1. Introduction

For a closed Riemannian manifold (Mn, g), the Einstein tensor Gg is
defined by

(1.1) Gg := Ricg − 1
2Scalgg,
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724 Shouhei HONDA & Xingyu ZHU

where Ricg and Scalg denote the Ricci and the scalar curvature, respec-
tively. It is well-known that Gg is divergence free:

(1.2) ∇∗Gg = 0

which is a direct consequence of the Bianchi identity.
The main purpose of the paper is to establish (1.2) for so-called non-

collapsed RCD(K,N) spaces. More precisely, for a compact RCD(K,N)
space (X, d,m), (1.2) holds in some sense as explained below if and only if
(X, d,m) is non-collapsed up to multiplication of a positive constant to the
measure m. It is worth pointing out that our argument allows us to provide
a new proof of (1.2) even for a closed Riemannian manifold (Mn, g) without
using the Bianchi identity.

In order to explain how to justify (1.2), let us recall Bérard–Besson–
Gallot’s work in [7]. They proved that for a closed Riemannian manifold
(Mn, g) and fixed t ∈ (0,∞), the map Φt from Mn to L2(Mn, volg) defined
by

(1.3) x 7−→ (y 7−→ p(x, y, t))

is a smooth embedding with the following asymptotic expansion:

(1.4) c(n)t(n+2)/2Φ∗
t gL2 = g − 2t

3 G
g +O(t2)

as t → 0+, where p(x, y, t) denotes the heat kernel of (Mn, g) and c(n) is a
positive constant depending only on n defined by

(1.5) c(n) := (4π)n

(∫
Rn

|∂x1(e−|x|2/4)|2 dx
)−1

= 4(8π)n/2.

Let us denote gt = Φ∗
t gL2 and let us remark that

(1.6) gt =
∫

Mn

dxp⊗ dxp d volg(y).

By (1.4) we see that as t → 0+

(1.7) c(n)t(n+2)/2gt − g

t
−→ −2

3G
g.

Since the convergence of (1.7) is uniform on Mn by the proof (see for
instance Theorem 3.4), (1.2) can be reformulated by

(1.8)
∫

Mn

〈
c(n)t(n+2)/2gt − g

t
,∇ω

〉
d volg −→ 0

as t → 0+ for any smooth 1-form ω on Mn, where ⟨ · , · ⟩ denotes the canon-
ical inner product on T ∗

xM
n ⊗ T ∗

xM
n for each x ∈ Mn. In this paper the
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RCD SPACES AND EINSTEIN TENSORS 725

sequence on the (LHS) of (1.7) is called weakly asymptotically divergence
free, if it satisfies (1.8) for any smooth 1-form ω on Mn, see Definition 4.18.

Next let us introduce a recent work of Ambrosio–Portegies–Tewodrose
and the first author [4], which partially generalizes Bérard–Besson–Gallot’s
result (1.4) to RCD(K,N) spaces which give a special class of metric mea-
sure space having lower bounds on Ricci curvature in a synthetic sense
introduced in [1] by Ambrosio–Gigli–Savaré when N = ∞, in [17, 18] with
introducing the infinitesimal Hilbertian condition by Gigli, in [15] by Erbar–
Kuwada–Sturm, in [6] by Ambrosio–Mondino–Savaré, when N < ∞.

Roughly speaking a metric measure space is said to be an RCD(K,N)
space if the H1,2-Sobolev space is a Hilbert space and the following holds;

• the Ricci curvature is bounded below by K, and the dimension is
bounded above by N , in a synthetic sense via optimal transporta-
tion theory by Lott–Sturm–Villani [34, 43, 44].

Typical examples include measured Gromov–Hausdorff limit spaces of
Riemannian manifolds with uniform lower bounds on Ricci curvature, so-
called Ricci limit spaces, and weighted Riemannian manifolds (Mn,dg,volgf),
where f ∈ C∞(Mn) and volgf = e−f volg.

Thanks to recent quick developments on the study of RCD(K,N) spaces,
many structure results on such spaces are known. For example, it is proved
in [11] by Bruè-Semola that for any RCD(K,N) space, where N < ∞,
there exists a unique integer n, so-called the essential dimension, such that
for almost every point of the space, the tangent cone at the point is unique
and is isometric to the n-dimensional Euclidean space.

On the other hand, a restricted class of RCD(K,N) spaces, so-called
“non-collapsed” RCD(K,N) spaces, is introduced in [14] by DePhilippis–
Gigli as a synthetic counterpart of non-collapsed Ricci limit spaces. The
definition is that the reference measure coincides with the N -dimensional
Hausdorff measure. Then it is known that non-collapsed RCD(K,N) spaces
have finer properties than that of general RCD(K,N) spaces.

For a compact RCD(K,N) space (X, d,m) whose essential dimension is
n ∈ [1, N ] ∩ N, it holds that for any p ∈ [1,∞), as t → 0+

(1.9) c(n)
ωn

tm(Bt1/2(x))gt −→ g, in Lp,

where g = g(X,d,m) denotes the canonical Riemannian metric of (X, d,m),
see Subsection 2.3 for the definition of g. Moreover if in addition

(1.10) inf
r∈(0,1),x∈X

m(Br(x))
rn

> 0

TOME 75 (2025), FASCICULE 2



726 Shouhei HONDA & Xingyu ZHU

holds, then we have a similar convergence result:

(1.11) c(n)t(n+2)/2gt −→ dHn

dm g in Lp.

It is worth pointing out that the finiteness of p is sharp, that is, we can
not replace Lp by L∞ in general. For example any closed disc in Rn with
the Lebesgue measure Ln gives such an example, see [4, Remark 5.11]. The
convergence (1.11) shows us that the first principal term of the asymptotic
behavior of c(n)t(n+2)/2gt as t → 0+ is dHn

dm g in the Lp-sense. The main
purpose is to discuss the second principal term. That is, the family of
tensors indexed by t:

(1.12)
c(n)t(n+2)/2gt − dHn

dm g

t

called the approximate Einstein tensor of (X, d,m) in this paper. Let us
ask when (1.12) is weakly asymptotically divergence free, that is,

(1.13) lim
t→0+

∫
X

〈
c(n)t(n+2)/2gt − dHn

dm g

t
,∇ω

〉
dm = 0.

holds for a large enough class of 1-forms ω. See Definition 4.18 for the
precise definition of weakly asymptotically divergence free.

Our main result is stated as follows. Before stating it, recall that D(∆H,1)
and D(δ) denote the domain of the Hodge Laplacian ∆H,1 = δ d + dδ on
1-forms defined in [19] and the domain of the adjoint operator δ = d∗ of
the exterior derivative d on 1-forms, respectively.

Theorem 1.1 (“Weakly asymptotically divergence free” characterizes
the non-collapsed condition). — Let (X, d,m) be a compact RCD(K,N)
space whose essential dimension is n ∈ [1, N ] ∩ N. Then the following two
conditions are equivalent:

(1) (X, d,m) satisfies (1.10) and (1.13) for any ω ∈ D(∆H,1) with
∆H,1ω ∈ D(δ).

(2) (X, d,m) is a RCD(K,n) space with

(1.14) m = m(X)
Hn(X)Hn.

Since the space {ω ∈ D(∆H,1); ∆H,1ω ∈ D(δ)} is dense in the space
of L2-1-forms, (1.13) can be interpreted as that the approximate Einstein
tensor (1.12) is actually weakly asymptotically divergence free. See also ap-
pendix A (Corollary A.2). Let us remark that (1.14) implies that (X, d,Hn)
is a non-collapsed RCD(K,n) space. It is worth pointing out that the com-
pactness of X in Theorem 1.1 cannot be dropped. See Example 5.3.

ANNALES DE L’INSTITUT FOURIER
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The following is a direct consequence of Theorem 1.1 which is also new
(recall volgf (A) =

∫
A

e−f d volg):

Corollary 1.2. — Let (Mn, dg, volgf ) be a closed weighted Riemannian
manifold. Then there exists a Gg

f ∈ C∞((T ∗)⊗2Mn) called the weighted
Einstein tensor such that the following expansion holds,

(1.15) c(n)t(n+2)2gt = ef g − 2t
3 G

g
f +O(t2) (t −→ 0+).

Moreover, f is constant if and only if Gg
f is divergence free with respect to

volgf , that is,

(1.16)
∫

Mn

⟨Gg
f ,∇ω⟩ d volgf = 0

holds for any ω ∈ C∞(T ∗Mn).

We will also provide a direct proof of this corollary with the explicit
formula for Gg

f , see Proposition 3.7.
It is worth noticing that although the left hand side of (1.13) converges as

t → 0+, the approximate Einstein tensor itself (1.12) may not L2-converge
to a limit tensor in general. This is because lack of L2 bounds, see Section 5
for the explicit construction of a non-collapsed RCD(K, 3) space with K >

1 such that the L2 norm of (1.12) tends to +∞ as t → 0+. On the other
hand, under assuming the uniform L2 bound, we can prove that all limit
tensors are actually divergence free as follows, which is an easy consequence
of Theorem 1.1.

Corollary 1.3. — Let (X, d,Hn) be a compact and non-collapsed
RCD(K,n) space. If

(1.17) sup
0<t<1

∥∥∥∥c(n)t(n+2)/2gt − g

t

∥∥∥∥
L2
< ∞

holds, then any G ∈ L2((T ∗)⊗2(X, d,Hn)) that is a L2-weak limit of some
subsequence of

(1.18) c(n)t(n+2)/2gt − g

t

as t → 0+ satisfies G ∈ D(∇∗) with ∇∗G = 0, where D(∇∗) denotes the
domain of the divergence operator ∇∗.

Applying Corollary 1.3 to a closed Riemannian manifold (Mn, dg, volg)
gives a new proof of (1.2) without using the Bianchi identity.

TOME 75 (2025), FASCICULE 2
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2. Heat kernel embedding

The purpose of this section is to introduce our terminology minimally,
assuming a bit of the knowledge of RCD theory. A triple (X, d,m) is said to
be a metric measure space if (X, d) is a complete separable metric space and
m is a Borel measure with full support. For simplicity, we always assume
that X is not a single point.

2.1. Definitions and the essential dimension

Let us fix a metric measure space (X, d,m). Define the Cheeger energy
Ch : L2(X,m) → [0,∞] by

(2.1) Ch(f)

:= inf
∥fi−f∥L2(X,m)→0

{
lim inf

i→∞

∫
X

lip2fidm : fi ∈ Lipb(X, d)∩L2(X,m)
}
,

where

lip f(x) :=

lim sup
y→x

|f(y)−f(x)|
d(y,x) if x ∈ X is not isolated,

0 otherwise,

denotes the slope of f at x. Then, the Sobolev space H1,2(X, d,m) is defined
as the finiteness domain of Ch. By looking at the optimal sequence in (2.1)
one can identify a canonical object |∇f |, called the minimal relaxed slope,
which is local on Borel sets (i.e. |∇f1| = |∇f2| m-a.e. on {f1 = f2}) and
provides an integral representation to Ch, namely

Ch(f) =
∫

X

|∇f |2 dm ∀f ∈ H1,2(X, d,m).

We are now in a position to introduce the RCD(K,N) spaces. For any
K ∈ R and any N ∈ [1,∞], a metric measure space (X, d,m) is said to be
an RCD(K,N) space if the following four conditions are satisfied.

ANNALES DE L’INSTITUT FOURIER
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(1) (Volume growth bound) There exist x ∈ X and C > 1 such that
m(Br(x)) ⩽ C eCr2 holds for any r > 0.

(2) (Inifinitesimally Hilbertian property) Ch is a quadratic form. In
particular thanks to [1], see also the first part of [19], the function

⟨∇f1,∇f2⟩ := lim
ϵ→0

|∇(f1 + ϵf2)|2 − |∇f1|2

2ϵ
provides a symmetric bilinear form on H1,2(X, d,m)×H1,2(X, d,m)
with values in L1(X,m), and

E(f1, f2) :=
∫

X

⟨∇f1,∇f2⟩ dm, ∀f1, f2 ∈ H1,2(X, d,m)

defines a strongly local Dirichlet form.
(3) (Sobolev-to-Lipschitz property) Any f ∈ H1,2(X, d,m) with |∇f | ⩽

1 for m-a.e. has an 1-Lipschitz representative.
(4) (Bochner inequality) For any f ∈ D(∆) with ∆f ∈ H1,2(X, d,m)

we have

(2.2) 1
2

∫
X

|∇f |2∆φdm ⩾
∫

X

φ

(
(∆f)2

N
+ ⟨∇∆f,∇f⟩ +K|∇f |2

)
dm

for any φ ∈ D(∆) ∩ L∞(X,m) with 0 ⩽ φ ⩽ 1, ∆φ ∈ L∞(X,m),
where

D(∆) :=

f ∈ H1,2(X, d,m) :
there exists h ∈ L2(X,m) such that

E(f, g) = −
∫

X

hg dm, ∀g ∈ H1,2(X, d,m)


and ∆f := h for any f ∈ D(∆).

See [6, Section 12] and [15, Theorem 7 and Section 4]. It is worth pointing
out that if N < ∞, then for any RCD(K,N) space (X, d,m) and any locally
Lipschitz function f on X belonging to H1,2(X, d,m), we have

(2.3) |∇f |(x) = lip f(x), for m-a.e. x ∈ X

because of [13, Theorem 6.1], the Bishop–Gromov inequality [34, Theo-
rem 5.31], [44, Theorem 2.3] and the Poincaré inequality [37, Theorem 1].
For any k ⩾ 1, we denote by Rk the k-dimensional regular set of (X, d,m),
namely the set of points x∈X such that (X, r−1d,m(Br(x))−1m, x) pointed
measured Gromov–Hausdorff converge to (Rk, dRk , ω−1

k Lk, 0k) as r → 0+,
where Br(x) denotes the open ball centered at x with the radius r. It
is proved in [11, Theorem 0.1] that if (X, d,m) is an RCD(K,N) space
with N < ∞, then there exists a unique integer n ∈ [1, N ], denoted by
dimd,m(X), called the essential dimension of (X, d,m), such that

(2.4) m(X \ Rn

)
= 0.

TOME 75 (2025), FASCICULE 2
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2.2. The heat kernel

Throughout this paper the parameters K ∈ R and N ∈ [1,∞) will be
kept fixed. Let us fix a RCD(K,N) space (X, d,m). Then thanks to [41,
Proposition 2.3] and [42, Corollary 3.3], the (Hölder continuous) heat kernel
p : X ×X × (0,∞) → (0,∞) of (X, d,m) is well-defined by satisfying

(2.5) htf =
∫

X

p(x, y, t)f(y) dm(y), ∀f ∈ L2(X,m),

where ht : L2(X,m) → L2(X,m) is the heat flow associated with the
Cheeger energy Ch. The sharp Gaussian estimates on this heat kernel
proved in [32, Theorem 1.2] state that for any ϵ > 0, there exist con-
stants Ci := Ci(ϵ,K,N) > 1 for i = 1, 2, depending only on K, N and ϵ,
such that

(2.6) C−1
1

m(B√
t(x)) exp

(
−d2(x, y)

(4 − ϵ)t − C2t

)
⩽ p(x, y, t)

⩽
C1

m(B√
t(x)) exp

(
−d2(x, y)

(4 + ϵ)t + C2t

)
for all x, y ∈ X and any t > 0, where from now on we state our inequalities
with the Hölder continuous representative. Combining (2.6) with the Li–
Yau inequality [16, Corollary 1.5], [31, Theorem 1.2], we have a gradient
estimate [32, Corollary 1.2]:

(2.7) |∇xp(x, y, t)|⩽
C3√

tm(B√
t(x))

exp
(

−d2(x, y)
(4+ϵ)t +C4t

)
m-a.e. x∈X

for any t > 0, y ∈ X, where Ci := Ci(ϵ,K,N) > 1 for i = 3, 4.

2.3. Embedding

Throughout the subsection, we only refer to [19] for the details of tensor
fields on RCD spaces, including:

• the spaces of all Lp-1-forms, of all Lp-tensor fields of type (0, 2),
denoted by Lp(T ∗(X, d,m)), Lp((T ∗)⊗2(X, d,m)), respectively;

• the pointwise scalar product ⟨S, T ⟩ for two tensor fields of the same
type.

ANNALES DE L’INSTITUT FOURIER
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Note that one of the canonical operators, the so-called exterior derivative
for functions, d : H1,2(X, d,m) → L2(T ∗(X, d,m)) satisfy |df | = |∇f | for
m-a.e. x ∈ X.

Let us fix a compact RCD(K,N) space (X, d,m) with n = dimd,m(X).
Then thanks to the Bishop–Gromov inequality and the Poincaré inequal-
ity, we know that the canonical inclusion H1,2(X, d,m) ↪→ L2(X,m) is a
compact operator by [23, Theorem 8.1]. In particular the heat kernel p of
(X, d,m) has the following expansion:

(2.8) p(x, y, t) =
∑
i⩾0

e−λit φi(x)φi(y) in C(X ×X)

for any t > 0 and

(2.9) p( · , y, t) =
∑
i⩾0

e−λit φi(y)φi in H1,2(X, d,m)

for any y ∈ X and t > 0, where

(2.10) 0 = λ0 < λ1 ⩽ λ2 ⩽ · · · −→ ∞

denote the discrete nonnegative spectrum of −∆ counted with multiplici-
ties, and φ0, φ1, . . . are the corresponding (Hölder continuous) eigenfunc-
tions with ∥φi∥L2 = 1. Combining (2.8) and (2.9) with (2.7), we know that
φi is Lipschitz, in fact, it holds that

(2.11) ∥φi∥L∞ ⩽ C5λ
N/4
i , ∥∇φi∥L∞ ⩽ C5λ

(N+2)/4
i , λi ⩾ C−1

5 i2/N ,

where C5 := C5(diam(X, d),K,N) > 0.
It is proved in [4, proof of Proposition 4.1] by using (2.8) that for any

t > 0 the map Φt : X → L2(X,m) defined by

(2.12) Φt(x)(y) := p(x, y, t)

is a topological embedding. Then since (2.7) proves that Φt is Lipschitz,
we can define the pull-back metric Φ∗

t gL2 , denoted by gt, by

(2.13) gt :=
∑

i

e−2λit dφi ⊗ dφi, in L∞ ((T ∗)⊗2(X, d,m)
)
,

Note that in [4], the equality of (2.13) is stated in L2((T ∗)⊗2(X, d,m)),
however, thanks to (2.7), this holds in L∞((T ∗)⊗2(X, d,m)), and that there
exists a unique g = g(X,d,m) ∈ L∞((T ∗)⊗2(X, d,m)), called the Riemannian
metric of (X, d,m), such that ⟨g, df1 ⊗ df2⟩(x) = ⟨∇f1,∇f2⟩(x) holds for
m-a.e. x ∈ X.

A convergence result proved in [4, Theorem 5.10] states that

(2.14) c(n)t
ωn

m(B√
t(x))gt −→ g, in Lp

(
(T ∗)⊗2(X, d,m)

)
,

TOME 75 (2025), FASCICULE 2
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for all p ∈ [1,∞). In particular if m ⩽ CHn holds for some C > 0, since

(2.15) m(Br(x))
ωnrn

−→ dm
dHn

(x), for m-a.e. x ∈ X

as r → 0+ which is proved in [5, Theorem 4.1] as a more general result,
then combining the dominated convergence theorem with (2.14) yields

(2.16) c(n)t(n+2)/2gt −→ dHn

dm g, in Lp
(
(T ∗)⊗2(X, d,m)

)
.

See [4, Theorem 5.15] for a more general statement.

3. Second principal term in weighted Riemannian case

Let us start this section by discussing relationships between the no-
tions that appeared in the previous section and smooth objects. We fix
a smooth weighted complete Riemannian manifold (Mn, g, volgf ), where
f ∈ C∞(Mn), and for any Borel subset A of Mn,

(3.1) volgf (A) :=
∫

A

e−f d volg.

Recall that (Mn, dg, volgf ) is an RCD(K,N) space if and only if n ⩾ N ,
and

(3.2) Ricg + Hessg
f − df ⊗ df

N − n
⩾ Kg,

where if n = N holds, then (3.2) is understood as that f is constant and
that Ricg ⩾ Kg holds, see [15, Proposition 4.21]. In particular if Mn is
closed, then for any N > n there exists K ∈ R such that (Mn, dg, volgf )
is an RCD(K,N) space whose essential dimension is trivially equal to n.
This setting will be discussed in the following subsections.

Let us discuss the Laplacian ∆ on a metric measure space (Mn, dg, volgf )
as defined in the Subsection 2.1. This coincides with the weighted Laplacian
∆g

f for any φ ∈ C∞(Mn) ∩D(∆) namely;

(3.3) ∆g
fφ := tr(Hessg

φ) − g(∇f,∇φ)

because we see

(3.4)
∫

X

g(∇ψ,∇φ) d volgf = −
∫

X

ψ∆g
fφd volgf , ∀ψ ∈ C∞

c (Mn)

which implies the coincidence between
∫

∆g
fφd volgf and

∫
∆φd volgf as mea-

sures. Then the heat flow hf,t on the metric measure space (Mn, dg, volgf )

ANNALES DE L’INSTITUT FOURIER
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is uniquely determined as follows: for any φ ∈ L2(Mn, volgf ), the map t 7→
hf,tφ ∈ L2(Mn, volgf ) is smooth on (0,∞) with hf,tφ ∈ C∞(Mn) ∩D(∆),

(3.5) d
dthf,tφ = ∆g

fhf,tφ in L2(Mn, volgf ),

and hf,tφ → φ in L2(Mn, volgf ) as t → 0+ (see for instance [22, The-
orem 4.9]). Finally the heat kernel pf is uniquely determined by being
smooth and satisfying

(3.6) hf,tφ(x) =
∫

Mn

pf (x, y, t)φ(y) d volgf (y),

∀φ ∈ L2(Mn, volgf ), ∀x ∈ Mn.

It is worth pointing out that similar observations above are also justified in
the case when (Mn, g, volgf ) is the interior of a smooth weighted compact
Riemannian manifold with smooth boundary after replacing the Laplacian,
the heat flow, and the heat kernel by the Dirichlet’s ones, respectively. We
omit the details, where this will play a role to find an example which shows
that Theorem 1.1 is sharp in some sense (see the proof of Proposition 5.1).

From now on, let (r, ξ1, ξ2, . . . , ξn) := (r, ξ) be the normal coordinates
around x ∈ Mn, and g(r, ξ) be the Riemannian metric at the point (r, ξ)
in the normal coordinates. We introduce the following elementary lemma
which will play a role later. In the following lemma and in the sequel, we
know from the proofs, all remainder terms of the form O(tk) = Of,g(tk) on
(Mn, g) as t → 0+ have smooth coefficients and depend only on the metric
g and the weight f .

Lemma 3.1. — For any x ∈ Mn we have the following asymptotic ex-
pansion as r → 0+

(3.7) volgf (Br(x)) =ωnr
n e−f(x)

(
1− Scalg +3∆gf−3|∇f |2

6(n+ 2) r2 +O(r3)
)
,

Moreover, the remainder in the asymptotic expansion (3.7) has a uniform
bound for any compact subset K ⊂ Mn in the sense that

(3.8) sup
x∈K,
r<1

r−3−n

∣∣∣∣volgf (Br(x))

−ωnr
n · e−f(x)

(
1Scalg + 3∆gf − 3|∇f |2

6(n+ 2) r2
)∣∣∣∣ < ∞.
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Proof. — Recall that for any unit vector v ∈ TxM and any geodesic γ
from x with γ̇(0) = v, it follows from Taylor expansion that√

det g(γ(t)) = 1 − Ricg(v, v)
6 t2 +O(t3),(3.9)

e−f(γ(t))+f(x) = 1 − ⟨∇f(x), v⟩t(3.10)

+ 1
2

(
−Hessg

f (v, v) + |⟨∇f(x), v⟩|2
)
t2 +O(t3).

Thus we have

volgf (Br(x)) =
∫ r

0

∫
Sn−1

(
1 −

Ricg
ij

6 ξiξjt2 +O(t3)
)

·
[
1−(∇f)iξ

it+ 1
2

(
−Hessg

f,ij +(df⊗ df)ij

)
ξiξjt2 +O(t3)

]
· e−f(x) tn−1 dξ dt

= ωnr
n e−f(x)

(
1 − Scalg + 3∆gf − 3|∇f |2

6(n+ 2) r2 +O(r3)
)

as desired, where Hessg
f , df ⊗ df , ∇f and Ricg are all evaluated at x. By

expanding the left hand side of (3.9) and (3.10) to the t3 or higher order
terms, we can infer that the coefficients involves the derivatives of the
Riemannian curvature tensor, and the derivatives of f , respectively. Since
they are all smooth objects, they are uniformly bounded on any compact
set K, so the uniform bound (3.8) follows. □

3.1. The weighted heat kernel expansion

From now on we assume that Mn is closed. Denote by injg the injectivity
radius of (Mn, g), consider

V = {(x, y) ∈ Mn ×Mn : dg(x, y) < injg/2}.

Fix k ∈ Z>0, let us find uj= uj,k ∈ C∞(V ), j = 0,1, 2, . . . , k such that

(3.11)
(

∆g
f,x − ∂t

)
Sk

= 1
(4πt)n/2 exp

(
−dg(x, y)2

4t

)
· tk · ∆g

f,x

(
uk eA

)
, ∀(x, y) ∈ V

holds, where A = A(x, y) = f(x)+f(y)
2 and

(3.12) Sk(x, y, t) = 1
(4πt)n/2 exp

(
−dg(x, y)2

4t +A(x, y)
)

·
k∑

j=0
tjuj(x, y).
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In fact, the desired functions uj are uniquely obtained as follows, in
particular uj,k is independent of k.

Lemma 3.2. — We have

(3.13)

u0(x, y) = D− 1
2 (y)

uj(x, y) = dg(x, y)−jD−1/2(y)

·

[∫ dg(x,y)

0
D1/2(γ(s))∆g

γ(s)uj−1(x, γ(s))sj−1 ds

+
∫ dg(x,y)

0
D1/2(γ(s))

(
1
2∆gf(γ(s))− 1

4 |∇f(γ(s))|2
)

· uj−1(x, γ(s))sj−1 ds
]

where j ⩾ 1 and γ is the unit speed minimal geodesic from x to y, and
D(y) =

√
det g(r,ξ)

dg(x,y)n−1 which is the volume density at y in normal coordinates
(r, ξ) around x.

Proof. — From (3.11) with (3.3), we obtain that (3.11) is equivalent to

(3.14)

0 = dg(x, y)∂ru0 + dg(x, y)
2

∂rD

D
u0

0 = dg(x, y)∂ruj +
(
j + dg(x, y)

2
∂rD

D

)
uj

− ∆guj−1 −
(

1
2∆gf − 1

4 |∇f |2
)
uj−1

where j ⩾ 1 and r = dg(x, y) and ∂r is the radial derivative from x, we
give a sketch of this computation. Solve the first equation of (3.14), to
get u0(x, y) = C(ξ)D− 1

2 (y), note that u0(x, x) = 1, so C(ξ) = 1, then we
get the first equality of (3.13). To yield the second equation of (3.13), we
first solve the corresponding homogeneous equation of the second equation
of (3.14), which is

(3.15) dg(x, y)∂ruj +
(
j + dg(x, y)

2
∂rD

D

)
uj = 0,

then we use the method of variation of parameters to finish the computa-
tion. □

We follow [12] closely. The first step is to extend Sk to whole Mn ×Mn

by multiplying a cut-off function φ(x, y) ∈ C∞(Mn ×Mn) so that for each
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y ∈ Mn, φ(x, y) = 0 on Mn \ Binjg/2(y), φ(x, y) = 1 on Binjg/4(y) and
0 ⩽ φ(x, y) ⩽ 1. Let

(3.16) Hk(x, y, t) := φ(x, y)Sk(x, y, t) ∈ C∞ (Mn ×Mn × (0,∞)) .

The following properties are known for Hk:
(1) (∂t − ∆g

f )Hk extends to t = 0 and (∂t − ∆g
f )Hk ∈ Cℓ(Mn ×Mn ×

[0,∞)) for integer ℓ < k − n
2 ;

(2) Hk(x, y, t) → δy(x) for all x,y ∈ Mn as t → 0+.
See [12, Lemma 1, Chapter VI Section 4], and [38, Lemma 3.18].
We are now in position to establish the asymptotic expansion of pf . It is

worth pointing out that (3.30) is computed in [35] with a slightly different
normalization of the heat kernel.

We introduce the (weighted) convolution F ∗ H for F,H ∈ C0(Mn ×
Mn × [0,∞)):

F ∗H(x, y, t) =
∫ t

0

∫
M

F (x, z, s)H(z, y, t− s) d volgf (z) ds,

and denote H∗j = H ∗H ∗ · · · ∗H for j-fold convolution. Let

(3.17) Fk =
∑
j⩾0

(−1)j+1((∂t − ∆g
f )Hk)∗j .

Although the following are quite standard, for the reader’s convenience,
we show some similar estimates as in [12, p. 152 Lemma 1]. First note that

(3.18) (∂t − ∆g
f )Hk = φ(∂t − ∆g

f )Sk − 2⟨∇φ,∇Sk⟩ − Sk∆g
fφ.

Recalling (3.11), we see that the first term on the RHS of the above equation
is bounded by C(f, g)tk− n

2 . The rest 2 terms decay exponentially as t → 0+

because ∇φ and ∆g
fφ vanishes near the diagonal and the Gaussian term

gives the exponential decay away from the diagonal, thus for any t ∈ [0, 1]
the last 2 terms are bounded by C(f, g)tk− n

2 . Thus it follows that

(3.19)
∥∥∥(∂t − ∆g

f )Hk( · , · , t)
∥∥∥

L∞(Mn×Mn)
⩽ C(f, g)tk−n/2, ∀t ∈ (0, 1].

Let

(3.20) (∂t−∆g
f )Hk(x, y, t) = tk− n

2 exp
(

−dg(x, y)2

4t +A(x, y)
)
Gk(x, y, t).

We see from (3.18) that Gk ∈ C∞(Mn ×Mn × [0,∞)). Set

B := sup
Mn×Mn×[0,1]

|Gk|,
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we have for any t ∈ (0, 1],

(3.21) |((∂t − ∆g
f )Hk)∗2|(x, y, t)

⩽
∫ t

0

∫
Mn

sk− n
2 (t− s)k− n

2 |Gk(x, z, s)Gk(z, y, t− s)|

· e− dg(x,z)2
4s e− dg(z,y)2

4(t−s) e
f(x)+f(y)

2 d volg(z) ds

⩽ B2volg(M) e− dg(x,y)2
4t +A(x,y)

∫ t

0
sk− n

2 (t− s)k− n
2 ds

⩽
B2volg(M)tk− n

2 +1

k − n
2 + 1 e− dg(x,y)2

4t +A(x,y) .

Here, we have used volgf = e−f volg. Using induction, one can show similar
Gaussian estimates for ((∂t − ∆g

f )Hk)∗j , which is

(3.22)
∣∣∣((∂t − ∆g

f )Hk)∗j
∣∣∣⩽ Bjvolg(M)j−1tk− n

2 +j−1

(k− n
2 +1) · · · (k− n

2 +j−1) e− dg(x,y)2
4t +A(x,y)

in particular we have Fk ∈ C0(Mn × Mn × [0,∞)). Moreover, similar
arguments can be applied iteratively to show:

(1) for any integer ℓ < k − n
2 , we have Fk ∈ Cℓ(Mn × Mn × [0,∞))

with

∥Fk( · , · , t)∥L∞(Mn×Mn) < C(f, g)tk−n/2, ∀t ∈ (0, 1];(3.23)

(2) for any integer k > n
2 + 2, we have

(3.24) ∥Hk ∗ Fk∥L∞(Mn×Mn) < C(f, g)tk+1− n
2 , ∀t ∈ (0, 1];

and

(3.25)
∥∥∥∥Fk ∗Hk · exp

(
(dg)2

4t −A

)∥∥∥∥
L∞(Mn×Mn)

⩽ C(f, g)tk+1− n
2 , ∀t ∈ (0, 1].

Next, given any multi-index α = (α1, . . . , αn), for then we write,

(3.26) ∂α
x (∂t −∆)Hk = tk− n

2 −|α| exp
(

−dg(x, y)2

4t +A(x, y)
)
Gk,α(x, y, t).

It follows from (3.18) and a direct computation that Gk,α ∈ C∞(Mn ×
Mn × [0, 1]), now repeat the computation in (3.21) replacing Gk with Gk,α,
we get for any integer l ∈ N,

(3.27) ∥Fk ∗Hk∥Cl(Mn×Mn) ⩽ C(f, g, l)tk+1− n
2 −l, ∀t ∈ (0, 1].
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Theorem 3.3. — For all x, y ∈ Mn with dg(x, y) < injg/4, the heat
kernel pf (x, y, t) has the following asymptotic expansion:

(3.28) pf (x, y, t)

= 1
(4πt)n/2 exp

(
−dg(x, y)2

4t +A(x, y)
) k∑

j=0
tjuj(x, y) +O(tk+1)


as t → 0+. Moreover if x = y, then the remainder in the expansion has a
uniform bound;

(3.29) sup
x∈Mn,t<1

t
n
2 −k

∣∣∣∣∣∣pf (x, x, t) − 1
(4πt)n/2 ef(x)

k−1∑
j=0

tjuj(x, x)

∣∣∣∣∣∣ < ∞.

In particular, we have

(3.30) u1(x, x) = Scalg(x)
6 − 1

2∆gf(x) + 1
4 |∇f(x)|2.

Proof. — It is shown above that Sk hence Hk has this expansion. Note
that Hk −Hk ∗ Fk also solves the heat equation. From (3.19), (3.23) and
the uniqueness of the heat kernel, we infer that for every k > n

2 + 2,
pf = Hk−Hk∗Fk ∈ Ck− n

2 (Mn×Mn×(0,∞)) (see also [38, Theorem 3.22]).
Apply the inequality (3.25) to yield that

(pf (x, y, t) − Sk(x, y, t)) · exp
(

dg(x, y)2

4t −A(x, y)
)

= O(tk+1−n/2),

so pf has the same expansion as Sk up to order k − n
2 . In particular when

x = y, for each integer k ⩾ 1, we have (3.29).
For the computation of u1, recall in (3.13), we found that u0(x, y) =

D−1/2(y). Let γ be as in Lemma 3.2, with (3.9) we have

(3.31) u0(x, y) = 1 + 1
12Ricg(γ̇(0), γ̇(0))dg(x, y)2 +O(dg(x, y)3),

in particular u0(x, x) = 1. Then it follows that ∆gu0(x, x) = Scalg(x)/6.
Finally letting y → x in the second equation of (3.13) for j = 1 leads to

u1(x, x) = ∆gu0(x, x) + 1
2∆gf(x) − 1

4 |∇f(x)|2

= Scalg(x)
6 + 1

2∆gf(x) − 1
4 |∇f(x)|2. □
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3.2. Divergence free property of the weighted Einstein tensor
on a closed manifold

As discussed in Section 2, let us consider the heat kernel embedding:

(3.32) Φf,t : Mn ↪−→ L2(Mn, volgf )

defined by

(3.33) x 7−→ (y 7−→ pf (x, y, t)).

Put gf,t := (Φf,t)∗gL2 .
To study the second principal term of gf,t (recall (2.16) for the first

principal term in more general setting) along the same way as in [7], it is
necessary to generalize the heat kernel expansion in [7, p. 380] to weighted
manifolds. We claim:

Theorem 3.4 (Weighted version of Bérard–Besson–Gallot theorem).
We have the following asymptotic formula as t → 0+

(3.34) c(n)t(n+2)/2gf,t

= ef g − ef

(
2
3G

g − df ⊗ df − ∆gfg + |∇f |2

2 g

)
t+O(t2),

where the remainder in the expansion has a uniform bound;

(3.35) sup
x∈Mn,t<1

∣∣∣∣t−2
(
c(n)t(n+2)/2gf,t

−
(

ef g − ef

(
2
3G

g − df ⊗ df − ∆gfg + |∇f |2

2 g

)
t

))∣∣∣∣ (x) < ∞.

In particular, we have the uniform convergence:

(3.36)
∥∥∥∥c(n)t(n+2)/2gf,t − ef g

t

− ef

(
−2

3G
g + df ⊗ df + ∆gfg − |∇f |2

2 g

)∥∥∥∥
L∞

−→ 0.

Proof. — By (2.13), which remains valid on weighted manifolds because
of the characterization (3.2) for being an RCD(K,N) space, and the fact
that the set of eigenfunctions {φi}i⩾0 forms an orthonormal basis of
L2(Mn, volgf ), we see that for every x ∈ Mn and v ∈ TxM

n,

(3.37)
gf,t(v, v) =

∑
i

e−2λit |dxφi(v)|2

= (∂y∂xpf )(x,x,2t)(v, v) =: (dSpf )(x,x,2t)(v, v)
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where we used a fact that the expansion (2.8) is satisfied in C∞(Mn)
because of the elliptic estimates (see for instance [22, Theorem 10.3]), and
we followed the notation in [7], denoting dS := ∂y∂x for the mixed second
derivative. For the reader’s convenience, let us clarify the meaning of this
along [45, p. 8]; for any smooth function h : Mn × Mn → R, and fixed
(x, y), we define maps d1h : TxM

n ×Mn → R, d2h : Mn ×TyM
n → R and

dSh(x,y) : TxM
n × TyM

n → R by d1h(v, y) := (∂xh(x, y)) · v, d2h(x,w) =
(∂yh(x, y)) ·w and dSh(v, w) = ∂y(∂xh(x, y) ·v) ·w = d2(d1h), respectively,
for all v ∈ TxM

n, w ∈ TyM
n. In order to compute (dSpf )(x, x, 2t), put

(3.38)

U := (4πt)n/2 · exp
(

dg(x, y)2

4t −A

)
pf (x, y, t)

=
k∑

j=0
tjuj(x, y) + Ik+1(x, y, t),

where Ik+1(x, y, t) = Of,g(tk+1) = O(tk+1).
Then, we show that for x, y small enough, ∂xIk+1 = O(tk+1), ∂yIk+1 =

O(tk+1) and dSIk+1 = O(tk+1) hold, where “∂xIk+1 = O(tk+1)” means
|∂xIk+1| = O(tk+1) (the same applies to ∂yIk+1 = O(tk+1)), and “ dSIk+1 =
O(tk+1)” means |dSIk+1| = O(tk+1) with respect to the standard norm.

To this end, fix k and let l = k + 3, note that pf = Hl −Hl ∗ Fl, we see
that for x, y small enough such that Hk = Sk, it holds

(3.39)

Ik+1 = U −
k∑

j=0
tjuj

=
l∑

j=k+1
tjuj − (4πt)n/2 · exp

(
dg(x, y)2

4t −A

)
·Hl ∗ Fl,

it is clear that dS of the first term on the RHS of (3.39) is of O(tk+1), for
the second term, it follows from (3.25) and (3.27) that

(3.40)
∥∥∥∥dS

(
exp

(
(dg)2

4t −A

)
Hl ∗ Fl

)∥∥∥∥
L∞(Mn×Mn)

⩽ Ctk+1− n
2 , ∀t ∈ (0, 1].

This completes the proof of dSIk+1 = O(tk+1). The estimates ∂xIk+1 =
O(tk+1), and ∂yIk+1 = O(tk+1) can be shown similarly.
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Now we continue our computation of the expansion. It holds that

(8πt)n/2(dSpf )(x,y,2t)

=
(
− dSr

2
x

8t eA U− ∂xr
2
x

8t ∂y(eA U)+ dS(eA U)
)

e−r2
x/(8t)−∂yr

2
x

8t ∂xpf

where rx := dg(x, · ). Since at (x, x), ∂xr
2
x = ∂yr

2
x = 0 and dSr

2
x = −2g

hold in normal coordinates, we have

(8πt)n/2(dSpf )(x,x,2t) = −ef(x) U(x, x, 2t)
8t (dSr

2
x)(x,x,2t) + dS(eA U)(x,x,2t)

Thanks to (3.31) we have (∂xu0)(x,x,2t) = (∂yu0)(x,x) = 0 and (dSu0)(x,x) =
− 1

6 Ricg(x), which imply (recall the convention we use for big-O notation
of vectors)

(∂xU)(x,x,2t) = (∂xu0)(x,x) +O(t) = O(t).
Similarly (∂yU)(x,x,2t) = O(t), and

(dSU)(x,x,2t) = (dSu0)(x,x) +O(t) = −1
6Ricg(x) +O(t).

It follows that

dS(eA U)(x,x,2t) =
(
U dS eA +∂x eA ∂yU + ∂y eA ∂xU + eA dSU

)
(x,x,2t)

=
(
U dS eA + eA dSU +O(t)

)
(x,x,2t)

= 1
4 ef(x) df ⊗ df − 1

6 ef(x) Ricg +O(t).

This allows us to show that (recall dSr
2
x = −2g)

(8πt)n/2(dSpf )(x,x,2t) = 1
4t ef(x) (u0(x, x) + 2tu1(x, x) +O(t2)

)
g

+ 1
4 ef(x) df ⊗ df − 1

6 ef(x) Ricg +O(t)

Recall that we have (3.30), we finally deduce that

4t(8πt)n/2(dSpf )(x,x,2t)

= ef(x)
[
1 + 2t

(
Scalg

6 + ∆gf

2 − |∇f |2

4

)]
g

+ 1
2 ef(x) df ⊗ df · 2t− 1

3 ef(x) Ricg · 2t+O(t2)

= ef g − ef

(
2
3G

g − df ⊗ df − ∆gfg + |∇f |2

2 g

)
t+O(t2),

as claimed. □
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Based on Theorem 3.4, let us give the following definitions in order to
prove Corollary 1.2.

Definition 3.5 (Weighted Einstein tensor). — Define the weighted Ein-
stein tensor Gg

f for a closed weighted manifold (Mn, dg, volgf ) by

(3.41) Gg
f := ef Gg − 3 ef

2

(
df ⊗ df + ∆gfg − |∇f |2

2 g

)
.

Definition 3.6 (Weighted adjoint operator ∇∗
f ). — For any tensor field

T ∈ C∞((T ∗)⊗2Mn), define ∇∗
fT by

(3.42) ∇∗
fT := ∇∗T + T (∇f, · ),

where ∇∗ is the adjoint operator of the covariant derivative ∇ of (Mn, g),
namely ∇∗ coincides with minus the divergence. Moreover we say that T
is divergence free on (Mn, dg, volgf ) if ∇∗

fT = 0 holds.

Note that ∇∗
fT is characterized by satisfying

(3.43)
∫

Mn

⟨∇∗
fT, ω⟩ d volgf =

∫
Mn

⟨T,∇ω⟩ d volgf , ∀ω ∈ C∞(T ∗Mn),

that is, ∇∗
f is the adjoint operator of the covariant derivative with respect to

volgf . Although the next proposition is a direct consequence of Theorem 3.4
with more general results (Theorem 1.1 and Proposition 4.19), we give a
direct proof.

Proposition 3.7. — It holds that the weighted Einstein tensor Gg
f is

divergence free on (Mn, dg, volgf ) if and only if f is constant.

Proof. — It is enough to check the “only if” part because the other im-
plication reduces to (1.2). Assume that ∇∗

fG
g
f ≡ 0 holds. Then it is easy

to see

(3.44) ∇∗
(

df ⊗ df + ∆gfg − |∇f |2

2 g

)
≡ 0

because of (1.2). Thus we have

(3.45) ∆gf df + d∆gf ≡ 0

see also (4.19). Let us consider an open subset U of Mn:

(3.46) U := {x ∈ Mn; ∆gf(x) ̸= 0}.

It is enough to prove U = ∅ because then f is harmonic on (Mn, g), thus
f is constant. Assume U ̸= ∅ and take x ∈ U . Define a function F (z) :=
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ef(z) ∆gf(z). Note that F is locally constant on U because

dF (z) = ef(z) ∆gf(z) df(z) + ef(z) d∆gf(z)

= − ef(z) d∆gf(z) + ef(z) d∆gf(z)(3.47)
= 0,

where we used (3.45) in the second equality. Let

(3.48) X := {z ∈ Mn;F (z) = F (x)} ⊂ U.

Since F is continuous on Mn, X is closed in Mn. On the other hand since
F is locally constant on U , we see that X is an open subset of Mn. Thus
X = Mn. In particular

(3.49) 0 =
∫

Mn

∆gf d volg = F (x)
∫

M

e−f d volg ̸= 0

which is a contradiction. Thus we have U = ∅. □

Finally, in connection with (2.14), let us discuss the asymptotic behavior
of

(3.50) tvolgfB√
t(x)gf,t.

Proposition 3.8. — We have the following uniform asymptotic expan-
sion as t → 0+:

(3.51) c(n)t
ωn

volgf (B√
t(x))gf,t

= g − 2t
3

(
Gg

f + Scalg + 3∆gf − 3|∇f |2

6(n+ 2) g

)
+O(t2).

as t → 0+. In particular if f is constant, then Scalg is constant if and only if
the second principal term of (3.51) is divergence free on (Mn, dg, volg), i.e.,

(3.52) ∇∗
(
Gg + Scalg

6(n+ 2)g
)

≡ 0.

Proof. — The desired uniform convergence (3.51) comes from (3.36) with
Lemma 3.1. For the remaining statement, we assume that f is constant.
Then thanks to (1.2), we have

(3.53) ∇∗
(
Gg + Scalg

6(n+ 2)g
)

= 0 ⇐⇒ ∇∗(Scalgg) = 0 ⇐⇒ dScalg = 0

which proves the desired equivalence, where we used ∇∗g = 0. □

It is an immediate consequence of Proposition 3.8 that for a given com-
pact non-collapsed RCD(K,N) space (X, d,HN ), it is hard to check directly
the weakly asymptotically divergence free property of the second principal
term of tHn(B√

t(x))gt.

TOME 75 (2025), FASCICULE 2



744 Shouhei HONDA & Xingyu ZHU

4. Second principal term in RCD case; proof of
Theorem 1.1

The main purpose of this section is to prove Theorem 1.1. For that let
us fix the terminology borrowed from [19] minimally.

4.1. Second order differential calculus; list of differential
operators

Throughout this subsection we fix an RCD(K,∞) space (X, d,m). The
space of all test functions due to [19, 39] is defined by

(4.1) TestF (X, d,m) :=
{
f ∈ Lipb(X, d) ∩D(∆); ∆f ∈ H1,2(X, d,m)

}
which is an algebra. We first recall the Hessian for a test function (see
also [19, Definition 3.3.1]).

Theorem 4.1 (Hessian). — For any f ∈ TestF (X, d,m), there exists
T ∈ L2((T ∗)⊗2(X, d,m)) such that for any fi ∈ TestF (X, d,m), i = 1, 2,

(4.2) T (∇f1,∇f2)

= 1
2 (⟨∇f1,∇⟨∇f2,∇f⟩⟩ + ⟨∇f2,∇⟨∇f1,∇f⟩⟩ − ⟨f,∇⟨∇f1,∇f2⟩⟩)

holds for m-a.e. x ∈ X. Since T is unique, we denote it by Hessf and call
it the Hessian of f .

See [19, Theorem 3.3.2 and 3.3.8]. For the reader’s convenience, let us
provide a proof of the uniqueness. First let us recall that the space of all
test tensor fields of type (0, 2);

(4.3) Test(T ∗)⊗2(X, d,m)

:=
{

l∑
i=1

fi,0 dfi,1 ⊗ dfi,2; l ∈ N, fi,j ∈ TestF (X, d,m)
}

is dense in L2((T ∗)⊗2(X, d,m)) (see [19, (3.2.7)]). Then, for all T1, T2 ∈
L2((T ∗)⊗2(X, d,m)) satisfying (4.2) as T = Ti, we have

(4.4)
∫

X

⟨T1 − T2, S⟩ dm = 0, ∀S ∈ Test(T ∗)⊗2(X, d,m).

The density of (4.3) in L2((T ∗)⊗2(X, d,m)) allows us to take S as T1 − T2
in (4.4), thus we conclude the proof. Note that the uniquness appeared
below can be checked similarly by the density of test objects in L2.
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Moreover it is proved in [19, Corollary 3.3.9] that the Hessian is well-
defined for any f ∈ D(∆) satisfying (4.2) and the Bochner inequality in-
volving the Hessian term :

(4.5) 1
2

∫
X

|∇f |2∆φdm ⩾
∫

X

φ
(
|Hessf |2 + ⟨∇∆f,∇f⟩ +K|∇f |2

)
dm

holds for all f, φ ∈ D(∆) with φ ⩾ 0 and φ,∆φ ∈ L∞(X,m). In particular
we have

(4.6)
∫

X

|Hessf |2 dm ⩽
∫

X

(
(∆f)2 −K|∇f |2

)
dm, ∀f ∈ D(∆).

Definition 4.2 (Adjoint operator δ). — Denote by D(δ) the set of
ω ∈ L2(T ∗(X, d,m)) such that there exists f ∈ L2(X,m) such that

(4.7)
∫

X

⟨ω, dh⟩ dm =
∫

X

fhdm, ∀h ∈ H1,2(X, d,m)

holds. Since f is unique, we denote it by δω.

See also [19, Definition 3.5.11]. Let us define the space of test 1-forms:

(4.8) TestT ∗(X, d,m) :=
{

l∑
i=1

f0,i df1,i; l ∈ N, fj,i ∈ TestF (X, d,m)
}
.

It is proved in [19, Proposition 3.5.12] that TestT ∗(X, d,m) ⊂ D(δ) holds
with

(4.9) δ(f1 df2) = −⟨∇f1,∇f2⟩ − f1∆f2, ∀fi ∈ TestF (X, d,m).

Definition 4.3 (Sobolev space W 1,2
C ). — Denote by W 1,2

C (T ∗(X, d,m))
the set of all ω ∈ L2(T ∗(X, d,m)) for which there exists T ∈
L2((T ∗)⊗2(X, d,m)) such that

(4.10)
∫

X

⟨T, f0 df1 ⊗ df2⟩ dm

=
∫

X

(−⟨ω, df2⟩δ(f0 df1) − f0⟨Hessf2 , ω ⊗ df1⟩) dm

holds. Since T is unique, we denote it by ∇ω.

See also [19, Definition 3.4.1]. Comparing our working definition above for
W 1,2

C -1-forms with Gigli’s one for W 1,2
C -vector fields [19, Definition 3.4.1], it

is easy to see that for any ω ∈ L2(T ∗(X, d,m)), ω ∈ W 1,2
C (T ∗(X, d,m) holds

if and only if ω♯ ∈ W 1,2
C (T (X, d,m)) holds, where we used the canoncal

musical isomorphism L2(T ∗(X, d,m)) ≃ L2(T (X, d,m)). It is proved in [19,
Theorem 3.4.2] that TestT ∗(X, d,m) ⊂ W 1,2

C (T ∗(X, d,m)) holds with

(4.11) ∇(f1 df2) = df1 ⊗ df2 + f1Hessf2 , ∀fi ∈ TestF (X, d,m).
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Definition 4.4 (Sobolev space H1,2
C ). — Denote by H1,2

C (T ∗(X, d,m))
the closure of TestT ∗(X, d,m) in W 1,2

C (T ∗(X, d,m)).

See also [19, Definition 3.4.3].

Definition 4.5 (Exterior derivative d). — Denote by W 1,2
d (T ∗(X,d,m))

the set of all ω ∈ L2(T ∗(X, d,m)) for which there exists η ∈
L2(
∧2

T ∗(X, d,m)) such that

(4.12)
∫

X

⟨η, α0 ⊗ α1⟩ dm

=
∫

X

(⟨ω, α0⟩δα1 − ⟨ω, α1⟩δα0) dm, ∀α ∈ TestT ∗(X, d,m)

holds. Since η is unique, we denote it by dω.

See also [19, Definition 3.5.1]. It is proved in [19, Theorem 3.5.2] that it
holds TestT ∗(X, d,m) ⊂ W 1,2

d (T ∗(X, d,m)).

Definition 4.6 (Sobolev space H1,2
H ). — Denote by H1,2

H (T ∗(X, d,m))
the completion of TestT ∗(X, d,m) with respect to the norm:

(4.13) ∥ω∥2
H1,2

H

:= ∥ω∥2
L2 + ∥δω∥2

L2 + ∥dω∥2
L2 .

See also [19, Definition 3.5.13].

Definition 4.7 (Hodge Laplacian ∆H,1). — Denote by D(∆H,1) the
set of all ω ∈ H1,2

H (T ∗(X, d,m)) for which there exists η ∈ L2(T ∗(X, d,m))
such that

(4.14)
∫

X

(⟨dω, dα⟩+δω ·δα) dm=
∫

X

⟨η, α⟩dm, ∀α∈H1,2
H (T ∗(X, d,m))

holds. Since η is unique, we denote it by ∆H,1ω.

See also [19, Definition 3.5.14]. It is proved in [19, Corollary 3.6.4] that
it holds H1,2

H (T ∗(X, d,m)) ⊂ H1,2
C (T ∗(X, d,m)) with

(4.15)
∫

X

|∇ω|2 dm

⩽
∫

X

(|dω|2 + |δω|2 −K|ω|2) dm, ∀ω ∈ H1,2
H (T ∗(X, d,m)).

On the other hand it follows from Definitions 4.3 and 4.5 that for any
ω ∈ H1,2

C (T ∗(X, d,m)),

(4.16) dω(V1, V2) = (∇V1ω)(V2) − (∇V2ω)(V1), ∀Vi ∈ L∞(T (X, d,m))
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holds, where ∇V1ω := ∇ω( · , V1). In particular, we see that H1,2
C (T ∗(X,d,m))

is a subset of H1,2
d (T ∗(X, d,m)), where H1,2

d (T ∗(X, d,m)) denotes the W 1,2
d -

closure of TestT ∗(X, d,m), with

(4.17) |dω|2 ⩽ 2|∇ω|2, m-a.e. x ∈ X

for any ω ∈ H1,2
C (T ∗(X, d,m)).

Definition 4.8 (Adjoint operator ∇∗). — Denote by D(∇∗) the set
of all T ∈ L2((T ∗)⊗2(X, d,m)) such that there exists η ∈ L2(T ∗(X, d,m))
such that

(4.18)
∫

X

⟨T,∇ω⟩ dm = −
∫

X

⟨η, ω⟩ dm, ∀ω ∈ H1,2
C (T ∗(X, d,m))

holds. Since η is unique, we denote it by ∇∗T . We say T is divergence free
if ∇∗T = 0 holds.

See also [30, Definition 2.17]. Note that for any f ∈ TestF (X, d,m) we
have df ⊗ df ∈ D(∇∗) with

(4.19) ∇∗(df ⊗ df) = −∆f df − 1
2 d|∇f |2.

See for instance [30, Proposition 2.18] for the proof. Finally let us recall
the following result proved in [24, Proposition 3.2] in the finite dimensional
(maximal) case. Note that for any tensor T of type (0, 2) on X, the trace
tr(T ) is defined by tr(T ) := ⟨T, g⟩.

Theorem 4.9 (Laplacian is trace of Hessian under maximal dimension).
Assume that N is an integer with dimd,m(X) = N . Then for all f ∈ D(∆)
we see that

(4.20) ∆f = tr(Hessf ) for m-a.e. x ∈ X.

Compare with (3.3). We can also reprove (4.20) along the main tools in
the paper when (X, d) is compact, see (4.23).

4.2. A key formula

Throughout this subsection let us fix a compact RCD(K,N) space
(X, d,m).

Theorem 4.10 (Laplacian of (X, gt,m)). — For any f ∈ D(∆) and any
φ ∈ H1,2(X, d,m) ∩ L∞(X,m), we have

(4.21)
∫

X

gt(∇f,∇φ) dm = −
∫

X

φ∆tf dm,
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where

(4.22) ∆tf = ⟨gt,Hessf ⟩ + 1
4 ⟨∇f,∇x∆xp(x, x, 2t)⟩ ∈ L1(X,m).

See [29, Theorem 3.4] for the proof. Let us give a remark on Theorem 4.10
that if m = HN (that is, (X, d,HN ) is a non-collapsed RCD(K,N) space),
then multiplying by t(N+2)/2 on both sides of (4.21) and then letting t → 0+

show

(4.23)
∫

X

⟨∇f,∇φ⟩ dHN = −
∫

X

tr(Hessf )φdHN .

Since H1,2(X, d,m)∩L∞(X,m) is dense in H1,2(X, d,m), (4.23) is also sat-
isfied for any φ ∈ H1,2(X, d,m). Thus by definition of D(∆) we have (4.20).
In particular since [29, Corollary 1.3] proves that dimd,m(X) = N implies
m = cHN for some c ∈ (0,∞), we reprove Theorem 4.9.

Proposition 4.11. — For any ω ∈ H1,2
C (T ∗(X, d,m)) and any t ∈

(0,∞) we have

(4.24)
∫

X

⟨gt,∇ω⟩ dm = −1
4

∫
X

⟨ω, dx∆xp(x, x, 2t)⟩ dm.

Proof. — It follows from (4.21) and (4.11) that if ω = f1 df2 holds for
some fi ∈ TestF (X, d,m), then we have∫

X

⟨gt,∇ω⟩ dm =
∫

X

⟨gt, df1 ⊗ df2 + f1Hessf2⟩ dm

= −1
4

∫
X

⟨f1 df2, dx∆xp(x, x, 2t)⟩ dm(4.25)

= −1
4

∫
X

⟨ω, dx∆xp(x, x, 2t)⟩ dm,

which easily implies the conclusion because by definition TestT ∗(X, d,m)
is dense in H1,2

C (T ∗(X, d,m)). □

It is proved in [19, Proposition 3.6.1] that for all f ∈ TestF (X, d,m) we
have df ∈ D(∆H,1) with

(4.26) ∆H,1(df) = − d∆f.

Lemma 4.12. — For fixed t ∈ (0,∞), the function x 7→ p(x, x, t) is in
TestF (X, d,m). In particular we have dxp(x, x, t) ∈ D(∆H,1) with

∆H,1(dxp(x, x, t)) = − dx∆xp(x, x, t).
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Proof. — Since for fixed l ∈ N, (2.11) and (4.6) show that∣∣∣∣∣
l∑
i

e−λit φ2
i

∣∣∣∣∣ ⩽ (C5)2
∑

i

e−λit λ
N/2
i < ∞,(4.27) ∣∣∣∣∣∇

(
l∑
i

e−λit φ2
i

)∣∣∣∣∣ ⩽ 2(C5)2
∑

i

e−λit λ
(N+1)/2
i < ∞,(4.28) ∣∣∣∣∣∆

(
l∑
i

e−λit φ2
i

)∣∣∣∣∣ ⩽ 2
l∑
i

e−λit
(
|∇φi|2 + |φi||∆φi|

)
(4.29)

⩽ 4(C5)2
∑

i

e−λit λ
(N+2)/2
i < ∞

and

(4.30)
∫

X

∣∣∣∣∣∇
(

∆
(

l∑
i

e−λit φ2
i

))∣∣∣∣∣
2

dm

= 2
∫

X

∣∣∣∣∣∇
(

l∑
i

e−λit
(
|∇φi|2 + λiφ

2
i

))∣∣∣∣∣
2

dm

= 2
l∑
i

e−2λit

∫
X

(
|∇|∇φi|2|2 + 4λ2

iφ
2
i |∇φi|2

)
dm

+ 2
l∑

i ̸=j

e−(λi+λj)t λj

∫
X

φjHessφi
(∇φi,∇φj) dm

⩽ C(K,N, t) < ∞

letting l → ∞ in above inequalities with Mazur’s lemma completes the
proof. For the reader’s convenience, let us provide a proof as follows.

First it is easy to see that D(∆) is a Hilbert space equipped with the
norm ∥f∥D =

(
∥f∥2

H1,2 + ∥∆f∥2
L2

)1/2
. Since the estimates above show that

the sequence {
∑l

i e−λit φ2
i }l is bounded in D(∆), we have a weak conver-

gent subsequence to some f in D(∆). Then applying Mazur’s lemma yields
that this is a strong convergence because the sequence consists of linear
combinations of e−λit φ2

i . Since
∑l

i e−λit φ2
i (x) → p(x, x, t) in L2(X,m) as

l → ∞, we have f(x) = p(x, x, t) ∈ D(∆). Moreover the estimates above
also imply the equi-Lipschitz continuity of {

∑l
i e−λit φ2

i }l. Thus f(x) =
p(x, x, t) is Lipschitz. Similarly, applying Mazur’s lemma for a sequence
{∆
∑l

i e−λit φ2
i }l in H1,2(X, d,m) yields that ∆p(x, x, t) ∈ H1,2(X, d,m).

Thus p(x, x, t) ∈ TestF (X, d,m). The remaining statement comes
from (4.26) as f(x) = p(x, x, t). □
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We are now in position to prove a technical key result which will play a
role in the proof of Theorem 1.1.

Theorem 4.13. — For any t ∈ (0,∞) and any ω ∈ D(∆H,1) with
∆H,1ω ∈ D(δ) we have

(4.31)
∫

X

⟨gt,∇ω⟩ dm = 1
4

∫
X

δ(∆H,1ω)p(x, x, 2t) dm.

Proof. — Proposition 4.11 and Lemma 4.12 yield∫
X

⟨gt,∇ω⟩ dm

= −1
4

∫
X

⟨ω, dx∆xp(x, x, 2t)⟩ dm = 1
4

∫
X

⟨ω,∆H,1(dxp(x, x, 2t))⟩ dm

= 1
4

∫
X

⟨∆H,1ω, dxp(x, x, 2t)⟩ dm = 1
4

∫
X

δ(∆H,1ω)p(x, x, 2t) dm. □

4.3. Non-collapsed RCD(K,N) space and fine properties on
Sobolev spaces

The main purpose of this subsection is to recall the definition of non-
collapsed RCD(K,N) spaces and to introduce fine properties on Sobolev
spaces of the spaces. Non-collapsed RCD(K,N) spaces are introduced
in [14] as a synthetic counterpart of non-collapsed Ricci limit spaces. The
definition is as follows.

Definition 4.14 (Non-collapsed RCD(K,N) space). — An RCD(K,N)
space (X, d,m) is said to be non-collapsed if m = HN holds.

Non-collapsed RCD(K,N) space have nicer properties than that of gen-
eral RCD(K,N) spaces. For example we have

(4.32) H1,2
H (T ∗(X, d,HN )) = H1,2

C (T ∗(X, d,HN )),

which is a direct consequence of the following result proved in [24, Propo-
sition 4.1], see Corollary 4.16.

Theorem 4.15. — Let (X,d,HN) be a non-collapsed RCD(K,N) space.
Then we have H1,2

C (T ∗(X, d,HN )) ⊂ D(δ) with

(4.33) δω = −tr∇ω, ∀ω ∈ H1,2
C (T ∗(X, d,HN )).
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Proof. — Theorem 4.9 with (4.9) yields that for all fi ∈ TestF (X, d,HN ),

δ(f1 df2) = −⟨df1, df2⟩ − f1∆f2

= −⟨df1, df2⟩ − f1tr(Hessf2)
= −⟨g, df1 ⊗ df2⟩ − ⟨g, f1Hessf2⟩
= −⟨g,∇(f1 df2)⟩ = −tr∇(f1 df2)

holds, which shows that (4.33) holds for all ω ∈ TestT ∗(X, d,HN ). Thus
we have the conclusion because by definition TestT ∗(X, d,HN ) is dense in
H1,2

C (T ∗(X, d,HN )). □

It directly follows from Theorem 4.15 that for a non-collapsed RCD(K,N)
space (X, d,HN ) and any f ∈ D(∆), we have fg ∈ D(∇∗) with

(4.34) ∇∗(fg) = − df

because for any ω ∈ H1,2
C (T ∗(X, d,HN )),

(4.35)

∫
X

⟨ω,∇∗(fg)⟩ dHN =
∫

X

⟨∇ω, fg⟩ dHN =
∫

X

fδω dHN

=
∫

X

⟨df, ω⟩ dHN .

The following is also a direct consequence of (4.15), (4.17) and Theo-
rem 4.15:

Corollary 4.16. — Let (X, d,HN ) be a non-collapsed RCD(K,N)
space. Then we have H1,2

H (T ∗(X, d,HN )) = H1,2
C (T ∗(X, d,HN )) with

(4.36)
1
2∥ω∥H1,2

H
⩽ ∥ω∥H1,2

C

⩽ (1 +K−)∥ω∥H1,2
H
, ∀ω ∈ H1,2

H (T ∗(X, d,HN )),

where K− = max{0,−K}.

It is proved in [14] that any non-collapsed RCD(K,N) space (X, d,HN )
satisfies dimd,m(X) = N . It is also conjectured that the converse implica-
tion is true up to multiplying a positive constant to the measure, that is,
if a RCD(K,N) space (X, d,m) satisfies dimd,m(X) = N , then m = aHN

holds for some a ∈ (0,∞). Note that by definition, the RCD(K,N) con-
dition is unchanged after multiplying a positive constant to the measure;
if (X, d,m) is an RCD(K,N) space, then (X, d, am) is also an RCD(K,N)
space for any a ∈ (0,∞). Therefore (X, d, aHN ) is an RCD(K,N) space
for some a ∈ (0,∞), then (X, d,HN ) is a non-collapsed RCD(K,N) space.
Thus the conjecture states that the maximality of the essential dimension
characterizes the non-collapsed condition.
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It is proved in [29, Corollary 1.3] that the conjecture is true when (X, d)
is compact. Finally we introduce another characterization for being a non-
collapsed RCD(K,N) space proved in [29, Corollary 4.2]:

Theorem 4.17 (Characterization of non-collapsed RCD(K,N) space).
Let (X, d,Hn) be a compact RCD(K,N) space. Then the following two
conditions are equivalent:

(1) (X, d,Hn) is a non-collapsed RCD(K,n) space.
(2) We have

(4.37) inf
x∈X,r∈(0,1)

Hn(Br(x))
rn

> 0.

4.4. Proof of Theorem 1.1

Let us fix a compact RCD(K,N) space (X, d,m). We recall a result
proved in [5] which states that for all x ∈ Rn we have

(4.38) lim
t→0+

m(Bt1/2(x))p(x, x, t) = ωn

(4π)n/2 .

First let us prove the implication from (2) to (1). Assume that (2) holds.
It is trivial from the Bishop–Gromov inequality that (1.10) holds. Let ω ∈
D(∆H,1) with ∆H,1ω ∈ D(δ). Then Theorems 4.13 and 4.15 show

(4.39)
∫

X

〈
c(n)t(n+2)/2gt − g

t
,∇ω

〉
dHn

= c(n)tn/2
∫

X

⟨gt,∇ω⟩ dHn − 1
t

∫
X

tr∇ω dHn

= c(n)
4

∫
X

δ(∆H,1ω)tn/2p(x, x, 2t) dHn + 1
t

∫
X

δω dHn

= c(n)
4

∫
X

δ(∆H,1ω)tn/2p(x, x, 2t) dHn.

On the other hand (4.38) shows that for any x ∈ Rn, as t → 0+

tn/2p(x, x, 2t) = 1
ωn2n/2 · ωn(2t)n/2

Hn(B(2t)1/2(x)) · Hn(B(2t)1/2(x))p(x, x, 2t)

−→ 1
ωn2n/2 · 1 · ωn

(4π)n/2 = (8π)−n/2.(4.40)

Since the Bishop–Gromov inequality with (2.6) yields

(4.41) tn/2p(x, x, 2t) ⩽ C(K,n,diam(X, d),Hn(X)) < ∞,
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letting t → 0+ in (4.39) with the dominated convergence theorem yields
that as t → 0+

(4.42) (RHS) of (4.39) −→ c(n)
4(8π)n/2

∫
X

δ(∆H,1ω) dHn = 0

which completes the proof of the desired implication.
Next we prove the implication from (1) to (2). Assume that (1) holds.

Then for any ω ∈ D(∆H,1) with ∆H,1ω ∈ D(δ) we have

(4.43)
∫

X

〈
c(n)tn/2gt,∇ω

〉
dm − 1

t

∫
X

tr(∇ω) dHn −→ 0.

Since (1.10) and (2.6) imply

(4.44) sup
t∈(0,1),x∈X

tn/2p(x, x, 2t) < ∞,

the same argument as above yields that

(4.45)
∫

X

〈
c(n)tn/2gt,∇ω

〉
dm −→ c(n)

4(8π)n/2

∫
X

δ(∆H,1ω) dHn ∈ R.

In particular combining (4.43) with (4.45) shows that

(4.46) 1
t

∫
X

tr(∇ω) dHn

converges as t → 0+. This convergence forces

(4.47)
∫

X

tr(∇ω) dHn = 0.

Therefore by (4.45) it holds that

(4.48) 0 =
∫

X

δ∆H,1ω dHn =
∫

X

δ(∆H,1ω) dHn

dm dm.

For any eigenfunction f of ∆ on (X, d,m) whose eigenvalue is not zero,
letting ω = df in (4.48) shows

(4.49)
∫

X

f
dHn

dm dm = 0

which proves that dHn

dm is a constant function because f is an arbitrary
eigenfunction. Thus we have (1.14). Then the conclusion follows from The-
orem 4.17. □
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4.5. Weakly asymptotically divergence free

In order to prove Corollary 1.3 let us introduce the following notion:

Definition 4.18 (Weakly asymptotically divergence free). — Let
{Tt}t∈(0,1) be a family of L2-tensor fields of type (0, 2) on X. We say that
it is weakly asymptotically divergence free as t → 0+ if there exists a dense
subset V of H1,2

C (T ∗(X, d,m)) such that for any ω ∈ V we have

(4.50)
∫

X

⟨Tt,∇ω⟩ dm −→ 0

as t → 0+.

Note that Theorem 1.1 implies that a family of L∞-tensors (1.12) is
weakly asymptotically divergence free as t → 0+ if an RCD(K,n) space
(X, d,m) satisfies dimd,m(X) = n because the space

(4.51) {ω ∈ D(∆H,1); ∆H,1ω ∈ D(δ)}

is dense in H1,2
C (T ∗(X, d,m)), see for instance Remark A.3. Corollary 1.3

is a direct consequence of Theorem 1.1 with the following proposition.

Proposition 4.19. — Let {Tt}t∈(0,1) be a family of L2-tensor fields of
type (0, 2) on X with

(4.52) lim sup
t→0+

∥Tt∥L2 < ∞

Then the following two conditions are equivalent:
(1) {Tt}t∈(0,1) is weakly asymptotically divergence free as t → 0+.
(2) If G ∈ L2((T ∗)⊗2(X, d,m)) is the L2-weak limit of Tti

for some
convergent sequence ti → 0+, then G ∈ D(∇∗) with ∇∗G = 0.

Proof. — Let us first prove the implication from (1) to (2). Assume that
{Tt}t∈(0,1) is weakly asymptotically divergence free as t → 0+. Let V be as
in Definition 4.18 and let ti, G be as in the assumption of (2). By definition
we have

(4.53)
∫

X

⟨G,∇ω⟩ dm = lim
i→∞

∫
X

⟨Tti ,∇ω⟩ dm = 0

holds for any ω ∈ V . Since V is dense in H1,2
C (T ∗(X, d,m)), we have

(4.54)
∫

X

⟨G,∇ω⟩ dm = 0, ∀ω ∈ H1,2
C (T ∗(X, d,m))

which shows G ∈ D(∇∗) with ∇∗G = 0.
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Next let us prove the remaining implication. Assume that (2) holds. Let
us fix ω ∈ H1,2

C (T ∗(X, d,m)). If (4.50) is not satisfied for this ω, then com-
bining with the L2-weak compactness shows that there exist a convergent
sequence ti → 0+ and G ∈ L2((T ∗)⊗2(X, d,m)) such that Tti

→ G in the
L2-weak topology and

(4.55)
∫

X

⟨G,∇ω⟩ dm = lim
i→∞

∫
X

⟨Tti
,∇ω⟩ dm ̸= 0

are satisfied, which contradicts the assumption (2). □

5. The L2 divergence of the approximate Einstein tensor

In this section, we will explain why it is necessary to state the main
theorem using the weakly asymptotically divergence free property by giving
an example. In fact, we cannot hope that (1.12) has a limit in a reasonable
sense, let alone in D(∇∗), more precisely, the L2 convergence of (1.12) may
fail. To show this we will construct a compact non-collapsed RCD(K, 3)
space with K > 1 such that

(5.1)
∥∥∥∥c(3)t5/2gt − g

t

∥∥∥∥
L2

t→0+

−−−−→ +∞.

The next proposition is an auxiliary result for our purpose. Note that
an open subset U ⊂ X is said to be smooth if for any y ∈ U there exist
an open subset y ∈ V ⊂ U and a (not necessary complete) Riemannian
manifold (Mn, g) such that there exists an isometry Φ : V → Mn

Proposition 5.1. — Let (X, d,Hn) be a non-collapsed and compact
RCD(K,n) space and let U ⊂ X be a smooth open subset. Then

(5.2) c(n)tn+2/2gt − g

t
−→ −2

3G
g

holds uniformly on any compact subset of U .

Proof. — Fix y ∈ U and take a sufficiently small ϵ > 0 such that Bϵ(y) ⊂
U and that ∂Bϵ(y) is smooth. With no loss of generality we can assume
that (Bϵ(y), d) is an open ball in a closed Riemanian manifold (Nn, h).
Let pϵ be the Dirichlet heat kernel on Bϵ(y). Thanks to the smoothness of
∂Bϵ(y), we know that pϵ has the continuous extention, denoted pϵ again, to
Bϵ(y)×Bϵ(y)× (0,∞) such that pϵ(x, z, t) = 0 whenever x ∈ ∂Bϵ(y) which
is justified by regularity results for parabolic equations on Euclidean balls.
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The key point in the proof of (5.2) is to show that the global heat kernel p
on X and pϵ are exponentially close on Bϵ(y), that is, for sufficiently small t,

(5.3) sup
x∈Bϵ(y)

|p(x, y, t) − pϵ(x, y, t)| < C(K,N) e−ϵ2/6t,

where C(K,n) denotes a positive constant with dependence on K and n.
Because after establishing (5.3), we can easily complete the proof as follows.

Step 1. — The restriction of p to Bϵ(y)×Bϵ(y)×(0,∞) is smooth and the
expansion (2.8) is satisfied in C∞(Bϵ(y)) (whenever ϵ is sufficiently small).

We have several proofs of this fact. One way is to apply the elliptic reg-
ularity theorem with elliptic estimates (see for instance [20]) for the i-th
eigenfunction φi, then the expansion (2.8) is satisfied in Cl(Bϵ(y)) for any
l ⩾ 1, namely we have Step 1.

Step 2. — We see that gt is smooth on the ball Bϵ(y) and that gt(v, v) =
(dSp)(x,x,2t)(v, v) holds for all x ∈ Bϵ(y) and v ∈ TxU .

This is a direct consequence of (2.13) and Step 1 (see also the beginning
of the proof of Theorem 3.4, namely (3.37)).

Step 3. — It holds that on Bϵ(y),

(5.4) |dS(p− pϵ)| ⩽ C e−ϵ2/7t .

This essentially comes from (5.3), we postpone the proof to Appendix B.

Final step. — We prove (5.2).
The proof of the final step is as follows. Applying also the previous steps

above for (Nn, dh, volh) (instead of (X, d,Hn)), denoting by ph the heat
kernel of (Nn, dh, volh), we have

(5.5)
∣∣dS(p− ph)

∣∣ ⩽ C e−ϵ2/7t

on Bϵ(y). Thus Theorem 3.4 for (Nn, dh, volh) (with the proof) implies
that (5.2) holds.

Finally we know that it is enough to prove (5.3). To this end, applying
the Gaussian estimates (2.6), together with the maximum principle yields
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for small t > 0
sup

x∈Bϵ(y)
|p(x, y, t) − pϵ(x, y, t)| ⩽ sup

∂Bϵ(y)×(0,t]
(p(x, y, s) − pϵ(x, y, s))

⩽ C1 eC2t sup
s∈(0,t]

e−ϵ2/5s

m(B√
s(y))

⩽ C1C eC2t sup
s∈(0,t]

e−ϵ2/5s

sn/2

⩽ C1C eC2t e−ϵ2/5t

tn/2

⩽ C1C eC2t e−ϵ2/6t,

(5.6)

where we used the Bishop–Gromov inequality for Hn in the third inequal-
ity, and a fact that the function e−ϵ2/5s

sn/2 is monotone increasing for s ∈ (0, t]
when t is small enough. □

Example 5.2. — Let (X, d) be the spherical suspension of (S2(r), dS2(r))
for some r ∈ (0, 1), where S2(r) := {x ∈ R3; |x| = r} and dS2(r) denotes
the canonical spherical distance. Note that (X, d,H3) is a non-collapsed
RCD(r−2 + 1, 3) space because of [33, Theorem 1.1], that (X \ {p−, p+}, d)
is isometric to a smooth Riemannian manifold (M3, g), where p± denote
poles, and that

(5.7)
∫

M3
|Scalg|2 dH3 = ∞.

Let us show the L2 divergence of (1.12) as t → 0+ in this example.
Proposition 5.1 yields

(5.8)
∫

X

〈
c(3)t5/2gt − g

t
, T

〉
dH3 −→ −2

3

∫
X

⟨Gg, T ⟩ dH3

for any tensor T of type (0, 2) with compact support in X \ {p±}. In par-
ticular

(5.9)
∥Gg∥2

L2(K) =
∣∣∣∣∫

K

⟨Gg, 1KG
g⟩ dH3

∣∣∣∣
⩽

3
2 lim inf

t→0+

∥∥∥∥c(3)t5/2gt − g

t

∥∥∥∥
L2

· ∥Gg∥L2(K)

for any compact subset K ⊂ X \ {p±}. Taking the supremum with respect
to K in (5.9), we have

(5.10) ∥Gg∥L2 ⩽
3
2 lim inf

t→0+

∥∥∥∥c(3)t5/2gt − g

t

∥∥∥∥
L2
.

TOME 75 (2025), FASCICULE 2



758 Shouhei HONDA & Xingyu ZHU

Since the left hand side of (5.10) is +∞ because of

(5.11)

∫
M3

|Gg|2 dH3 ⩾
1
3

∫
M3

|⟨Gg, g⟩|2 dH3 = 1
12

∫
M3

|Scalg|2 dH3

= ∞,

the divergence of the right hand side of (5.10) follows.

The compactness of (X, d) in Theorem 1.1 plays a crucial role. We give an
example to show that Theorem 1.1 does not hold without the compactness
assumption. For this purpose, we need to define gt for a general, possibly
non-compact, RCD(K,N) space, see [9, Definition 3.6] and the discussion
therein for the details.

Example 5.3. — Denoting by gR the canonical Riemannian metric on R,
let us consider a smooth metric measure space

(5.12) (R, dgR , volgR
x ) ,

(
volgR

x (A) =
∫

A

e−x dx
)
.

Thanks to (3.2), (R, dgR , volgR
x ) is an RCD(−(N − 1)−1, N) space for any

N > 1. We compute directly the short time expansion of gt. First, it follows
from [21, Lemma 4.7] that the heat kernel p of (R, dgR , volgR

x ) is

(5.13) p(x, y, t) = e− t
4 + x+y

2
1√
4πt

e− |x−y|2
4t .

Then, we have

(5.14)
dxp=

(
1
2 e− t

4+x+y
2

1√
4πt

e− |x−y|2
4t +x− y

2t e− t
4+x+y

2
1√
4πt

e− |x−y|2
4t

)
dx

= 1
2
√

4πt
e− t

4 + x+y
2 e− |x−y|2

4t

(
1 + x− y

t

)
dx.

Finally, keeping in mind dx⊗ dx = gR, we can compute gt as follows

gt =
∫
R

dxp⊗ dxp e−y dy

= 1
16πt e− t

2 +x

∫
R

e− |x−y|2
2t

(
1 + x− y

t

)2
dy gR(5.15)

= 1
16πt e− t

2 +x

(
√

2πt+
√

2π
t

)
gR.
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Now the desired expansion reads

(5.16)

4
√

8πt 3
2 gt = (1 + t) e− t

2 +x gR

= ex(1 + t)
(

1 − t

2 +O(t2)
)
gR

= ex gR − 1
2 ex gR t+O(t2).

Note that this matches with the general formula obtained for closed man-
ifolds, since in this case f(x) = x, we have df ⊗ df = dx ⊗ dx = gR,
∆gRf = 0 and |∇f | = 1, recall Definition 3.5. Then from Definition 3.6 and
the fact that for unweighted operator, ∇∗g = 0, we see that

(5.17)
∇∗

x(ex gR) = ex ∇∗gR − gR( · , ex ∂x) + ex gR( · , ∂x)
= − ex dx+ ex dx = 0.

This computation shows for the RCD(−(N−1)−1,N) space (R,dgR ,volgR
x ),

the second principal term of gt is divergence free, nevertheless it carries a
non-constant density e−x.

Appendix A. Spectral analysis on compact RCD spaces

In this appendix we provide a Rellich type compactness for 1-forms,
Theorem A.1, which in particular proves that the space (4.51) is dense in
H12

C (T ∗(X, d,m));

(A.1) {ω ∈ D(∆H,1); ∆H,1ω ∈ D(δ)} = H1,2
C (T ∗(X, d,m))

Let us mention that hH,tω is in (4.51) for any ω ∈ L2(T ∗(X, d,m)) and
any t > 0, which gives another proof of (A.1) without the compactness
of (X, d), where hH,t is the heat flow acting on L2(T ∗(X, d,m)) associated
with the energy;

(A.2) ω 7−→ 1
2

∫
X

(|dω|2 + |δω|2) dm,

as discussed in [19, (3.6.18)]. The authors believe that the Rellich type
compactness result has an independent interest from the point of view of
the spectral analysis on compact RCD(K,N) spaces, see also [27].

For the proof, we need several analytic notions, including the local Sobolev
spaces H1,p(U,d,m), the domain of local Laplacian D(∆,U)(⊂H1,2(U,d,m))
with the Laplacian ∆U = ∆ for any open subset U of X and so on. We re-
fer [2, 3, 25] for the detail. Let us emphasize that the RCD(K,N) condition
for a metric measure space (X, d,m) plays an essential role to establish:
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(1) (Good cut-off function, [36, Lemma 3.1]) for any x ∈ X and all
0 < r < R < ∞, there exists φ ∈ D(∆) ∩ Lipb(X, d) such that
0 ⩽ φ ⩽ 1 holds, that φ ≡ 1 holds on Br(x), that suppφ ⊂ BR(x)
holds, and that |∇φ|+ |∆φ| ⩽ C(K,N, r,R) holds for m-a.e. x ∈ X;

(2) (Hessian estimates for harmonic functions) For any harmonic func-
tion f on BR(x) ⊂ X with |∇f | ⩽ L, that is, f ∈ D(∆, BR(x))
with ∆f ≡ 0, and for any r < R, we have

(A.3)
∫

Br(x)
|Hessf |2 dm ⩽ C(K,N, r,R, L).

Note that the Hessian of a harmonic function f as above is well-defined
as a measurable tensor over BR(x) because of the locality of the Hessian
proved in [19, Proposition 3.3.24], see also [10, (1.1)]. The proof of (A.3)
is easily done by applying (4.5) with the good cut-off function constructed
in (1).

Finally let us recall a useful notation from the convergence theory;

(A.4) Ψ(ϵ1, ϵ2, . . . , ϵl; c1, c2, . . . , cm)

denotes a function Ψ : (R>0)l × Rm → (0,∞) satisfying

(A.5) lim
(ϵ1,...,ϵk)→0

Ψ(ϵ1, ϵ2, . . . , ϵl; c1, c2, . . . , cm) = 0, ∀ci.

The authors know that the following result is independently obtained in [8]
as an application of the heat flow when the paper is finalized. Our proof is
based on δ-splitting maps which is different from that of [8].

Theorem A.1 (Rellich compactness). — Let (X, d,m) be a compact
RCD(K,N) space. Then the canonical inclusion map:

(A.6) H1,2
C (T ∗(X, d,m)) ↪−→ L2(T ∗(X, d,m))

is a compact operator.

Proof. — With no loss of generality we can assume that m(X) = 1 and
N > 1. Let ωi be a bounded sequence in H1,2

C (T ∗(X, d,m)). By the L2-weak
compactness with no loss of generality we can assume that ωi L

2-weakly
converge to some ω ∈ L2(T ∗(X, d,m)). Our goal is to prove that this is an
L2-strong convergence.

Let us remark that thanks to [19, Proposition 3.4.6] (recall that for any
ω ∈ L2(T ∗(X, d,m)), ω ∈ W 1,2

C (T ∗(X, d,m) holds if and only if it holds
that ω♯ ∈ W 1,2

C (T (X, d,m))), we have |ωi|2 ∈ H1,1(X, d,m) with |∇|ωi|2| ⩽
2|∇ωi||ωi| for m-a.e. x ∈ X. In particular the Sobolev embedding theorem
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proved in [23, Theorem 5.1] yields

(A.7) sup
i

∥|ωi|2∥LpN < ∞,

where pN := N/(N − 1) because a Poincaré inequality is satisfied [37,
Theorem 1], and the Bishop–Gromov inequality implies that the inequality
m(Bs(y)) ⩾ C(s/r)Nm(Br(x)) for all x ∈ X, y ∈ Br(x) and s ∈ (0, r],
see [23, (21)].

Fix ϵ > 0 and put n := dimd,m(X). For any x ∈ Rn there exists
rx > 0 such that for any r ∈ (0, rx) there exists a harmonic map Φr,x =
(φr,x,1, φr,x,2, . . . , φr,x,n) : B2r(x) → Rn (that is, each φr,x,i is a harmonic
function on B2r(x)) such that |∇φr,x,i| ⩽ C(K,N) holds for any i, that

(A.8) 1
m(B2r(x))

∫
B2r(x)

|⟨∇φr,x,i,∇φr,x,j⟩ − δij | dm

+ r2

m(B2r(x))

∫
B2r(x)

|Hessφr,x,i
|2 dm ⩽ ϵ

holds for all i, j (see [10, Proposition 1.4]). Note that the L2-weak conver-
gence of ωi to ω yields that ⟨dφr,x,j , ωi⟩ L2-weakly converge to ⟨dφr,x,j , ω⟩
on B2r(x) for any j.

On the other hand applying [19, Proposition 3.4.6] (with a good cut-off
function as above) again yields ⟨dφr,x,j , ωi⟩ ∈ H1,1(Br(x), d,m) with

(A.9) |∇⟨dφr,x,j , ω⟩|
⩽ |Hessφr,x,j

||ωi| + |∇φr,x,j ||∇ωi|, for m-a.e. x ∈ Br(x).

For the reader’s convenience, let us provide a proof of the above. Take
φ ∈ D(∆) ∩ Lipb(X, d) such that 0 ⩽ φ ⩽ 1 holds, that φ ≡ 1 holds on
Br(x), that suppφ ⊂ B2r(x) and that |∇φ| + |∆f | ⩽ C(K,N, r) holds
for m-a.e. x ∈ X. Then since φφr,x,j ∈ D(∆) ∩ Lipb(X, d), applying [19,
Proposition 3.4.6] yields ⟨d(φφr,x,j), ωi⟩ ∈ H1,1(X, d,m) with

|∇⟨d(φφr,x,j), ω⟩|⩽ |Hessφφr,x,j ||ωi| + |∇φr,x,j ||∇(φωi)|, for m-a.e. x∈X.

Restricting this observation to Br(x) with the locality properties of the
gradient (for instance [19, Theorem 2.2.6]) and of the Hessian [19, Propo-
sition 3.3.24] proves the desired statement.

In particular (A.3) shows

(A.10) sup
i

∥⟨dφr,x,j , ωi⟩∥H1,1(Br(x),d,m) < ∞.

Therefore applying the Rellich compactness theorem for H1,1-functions
proved in [23, Theorem 8.1] shows that ⟨dφr,x,j , ωi⟩ Lp-strongly converge
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to ⟨dφr,x,j , ω⟩ on Br(x) for all p ∈ [1, pN ). By (A.7) we see that ⟨dφr,x,j , ωi⟩
L2-strongly converge to ⟨dφr,x,j , ω⟩ on Br(x) for any j.

Let

(A.11) A(r, x) :=
{
y ∈ Br(x); |⟨∇φr,x,i,∇φr,x,j⟩(y) − δij | ⩽ ϵ1/2,∀i, ∀j

}
.

Then the Markov inequality with (A.8) shows

(A.12) m(Br(x) \A(r, x))
m(Br(x)) ⩽ ϵ1/2.

Note that for any η ∈ L2(T ∗(X, d,m))

(A.13)

∣∣∣∣∣∣|η|2(y)−
∑

j

⟨dφr,x,j , η⟩2(y)

∣∣∣∣∣∣⩽Ψ (ϵ;n) |η|2, for a.e. y ∈ A(r, x).

See also [4, (5.36) and (5.37)]. Applying the Vitali covering theorem to a
family F := {Br(x)}x∈Rn,r<rx yields that there exists a pairwise disjoint
subfamily {Brj

(xj)}j∈N of F such that

(A.14) Rn \
k⊔

j=1
Brj

(xj) ⊂
⋃

j⩾k+1
B5rj

(xj), ∀k ∈ N+,

holds. Take k0 with
∑

j⩾k0+1 m(Brj (xj)) < ϵ. Then by (A.12) we have

(A.15) m

X \
k0⊔

j=1
A(rj , xj)


⩽ m

X \
k0⊔

j=1
Brj

(xj)

+
k0∑

j=1
m(Brj

(xj) \A(rj , xj))

⩽
∑

j⩾k0+1
m(B5rj

(xj)) + ϵ1/2
k0∑

j=1
m(Brj

(xj))

⩽ C(K,N)
∑

j⩾k0+1
m(Brj

(xj)) + ϵ1/2

⩽ Ψ(ϵ;K,N).
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Thus for any sufficiently large i we have

(A.16)
∫

X

|ωi|2 dm

=
k0∑

j=1

∫
A(rj ,xj)

|ωi|2 dm +
∫

X\
⊔k0

j=1
A(rj ,xj)

|ωi|2 dm

⩽
k0∑

j=1

n∑
l=1

∫
A(rj ,xj)

(⟨dφrj ,xj ,l, ωi⟩2 + Ψ(ϵ;n)|ωi|2) dm

+ m

X \
k0⊔

j=1
A(rj , xj)

1/qN

∥|ωi|2∥LpN

⩽
k0∑

j=1

n∑
l=1

∫
A(rj ,xj)

⟨dφrj ,xj ,l, ω⟩2 dm+Ψ(ϵ;n) sup
m

∥ωm∥2
L2

+ Ψ(ϵ;K,N) sup
m

∥|ωm|2∥LpN

⩽
k0∑

j=1

n∑
l=1

∫
A(rj ,xj)

(1 + Ψ(ϵ;n))|ω|2 dm

+ Ψ(ϵ;K,N)(sup
m

∥ωm∥2
L2 + sup

m
∥|ωm|2∥LpN )

⩽
∫

X

|ω|2 dm + Ψ(ϵ;K,N)(sup
m

∥ωm∥2
L2 + sup

m
∥|ωm|2∥LpN ),

where qN is the conjugate exponent of pN . Since ϵ is arbitrary, (A.16) shows
that

(A.17) lim sup
i→∞

∫
X

|ωi|2 dm ⩽
∫

X

|ω|2 dm

which completes the proof of the L2-strong convergence of ωi to ω. □

The following corollary is a direct consequence of Corollary 4.16 and
Theorem A.1 (see for instance the appendix of [28]).

Corollary A.2. — The spectrum of the Hodge Laplacian ∆H,1 acting
on 1-forms is discrete and unbounded. If we denote the spectrum by

(A.18) 0 ⩽ λ(H,1),1 ⩽ λ(H,1),2 ⩽ λ(H,1),3 ⩽ · · · ⩽ λ(H,1),k ⩽ · · · −→ ∞

counted with multiplicities, then corresponding eigen-1-forms ω1, ω2, . . .

with ∥ωk∥L2 = 1 give an orthogonal basis of L2(T ∗(X, d,m)).
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Remark A.3. — Under the same notation as in Corollary A.2, it is easy
to see that for any ω ∈ H1,2

H (T ∗(X, d,m)),

(A.19) ω =
∑

i

(∫
X

⟨ω, ωi⟩ dm
)
ωi

in H1,2
H (T ∗(X, d,m)). In particular (A.19) also holds in H1,2

C (T ∗(X, d,m))
because of (4.15).

Remark A.4. — As an immediate consequence of Theorem A.1, we are
able to prove a similar spectral decomposition result as in Corollary A.2 for
the connection Laplacian ∆C,1 acting on 1-forms. Moreover the technique
provided in the proof of Theorem A.1 allows us to prove similar decompo-
sition results for the connection Laplacians acting on differential forms and
tensor fields of any type. Compare with [27, 26].

Appendix B. Proof of (5.4)

In order to complete the proof of Proposition 5.1, we recall the follow-
ing local derivative estimates which are well-known. For our purpose, it is
enough to consider the case when the total space is complete because we
recall that Bϵ(y) appeared in the proof of Proposition 5.1 is actually an
open subset of a closed Riemannian manifold (Nn, h).

Lemma B.1. — Let (Un, g) be an n-dimensional complete Riemannian
manifold with Ricg ⩾ −Kg for some K > 0, and let u(x, t) be a smooth
solution to the heat equation on B2r(p)×(0, T ], for some p ∈ Un, 0 < r ⩽ 1
and T > 0. Then

(B.1) |∇u|2(x, t)

⩽ Cn∥u∥2
L∞(B2r(p)×(0,T ])

(
1
r2 + 1

t
+K

)
∀x ∈ Br(p), ∀t ∈ (0, T ].

Proof. — This is a direct consequence of a result of Souplet–Zhang in [40,
Theorem 1.1] which states that if u is a positive solution of the heat equa-
tion on B2r(p) × (0, T ) with u ⩽ L, then

(B.2) |∇u|2

u2 ⩽ Cn

(
1
r2 + 1

t
+K

)(
1 + log L

u

)
, on Br(p) × [T/2, T ).

Because in our setting, letting M = ∥u∥L∞(B2r(p)×(0,T ]) and, without loss
of generality, we can assume that M > 0. Consider a positive solution
u+ 2M of the heat equation on B2r(p) × (0, T ]. For any t ∈ (0, T ), finding
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T0 ∈ (0, T ) with t ∈ ( T0
2 , T0) and then applying (B.2) for this solution on

B2r(p) × ( T0
2 , T0) show (B.1) because of M ⩽ u+ 2M ⩽ 3M . □

Let us return to the proof of (5.4). For any V ∈ TyU , consider a smooth
function u(x, t) = g(∇y(p−pf,ϵ), V ). Observe that u(x, t) satisfies the heat
equation since

(B.3) ∂

∂t
u = g(∇y∆g

x(p− pf,ϵ), V ) = ∆g
xg(∇y(p− pf,ϵ), V ) = ∆gu,

where we used a fact that V is independent of x. We then apply Lemma B.1
twice to derive that for fixed y, take any x ∈ Bϵ/4(y) and then take t small
enough, we have

(B.4)
|∇u|(x, t) ⩽ C√

t
∥∇yp− ∇ypf,ϵ∥L∞(Bϵ/2(y))|V |

⩽
C

t
∥p− pf,ϵ∥L∞(Bϵ(y))|V | ⩽ C

t
e−ϵ2/6t |V |.

Then considering the case when x = y, for any W ∈ TyU , we get

|dS(p− pf,ϵ)(W,V )| ⩽ |W ||∇u|(y, t) ⩽ C

t
e−ϵ2/6t |V ||W |.(B.5)

Since V,W is arbitrary, we have

(B.6) |dS(p− pf,ϵ)| ⩽
C

t
eCt e−ϵ2/6t ⩽ C e−ϵ2/7t

which completes the proof of (5.4).
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