[Un système d’Euler anticyclotomique pour les représentations de Galois modulaires adjointes]
Soit un corps quadratique imaginaire et un nombre premier décomposé dans . Dans cet article, on construit un système d’Euler anticyclotomique pour le changement de base à de la représentation adjointe associée aux formes modulaires elliptiques. On relie ce système d’Euler à une fonction p-adique obtenue à partir de la construction par Eischen–Wan et Eischen–Harris–Li–Skinner des fonctions p-adiques pour les groupes unitaires. Ceci nous permet de déduire des nouveaux cas de la conjecture de Bloch–Kato en rang zéro, ainsi qu’une divisibilité vers une conjecture principale d’Iwasawa.
Let be an imaginary quadratic field and a prime split in . In this paper we construct an anticyclotomic Euler system for the adjoint representation attached to elliptic modular forms base changed to . We also relate our Euler system to a -adic -function deduced from the construction by Eischen–Wan and Eischen–Harris–Li–Skinner of -adic -functions for unitary groups. This allows us to derive new cases of the Bloch–Kato conjecture in rank zero, and a divisibility towards an Iwasawa main conjecture.
Révisé le :
Accepté le :
Première publication :
Keywords: Symmetric square, Euler systems, diagonal cycles, $p$-adic families of modular forms, Bloch–Kato conjecture, Iwasawa theory.
Mot clés : Carré symétrique, systèmes d’Euler, cycles diagonaux, familles $p$-adiques de formes modulaires, conjecture de Bloch–Kato, théorie d’Iwasawa.
Alonso, Raúl 1 ; Castella, Francesc 2 ; Rivero, Óscar 3
@unpublished{AIF_0__0_0_A103_0, author = {Alonso, Ra\'ul and Castella, Francesc and Rivero, \'Oscar}, title = {An anticyclotomic {Euler} system for adjoint modular {Galois} representations}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3646}, language = {en}, note = {Online first}, }
TY - UNPB AU - Alonso, Raúl AU - Castella, Francesc AU - Rivero, Óscar TI - An anticyclotomic Euler system for adjoint modular Galois representations JO - Annales de l'Institut Fourier PY - 2024 PB - Association des Annales de l’institut Fourier N1 - Online first DO - 10.5802/aif.3646 LA - en ID - AIF_0__0_0_A103_0 ER -
%0 Unpublished Work %A Alonso, Raúl %A Castella, Francesc %A Rivero, Óscar %T An anticyclotomic Euler system for adjoint modular Galois representations %J Annales de l'Institut Fourier %D 2024 %I Association des Annales de l’institut Fourier %Z Online first %R 10.5802/aif.3646 %G en %F AIF_0__0_0_A103_0
Alonso, Raúl; Castella, Francesc; Rivero, Óscar. An anticyclotomic Euler system for adjoint modular Galois representations. Annales de l'Institut Fourier, Online first, 39 p.
[1] Anticyclotomic Iwasawa theory of CM elliptic curves, Ann. Inst. Fourier, Volume 56 (2006) no. 4, pp. 1001-1048 | DOI | MR | Zbl
[2] The diagonal cycle Euler system for (2023) (to appear in J. Inst. Math. Jussieu, https://arxiv.org/abs/2106.05322)
[3] Anticyclotomic main conjectures for CM modular forms, J. Reine Angew. Math., Volume 606 (2007), pp. 41-78 | DOI | MR | Zbl
[4] -adic Rankin -series and rational points on CM elliptic curves, Pac. J. Math., Volume 260 (2012) no. 2, pp. 261-303 | DOI | MR | Zbl
[5] Reciprocity laws for balanced diagonal classes, Heegner points, Stark-Heegner points, and diagonal classes (Astérisque), Société Mathématique de France, 2022 no. 434, pp. 77-174 | MR
[6] Motives for Hilbert modular forms, Invent. Math., Volume 114 (1993) no. 1, pp. 55-87 | DOI | MR | Zbl
[7] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 333-400 | MR | Zbl
[8] Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, 1997, xiv+574 pages | DOI | MR | Zbl
[9] Factorization of -adic Rankin -series, Invent. Math., Volume 205 (2016) no. 1, pp. 221-268 | DOI | MR | Zbl
[10] Valeurs de fonctions et périodes d’intégrales, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society (1979), pp. 313-346 (with an appendix by N. Koblitz and A. Ogus) | MR | Zbl
[11] -adic -functions for unitary groups, Forum Math. Pi, Volume 8 (2020), e9, 160 pages | DOI | MR | Zbl
[12] Archimedean zeta integrals for unitary groups (2020) (https://arxiv.org/pdf/2006.04302.pdf)
[13] -adic Eisenstein series and -functions of certain cusp forms on definite unitary groups, J. Inst. Math. Jussieu, Volume 15 (2016) no. 3, pp. 471-510 | DOI | MR | Zbl
[14] A relation between automorphic representations of and , Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 4, pp. 471-542 | DOI | MR | Zbl
[15] On the Birch and Swinnerton-Dyer conjecture, Invent. Math., Volume 72 (1983) no. 2, pp. 241-265 | DOI | MR | Zbl
[16] Iwasawa theory and -adic deformations of motives, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, American Mathematical Society, 1994, pp. 193-223 | Zbl
[17] -adic -functions and -adic periods of modular forms, Invent. Math., Volume 111 (1993) no. 2, pp. 407-447 | DOI | Zbl
[18] Anticyclotomic main conjectures, Doc. Math., Volume Extra Vol. (2007), pp. 465-532 | Zbl
[19] Anti-cyclotomic Katz -adic -functions and congruence modules, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993) no. 2, pp. 189-259 | DOI | MR | Zbl
[20] On the anticyclotomic main conjecture for CM fields, Invent. Math., Volume 117 (1994) no. 1, pp. 89-147 | DOI | Zbl
[21] Variation of Heegner points in Hida families, Invent. Math., Volume 167 (2007) no. 1, pp. 91-128 | DOI | Zbl
[22] Hida families and -adic triple product -functions, Am. J. Math., Volume 143 (2021) no. 2, pp. 411-532 | DOI | MR | Zbl
[23] Anticyclotomic Euler Systems (in preparation)
[24] The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one, Camb. J. Math., Volume 5 (2017) no. 3, pp. 369-434 | DOI | MR | Zbl
[25] Euler systems for modular forms over imaginary quadratic fields, Compos. Math., Volume 151 (2015) no. 9, pp. 1585-1625 | DOI | Zbl
[26] Images of adelic Galois representations for modular forms, Glasg. Math. J., Volume 59 (2017) no. 1, pp. 11-25 | DOI | Zbl
[27] Iwasawa theory for the symmetric square of a modular form, J. Reine Angew. Math., Volume 752 (2019), pp. 179-210 | DOI | MR | Zbl
[28] On -adic representations attached to modular forms. II, Glasg. Math. J., Volume 27 (1985), pp. 185-194 | DOI | MR | Zbl
[29] Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, 123, Princeton University Press, 1990, xii+259 pages | DOI | MR | Zbl
[30] Iwasawa theory of elliptic curves with complex multiplication. -adic functions, Perspectives in Mathematics, 3, Academic Press Inc., 1987, x+154 pages | MR | Zbl
Cité par Sources :