An anticyclotomic Euler system for adjoint modular Galois representations
[Un système d’Euler anticyclotomique pour les représentations de Galois modulaires adjointes]
Annales de l'Institut Fourier, Online first, 39 p.

Soit K un corps quadratique imaginaire et p un nombre premier décomposé dans K. Dans cet article, on construit un système d’Euler anticyclotomique pour le changement de base à K de la représentation adjointe associée aux formes modulaires elliptiques. On relie ce système d’Euler à une fonction L p-adique obtenue à partir de la construction par Eischen–Wan et Eischen–Harris–Li–Skinner des fonctions L p-adiques pour les groupes unitaires. Ceci nous permet de déduire des nouveaux cas de la conjecture de Bloch–Kato en rang zéro, ainsi qu’une divisibilité vers une conjecture principale d’Iwasawa.

Let K be an imaginary quadratic field and p a prime split in K. In this paper we construct an anticyclotomic Euler system for the adjoint representation attached to elliptic modular forms base changed to K. We also relate our Euler system to a p-adic L-function deduced from the construction by Eischen–Wan and Eischen–Harris–Li–Skinner of p-adic L-functions for unitary groups. This allows us to derive new cases of the Bloch–Kato conjecture in rank zero, and a divisibility towards an Iwasawa main conjecture.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : 10.5802/aif.3646
Classification : 11R23, 11F85, 14G35
Keywords: Symmetric square, Euler systems, diagonal cycles, $p$-adic families of modular forms, Bloch–Kato conjecture, Iwasawa theory.
Mot clés : Carré symétrique, systèmes d’Euler, cycles diagonaux, familles $p$-adiques de formes modulaires, conjecture de Bloch–Kato, théorie d’Iwasawa.

Alonso, Raúl 1 ; Castella, Francesc 2 ; Rivero, Óscar 3

1 Department of Mathematics, Princeton University, Princeton, NJ 08544-1000 (USA)
2 Department of Mathematics, University of California, Santa Barbara, CA 93106 (USA)
3 Simons Laufer Mathematical Sciences Institute, 17 Gauss Way, Berkeley, CA 94720 (USA)
@unpublished{AIF_0__0_0_A103_0,
     author = {Alonso, Ra\'ul and Castella, Francesc and Rivero, \'Oscar},
     title = {An anticyclotomic {Euler} system for adjoint modular {Galois} representations},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2024},
     doi = {10.5802/aif.3646},
     language = {en},
     note = {Online first},
}
TY  - UNPB
AU  - Alonso, Raúl
AU  - Castella, Francesc
AU  - Rivero, Óscar
TI  - An anticyclotomic Euler system for adjoint modular Galois representations
JO  - Annales de l'Institut Fourier
PY  - 2024
PB  - Association des Annales de l’institut Fourier
N1  - Online first
DO  - 10.5802/aif.3646
LA  - en
ID  - AIF_0__0_0_A103_0
ER  - 
%0 Unpublished Work
%A Alonso, Raúl
%A Castella, Francesc
%A Rivero, Óscar
%T An anticyclotomic Euler system for adjoint modular Galois representations
%J Annales de l'Institut Fourier
%D 2024
%I Association des Annales de l’institut Fourier
%Z Online first
%R 10.5802/aif.3646
%G en
%F AIF_0__0_0_A103_0
Alonso, Raúl; Castella, Francesc; Rivero, Óscar. An anticyclotomic Euler system for adjoint modular Galois representations. Annales de l'Institut Fourier, Online first, 39 p.

[1] Agboola, Adebisi; Howard, Benjamin Anticyclotomic Iwasawa theory of CM elliptic curves, Ann. Inst. Fourier, Volume 56 (2006) no. 4, pp. 1001-1048 | DOI | MR | Zbl

[2] Alonso, Raúl; Castella, Francesc; Rivero, Óscar The diagonal cycle Euler system for GL 2 × GL 2 (2023) (to appear in J. Inst. Math. Jussieu, https://arxiv.org/abs/2106.05322)

[3] Arnold, Trevor Anticyclotomic main conjectures for CM modular forms, J. Reine Angew. Math., Volume 606 (2007), pp. 41-78 | DOI | MR | Zbl

[4] Bertolini, Massimo; Darmon, Henri; Prasanna, Kartik p-adic Rankin L-series and rational points on CM elliptic curves, Pac. J. Math., Volume 260 (2012) no. 2, pp. 261-303 | DOI | MR | Zbl

[5] Bertolini, Massimo; Seveso, Marco Adamo; Venerucci, Rodolfo Reciprocity laws for balanced diagonal classes, Heegner points, Stark-Heegner points, and diagonal classes (Astérisque), Société Mathématique de France, 2022 no. 434, pp. 77-174 | MR

[6] Blasius, Don; Rogawski, Jonathan D. Motives for Hilbert modular forms, Invent. Math., Volume 114 (1993) no. 1, pp. 55-87 | DOI | MR | Zbl

[7] Bloch, Spencer; Kato, Kazuya L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progress in Mathematics), Volume 86, Birkhäuser, 1990, pp. 333-400 | MR | Zbl

[8] Bump, Daniel Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, 1997, xiv+574 pages | DOI | MR | Zbl

[9] Dasgupta, Samit Factorization of p-adic Rankin L-series, Invent. Math., Volume 205 (2016) no. 1, pp. 221-268 | DOI | MR | Zbl

[10] Deligne, Pierre Valeurs de fonctions L et périodes d’intégrales, Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proceedings of Symposia in Pure Mathematics), Volume 33, American Mathematical Society (1979), pp. 313-346 (with an appendix by N. Koblitz and A. Ogus) | MR | Zbl

[11] Eischen, Ellen; Harris, Michael; Li, Jianshu; Skinner, Christopher p-adic L-functions for unitary groups, Forum Math. Pi, Volume 8 (2020), e9, 160 pages | DOI | MR | Zbl

[12] Eischen, Ellen; Liu, Zheng Archimedean zeta integrals for unitary groups (2020) (https://arxiv.org/pdf/2006.04302.pdf)

[13] Eischen, Ellen; Wan, Xin p-adic Eisenstein series and L-functions of certain cusp forms on definite unitary groups, J. Inst. Math. Jussieu, Volume 15 (2016) no. 3, pp. 471-510 | DOI | MR | Zbl

[14] Gelbart, Stephen; Jacquet, Hervé A relation between automorphic representations of GL (2) and GL (3), Ann. Sci. Éc. Norm. Supér., Volume 11 (1978) no. 4, pp. 471-542 | DOI | MR | Zbl

[15] Greenberg, Ralph On the Birch and Swinnerton-Dyer conjecture, Invent. Math., Volume 72 (1983) no. 2, pp. 241-265 | DOI | MR | Zbl

[16] Greenberg, Ralph Iwasawa theory and p-adic deformations of motives, Motives (Seattle, WA, 1991) (Proceedings of Symposia in Pure Mathematics), Volume 55, American Mathematical Society, 1994, pp. 193-223 | Zbl

[17] Greenberg, Ralph; Stevens, Glenn p-adic L-functions and p-adic periods of modular forms, Invent. Math., Volume 111 (1993) no. 2, pp. 407-447 | DOI | Zbl

[18] Hida, Haruzo Anticyclotomic main conjectures, Doc. Math., Volume Extra Vol. (2007), pp. 465-532 | Zbl

[19] Hida, Haruzo; Tilouine, Jacques Anti-cyclotomic Katz p-adic L-functions and congruence modules, Ann. Sci. Éc. Norm. Supér., Volume 26 (1993) no. 2, pp. 189-259 | DOI | MR | Zbl

[20] Hida, Haruzo; Tilouine, Jacques On the anticyclotomic main conjecture for CM fields, Invent. Math., Volume 117 (1994) no. 1, pp. 89-147 | DOI | Zbl

[21] Howard, Benjamin Variation of Heegner points in Hida families, Invent. Math., Volume 167 (2007) no. 1, pp. 91-128 | DOI | Zbl

[22] Hsieh, Ming-Lun Hida families and p-adic triple product L-functions, Am. J. Math., Volume 143 (2021) no. 2, pp. 411-532 | DOI | MR | Zbl

[23] Jetchev, Dimitar; Nekovář, Jan; Skinner, Christopher Anticyclotomic Euler Systems (in preparation)

[24] Jetchev, Dimitar; Skinner, Christopher; Wan, Xin The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one, Camb. J. Math., Volume 5 (2017) no. 3, pp. 369-434 | DOI | MR | Zbl

[25] Lei, Antonio; Loeffler, David; Zerbes, Sarah Livia Euler systems for modular forms over imaginary quadratic fields, Compos. Math., Volume 151 (2015) no. 9, pp. 1585-1625 | DOI | Zbl

[26] Loeffler, David Images of adelic Galois representations for modular forms, Glasg. Math. J., Volume 59 (2017) no. 1, pp. 11-25 | DOI | Zbl

[27] Loeffler, David; Zerbes, Sarah Livia Iwasawa theory for the symmetric square of a modular form, J. Reine Angew. Math., Volume 752 (2019), pp. 179-210 | DOI | MR | Zbl

[28] Ribet, Kenneth A. On l-adic representations attached to modular forms. II, Glasg. Math. J., Volume 27 (1985), pp. 185-194 | DOI | MR | Zbl

[29] Rogawski, Jonathan D. Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, 123, Princeton University Press, 1990, xii+259 pages | DOI | MR | Zbl

[30] de Shalit, Ehud Iwasawa theory of elliptic curves with complex multiplication. p-adic L functions, Perspectives in Mathematics, 3, Academic Press Inc., 1987, x+154 pages | MR | Zbl

Cité par Sources :