[Un système d’Euler anticyclotomique pour les représentations de Galois modulaires adjointes]
Soit
Let
Révisé le :
Accepté le :
Publié le :
Keywords: Symmetric square, Euler systems, diagonal cycles,
Mots-clés : Carré symétrique, systèmes d’Euler, cycles diagonaux, familles
Alonso, Raúl 1 ; Castella, Francesc 2 ; Rivero, Óscar 3

@article{AIF_2025__75_1_291_0, author = {Alonso, Ra\'ul and Castella, Francesc and Rivero, \'Oscar}, title = {An anticyclotomic {Euler} system for adjoint modular {Galois} representations}, journal = {Annales de l'Institut Fourier}, pages = {291--329}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {75}, number = {1}, year = {2025}, doi = {10.5802/aif.3646}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3646/} }
TY - JOUR AU - Alonso, Raúl AU - Castella, Francesc AU - Rivero, Óscar TI - An anticyclotomic Euler system for adjoint modular Galois representations JO - Annales de l'Institut Fourier PY - 2025 SP - 291 EP - 329 VL - 75 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3646/ DO - 10.5802/aif.3646 LA - en ID - AIF_2025__75_1_291_0 ER -
%0 Journal Article %A Alonso, Raúl %A Castella, Francesc %A Rivero, Óscar %T An anticyclotomic Euler system for adjoint modular Galois representations %J Annales de l'Institut Fourier %D 2025 %P 291-329 %V 75 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3646/ %R 10.5802/aif.3646 %G en %F AIF_2025__75_1_291_0
Alonso, Raúl; Castella, Francesc; Rivero, Óscar. An anticyclotomic Euler system for adjoint modular Galois representations. Annales de l'Institut Fourier, Tome 75 (2025) no. 1, pp. 291-329. doi : 10.5802/aif.3646. https://aif.centre-mersenne.org/articles/10.5802/aif.3646/
[1] Anticyclotomic Iwasawa theory of CM elliptic curves, Ann. Inst. Fourier, Volume 56 (2006) no. 4, pp. 1001-1048 | DOI | Numdam | MR | Zbl
[2] The diagonal cycle Euler system for
[3] Anticyclotomic main conjectures for CM modular forms, J. Reine Angew. Math., Volume 606 (2007), pp. 41-78 | DOI | MR | Zbl
[4]
[5] Reciprocity laws for balanced diagonal classes, Heegner points, Stark-Heegner points, and diagonal classes (Astérisque), Société Mathématique de France, 2022 no. 434, pp. 77-174 | MR
[6] Motives for Hilbert modular forms, Invent. Math., Volume 114 (1993) no. 1, pp. 55-87 | DOI | MR | Zbl
[7]
[8] Automorphic forms and representations, Cambridge Studies in Advanced Mathematics, 55, Cambridge University Press, 1997, xiv+574 pages | DOI | MR | Zbl
[9] Factorization of
[10] Valeurs de fonctions
[11]
[12] Archimedean zeta integrals for unitary groups (2020) (https://arxiv.org/pdf/2006.04302.pdf)
[13]
[14] A relation between automorphic representations of
[15] On the Birch and Swinnerton-Dyer conjecture, Invent. Math., Volume 72 (1983) no. 2, pp. 241-265 | DOI | MR | Zbl
[16] Iwasawa theory and
[17]
[18] Anticyclotomic main conjectures, Doc. Math., Volume Extra Vol. (2007), pp. 465-532 | MR | Zbl
[19] Anti-cyclotomic Katz
[20] On the anticyclotomic main conjecture for CM fields, Invent. Math., Volume 117 (1994) no. 1, pp. 89-147 | DOI | MR | Zbl
[21] Variation of Heegner points in Hida families, Invent. Math., Volume 167 (2007) no. 1, pp. 91-128 | DOI | MR | Zbl
[22] Hida families and
[23] Anticyclotomic Euler Systems (in preparation)
[24] The Birch and Swinnerton-Dyer formula for elliptic curves of analytic rank one, Camb. J. Math., Volume 5 (2017) no. 3, pp. 369-434 | DOI | MR | Zbl
[25] Euler systems for modular forms over imaginary quadratic fields, Compos. Math., Volume 151 (2015) no. 9, pp. 1585-1625 | DOI | MR | Zbl
[26] Images of adelic Galois representations for modular forms, Glasg. Math. J., Volume 59 (2017) no. 1, pp. 11-25 | DOI | MR | Zbl
[27] Iwasawa theory for the symmetric square of a modular form, J. Reine Angew. Math., Volume 752 (2019), pp. 179-210 | DOI | MR | Zbl
[28] On
[29] Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, 123, Princeton University Press, 1990, xii+259 pages | DOI | MR | Zbl
[30] Iwasawa theory of elliptic curves with complex multiplication.
- An anticyclotomic Euler system of Hirzebruch–Zagier cycles I: Norm relations and
-adic interpolation, arXiv (2025) | DOI:10.48550/arxiv.2501.15336 | arXiv:2501.15336 - THE DIAGONAL CYCLE EULER SYSTEM FOR, Journal of the Institute of Mathematics of Jussieu (2023), p. 1 | DOI:10.1017/s1474748023000221
- Diagonal cycles and anticyclotomic Iwasawa theory of modular forms, arXiv (2023) | DOI:10.48550/arxiv.2303.06751 | arXiv:2303.06751
- The diagonal cycle Euler system for
, arXiv (2021) | DOI:10.48550/arxiv.2106.05322 | arXiv:2106.05322
Cité par 4 documents. Sources : Crossref, NASA ADS