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STACKY HEIGHTS ON ELLIPTIC CURVES IN
CHARACTERISTIC 3

by Aaron LANDESMAN (*)

Abstract. — We show there are no stacky heights on the moduli stack of stable
elliptic curves in characteristic 3 which induce the usual Faltings height, negatively
answering a question of Ellenberg, Satriano, and Zureick-Brown.

Résumé. — Nous montrons qu’il n’existe pas de hauteur sur le champ de mo-
dules des courbes elliptiques en caractéristique 3 qui induit la hauteur de Faltings
usuelle. Cela donne une réponse négative à une question posée par Ellenberg, Sa-
triano et Zureick-Brown.

1. Introduction

In this paper, we investigate heights on the compactified moduli stack
of elliptic curves in characteristic 3. We show that the notion of stacky
height introduced in [2] does not always recover the classical notion of
height. Specifically, we show there is no vector bundle whose associated
stacky height induces the usual notion of Faltings height for elliptic curves
in characteristic 3.

Throughout this paper, we work over a fixed perfect field k of charac-
teristic 3. Let M 1,1 denote the Deligne-Mumford moduli stack of stable
elliptic curves over k. Given a finite field extension K over k(t) and an
elliptic curve E → Spec K, there is a Faltings height on that elliptic curve,
which we define as follows.

Definition 1.1. — Given E → Spec K as above, let C be the regular
proper connected curve over k whose generic point is Spec K and let f :
X → C denote the minimal proper regular model of E → Spec K. The
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2 Aaron LANDESMAN

Faltings height of E is given by deg f∗ωX/C . Thinking of E → Spec K as
a K point of M 1,1, given by x : Spec K → M 1,1, we denote this Faltings
height by ht(x).

Remark 1.2. — The Faltings height is also computable by the formula
1

12 deg(∆X/C) where ∆X/C is the discriminant of the relative elliptic sur-
face, viewed as a section of H0(C, f∗ω⊗12

X/C).

On the other hand, suppose we are given a vector bundle V on M 1,1 and
a K point x : Spec K → M 1,1, corresponding to a stable elliptic curve E →
Spec K. Ellenberg, Satriano, and Zureick-Brown [2, Definition 2.11] define
a notion of height associated to x and V , notated htV (x), see Definition 2.4.
Suppose k′ is a field of characteristic not 2 or 3, and let ω denote the Hodge
bundle over (M1,1)k′ . That is, ω := f∗ωE /(M1,1)k′

for f : E → (M1,1)k′

the universal stable elliptic curve. Then [2, Proposition 3.11] show that,
for K a finite extension of k′(t), and x : Spec K → (M1,1)k′ a point,
htω(x) = ht(x), with the latter notion of Faltings height as defined in
Definition 1.1. However, as [2, p. 27] observe, for k a field of characteristic
3, it is no longer true that htω(x) = ht(x) for all x : Spec K → M 1,1.
In particular, they show cubic twists of the form y2 = x3 − x + f(t), for
f(t) ∈ k[t], all have height 0 with respect to the Hodge bundle, even though
their Faltings heights can be nonzero.

Moreover, they show there is no line bundle L on M 1,1 for which
htL (x) = ht(x) [2, p. 27]. This leads to the following question:

Question 1.3. — Is there some vector bundle V (necessarily of rank
more than 1) on M 1,1 so that htV (x) = ht(x) for every x : Spec K → M 1,1
over a field of characteristic 2 or 3?

In this note, we show that the answer is “no” when k is a perfect field of
characteristic 3. More precisely, we have the following:

Theorem 1.4. — Let M 1,1 denote the Deligne–Mumford stack of sta-
ble elliptic curves over a perfect field k of characteristic 3. There is no vector
bundle V on M 1,1 for which htV (x) = ht(x) for all points x : Spec K →

M 1,1, where K is a finite extension of k(t).

We deduce this from Theorem 3.2 in Section 3.1.
This result leaves open the question as to whether there some vector

bundle W on M 1,1, over a field of characteristic 3, and some integer n so
that n ht(x) = htW (x). We conjecture the answer is no:

ANNALES DE L’INSTITUT FOURIER



STACKY HEIGHTS ON ELLIPTIC CURVES IN CHARACTERISTIC 3 3

Conjecture 1.5. — There is no vector bundle W on M 1,1, over a field
of characteristic 3, for which there exists an integer n such that n ht(x) =
htW (x).

See [5, Remark 9.2.7 and 9.2.8] for some speculation related to this con-
jecture.

Another related question, originally posed to us by Jordan Ellenberg, is
whether there exist Northcott stacky heights on M 1,1 in characteristic 3.
We say a height function on the set of k(t) points of a stack X satisfies
the Northcott property if there are finitely many such points of bounded
height, cf. [2, p. 4].

Question 1.6 (Ellenberg). — Does there exist a vector bundle V on
M 1,1 over a finite field of characteristic 3 whose induced height function htV

is Northcott?
Remark 1.7. — In [5, Theorem 9.2.4], I had claimed there do exist such

Northcott bundles. However, the proof of this relies on [5, Lemma 9.7.1],
which contains an error where I incorrectly claimed that trigonal curves
have a certain minimal form without justification. This leaves the above
question open.

1.1. Idea of the proof of Theorem 1.4

We use notation for Kodaira reduction type, as pictured in [7, p. 365].
The idea of the proof of Theorem 1.4 is to show that any V which induces
the correct local stacky height for places of type Kodaira III reduction
necessarily induces the incorrect local stacky height for cubic twists.

We now elaborate on the above idea. The substack BG ⊂ M 1,1 corre-
sponding to elliptic curves with j-invariant 0 has geometric automorphism
group G, where G is the dicyclic group of order 12. When we restrict V to
BG, we obtain a G-representation ρ. We show that some element g ∈ G

of order 4 acts with a codimension 1 fixed space and no eigenvalues equal
to −1. This is enough to deduce that ρ is a sum of 1-dimensional rep-
resentations, and hence factors through the abelianization of G. We then
show that any such vector bundle cannot detect nontrivial stacky heights
associated to elliptic curves which are isotrivial cyclic cubic twists.

1.2. Overview

The structure of this paper is as follows. We review the notion of stacky
heights in Section 2. We then reduce Theorem 1.4 to the statement about

TOME 0 (0), FASCICULE 0



4 Aaron LANDESMAN

local stacky heights, Theorem 3.2, at the end of Section 3. Finally, we prove
Theorem 3.2 at the end of Section 6, using a group theoretic input from
Section 4.
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Matt Satriano, Ravi Vakil, Takehiko Yasuda, and David Zureick-Brown for
helpful conversations.

2. Review of the definition of heights on stacks

We now recall the definition of heights on stacks introduced in [2].

Definition 2.1. — Let k be a field, let C be a regular proper integral
curve over k, and let K := K(C). Let X be an algebraic stack over k

and x : Spec K → X be a K-point. A tuning stack C for x is a normal
algebraic stack C with finite diagonal together with a map x : C → X

extending x so that π : C → C is a birational coarse space map. A tuning
stack (C , x, π) is a universal tuning stack if it is terminal among all all
tuning stacks.

Remark 2.2. — Although we will not need it, one can also extend Def-
inition 2.1 to the number field case as follows. Let L be a number field,
B = Spec OL, and let X be an algebraic stack over B. Let K/L be a finite
extension of number fields and x : Spec K → X be a K point. A tuning
stack C for x is then a normal algebraic stack C with finite diagonal to-
gether with a map x : C → X extending x so that π : C → Spec OK is a
birational coarse space map.

Remark 2.3. — This definition of tuning stack differs slightly from that
of [2, Definition 2.1], in that we do not require X to be a stack over C.
In particular, if X is a stack over a base k, we may discuss tuning stacks
and heights of points associated to function fields of transcendence degree
1 over k.

We now recall the notion of stacky height.

ANNALES DE L’INSTITUT FOURIER
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Definition 2.4 ([2, Definition 2.11]). — Let X be a proper algebraic
stack over a field k with finite diagonal, let C be a smooth proper connected
curve over k with function field K(C). Let V be a vector bundle on X and
x ∈ X (K(C)). If C is a tuning stack for x and x, π are the corresponding
maps defined in Definition 2.1, then we define the height of x with respect
to V as

htV (x) := − degC (π∗x∗V ∨) .

We also define the stable height of x with respect to V as

htst
V (x) := − degC (x∗V ∨) .

To make sense of this definition, one has to check various properties. For
example, one must verify this notion is independent of the choice of tuning
stack. These are verified in [2, § 2.2].

One can also define heights in the number field case, but then one has to
use metrized line bundles and Arakelov heights as in [2, Appendix A]. We
will only be concerned with the function field case, and so do not discuss
this further.

Finally, we recall the notion of local stacky height, which will play a
crucial role in our proof.

Notation 2.5. — Let L be a field and let K either be a number field or a
finite extension of L(t) with regular model C. Here, C is the spectrum of
the ring of integers OK in the case K is a number field and a regular proper
curve over L when K is a function field. Suppose x : Spec K → X is a K

point of a stack X locally of finite presentation and with finite diagonal,
so that X possess a coarse moduli space α : X → X. Let C denote the
universal tuning stack associated to x, as in Definition 2.1 or Remark 2.2.
Let Cv denote the localization of C at v and let Cv := C ×C Cv. Then, we
have a diagram

(2.1)

Spec K

Cv C X

Cv C X.

x

x

π α

In this setting, for V a vector bundle on X and v a place of K, we recall
the definition of the local stacky height, which is equivalent to that given
in [2, Definition 2.21]. The local stacky height associated to x and V at the
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6 Aaron LANDESMAN

place v as

δV ;v(x) := deg(coker (γ∗π∗π∗x∗V ∨ → γ∗x∗V ∨)).

3. The reduction to j = 0

In this section, we explain how to reduce Theorem 1.4 to another result
about the structure of our vector bundle restricted to a particular residual
gerbe of M 1,1. In order to prove our main result, we will need to examine
elliptic curves with extra automorphisms. The next remark describes them.

Remark 3.1. — Recall that there are only 2 possibilities for the geometric
automorphism group of an elliptic curve in characteristic 3. It is either Z/2Z
or the dicyclic group of order 12, which we denote G. The following basic
facts about G can be found in [4]. This dicyclic group G of order 12 is a
semidirect product G ≃ Z/3Z ⋊ Z/4Z where a generator of Z/4Z acts on
Z/3Z by the nontrivial automorphism. For the remainder, we fix a splitting
to identify Z/4Z as a subgroup of G.

It will be useful to note that the center of G is Z/2Z, which can be
identified as an index 2 subgroup of Z/4Z for any choice of splitting Z/4Z →
G. The quotient of G by its central Z/2Z is isomorphic to S3.

Further, a semistable elliptic curve has geometric automorphism group
G if and only if its j invariant is 0.

The key to proving Theorem 1.4 is the following:

Theorem 3.2. — Suppose k is an algebraically closed field of charac-
teristic 3. Suppose V is a vector bundle on M 1,1 for which htV (x) = ht(x)
for all points x : Spec K → M 1,1, for K ranging over finite extensions of
k(t). Let ι : [Spec k/G] → M 1,1 be the residual gerbe over the point of j-
invariant 0, with G as in Remark 3.1. If γ : [Spec k/(Z/3Z)] → [Spec k/G]
denotes the quotient by Z/4Z, then γ∗ι∗V is trivial.

We prove this in Section 6.1.
We next verify Theorem 1.4 assuming Theorem 3.2.

3.1. Proof of Theorem 1.4 assuming Theorem 3.2

To prove Theorem 3.2, that no vector bundle can induce a stacky height
which agrees with Faltings height, We first observe we may assume k is

ANNALES DE L’INSTITUT FOURIER
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algebraically closed. Indeed, both Faltings height and stacky height are
preserved under base change along extensions of k.

By Theorem 3.2, any point x : Spec K → M 1,1 factoring through
B(Z/3Z) at the point of M 1,1 corresponding to j-invariant 0 must have
htV (x) = 0. Therefore, it suffices to construct an elliptic curve over Spec k(t)
so that the associated map x : Spec k(t) → M 1,1 factors through
Spec k(t) → [Spec k/(Z/3Z)] → [Spec k/G] → M 1,1 but so that x has
nontrivial Faltings height. Indeed, we can easily construct cubic twists of
the form y2 = x3 − x + f(t) with nontrivial Faltings height. As a concrete
example, we can take f(t) = t + t4 which has additive reduction at infinity
and Faltings height 1, as can be verified with a computer. It is therefore
enough to verify the associated map Spec k(t) → M 1,1 factors through
[Spec k/(Z/3Z)]. Indeed, the isotrivial elliptic curve y2 = x3 − x + f(t)
becomes trivial over the Z/3Z-extension k(t)[v]/(v3 − v − f(t)), as then we
can substitute x − v for x to obtain

y2 = (x − v)3 − (x + v) + f(t)

= x3 − x − (v3 − v) + f(t)

= x3 − x − f(t) + f(t)

= x3 − x.

4. Representations of G in characteristic 3

Throughout this section, we work over a field k of characteristic 3 con-
taining all 4th roots of unity. Let G denote the dicyclic group of order 12,
as described in Remark 3.1. In order to prove Theorem 3.2, we will need to
analyze G-representations in characteristic 3. The only result in this section
we will use in the proof of Theorem 3.2 is Proposition 4.5. To begin, we
show we can decompose any G-representation into two subrepresentations,
depending on how the center of G acts.

Lemma 4.1. — Let V be a G representation over a base field k of char-
acteristic 3 containing 4th roots of unity. Then V splits as a direct sum
V+ ⊕ V− where V+ ⊂ V is the subspace on which the nontrivial central ele-
ment α ∈ G acts by id and V− ⊂ V is the subspace on which α acts by − id.

Proof. — This follows from a standard averaging trick. Namely, It is
enough to realize V1 and V2 as subrepresentations of V . Since 2 is invert-
ible on the base and α has order 2, ρ(α) is a diagonalizable matrix, so
V1 ⊕ V2 = V .

TOME 0 (0), FASCICULE 0



8 Aaron LANDESMAN

To check V1 and V2 are subrepresentations, it suffices to show that for
any v ∈ Vi and any g ∈ G, ρ(g)v ∈ Vi. We first check this for i = 1. Since
ρ(α)|V1 = id and ρ(α)|V2 = − id, we have 1

2 (id +ρ(α)) is the projector
V → V1 which acts as the identity on V1. This projector is well defined as 2
is invertible on the base. Then for any v ∈ V1, using that α is central in G,

ρ(g)v = ρ(g)
(

1
2 (id +ρ(α)) v

)
=

(
1
2 (id +ρ(α))

)
(ρ(g)v) ∈ V1

The case i = 2 is completely analogous, using the projector 1
2 (id −ρ(α)) in

place of 1
2 (id +ρ(α)). □

Using the surjection G → S3, we will want the following elementary fact
about S3 representations.

Lemma 4.2. — Let ρ : S3 → GL(V ) be a indecomposable representation
over a field k of characteristic 3, with dimension at least 2. Let τ ∈ S3 be
a transposition. Then, ρ(τ) has at least two distinct eigenvalues.

Proof. — Because τ has order 2, ρ(τ) is semisimple, and all eigenvalues
are ±1. Therefore, it is enough to show ρ(τ) cannot be ± id. After possibly
tensoring with the sign representation, it is enough to show ρ(τ) ̸= id. Since
transpositions generate S3, ρ(τ) = id implies ρ is trivial. Since dim ρ > 1,
it is not indecomposable. □

Remark 4.3. — According to [3, p. 160], there are precisely 6 indecompos-
able representations of S3 in characteristic 3: the trivial representation, the
standard representation, the permutation representation, and those three
representations tensored with the sign representation, and one can also de-
duce Lemma 4.2 directly from this classification. I had claimed to give an
alternate proof of this classification in [5, Theorem 9.8.2], though the proof
there has a number of errors.

Combining the above lemmas, we next show that if an order 4 element
has η as an eigenvalue under ρ, it also has −η as an eigenvalue.

Lemma 4.4. — Let ρ be an indecomposable G-representation of dimen-
sion at least 2 over a field k of characteristic 3 containing 4th roots of unity,
and g ∈ G has order 4. If η is a primitive fourth root of unity which is an
eigenvalue of ρ(g), then so is −η.

Proof. — Let α = g2 so that α generates the center of G. By Lemma 4.1,
we have that either V = V+ or V = V− where α acts on V+ by id and α

acts on V− by − id. After tensoring ρ with a 1 dimensional representation
in which g acts by η, we may assume V = V+. Since α generates the kernel

ANNALES DE L’INSTITUT FOURIER
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of the surjection G → S3 and α acts trivially on V = V+, ρ factors through
S3. By Lemma 4.2, ρ(g) must have both ±1 as an eigenvalue, as we wished
to show. □

We can now use the above lemma to deduce our main group-theoretic
result for G-representations.

Proposition 4.5. — Suppose ρ : G → GL(V ) is a G-representation
over a field k of characteristic 3 containing 4th roots of unity. If there is
an order 4 element g ∈ G so that ρ(g) has a codimension 1 eigenspace
with eigenvalue 1 and the remaining eigenvalue is a primitive fourth root
of unity η, then ρ is a sum of 1-dimensional representations. In particular,
ρ : G → GL(V ) factors through the abelianization of G, ρ : G → Z/4Z →
GL(V ).

Proof. — By Lemma 4.4, if ρ is any indecomposable representation of
dimension at least 2, then if a primitive fourth root of unity η shows up as
an eigenvalue of ρ(g), so does −η. Therefore, ρ is a sum of 1-dimensional
representations. Hence ρ factors through the abelianization of G. □

5. Review of local Faltings heights

In order to prove our main result, we will need the notion of local Faltings
heights, which we now briefly review.

For K a finite extension of k(t) and v a closed point of the proper regular
model of K over k and x : Spec K → M 1,1, we let δV ;v(x) denote the
local stacky height associated to V and x at v, as defined in Notation 2.5.
Further, [2] define a notion of stable stacky height htst

V (x), see Definition 2.4
which satisfies the relation htst

V (x) +
∑

v δV ;v(x) = htV (x). We next recall
the analogous notion of local and stable Faltings height associated to elliptic
curves.

Definition 5.1. — Let x : Spec K → M 1,1 be a point. For each closed
point v, let Spec L → Spec K be a finite extension over which x acquires
semistable reduction at v. Define the local stable Faltings height of x at
v, notated htst

v (x), to be htst
v (x) := 1

12
∑

w|v
1

deg(L/K) deg(∆w), for ∆w the
discriminant of w restricted to the local ring at w, for w ranging over
closed points of L over v. Define the stable Faltings height by htst(x) :=∑

v htst
v (x).

Also, define the local Faltings height of x : Spec K → M 1,1 at a closed
point v, notated htv(x), to be 1

12 (deg ∆v) − htst
v (x).

TOME 0 (0), FASCICULE 0



10 Aaron LANDESMAN

Using uniqueness of semistable models, one may verify the above notion
of stable Faltings height is well defined, and can be computed explicitly in
terms of the discriminant at various closed points v. In what follows, we use
Kodaira’s notation for reduction type of elliptic curves. See, for example,
[7, IV Section 9], especially the chart on [7, p. 365].

Example 5.2. — When the fiber at a k-rational closed point v has re-
duction type I∗

n, we have deg ∆v = n + 6 by [7, p. 365]. The valuation of
the j-invariant of a given Kodaira reduction type is ⩾ 0 if and only if that
curve has potentially good reduction after a base change, and is equal to
−n if that curve has In reduction after a base change. From [7, p. 365], we
therefore find that htst

v (x) = 1
12 n, and hence htv(x) = 1

12 (n+6)− 1
12 n = 1/2.

6. Computing heights on M 1,1

To conclude the proof of Theorem 1.4, it remains to prove Theorem 3.2.
We do so at the end of this section. The basic idea is to compute what
the restriction of V to BG has to be using Proposition 4.5 and studying
the action of a certain order 4 element of G. This is done via Lemma 6.3,
whose hypothesis is verified in Lemma 6.6.

Remark 6.1. — If we have an elliptic curve with reduction II, III, IV,
II∗, III∗, or IV∗ at v, it has potentially good reduction, with corresponding
j invariant 0 by [6, Theorem 2.1]. Therefore, if x : Spec K → M 1,1 is
a map with one of the above reduction types at v, we must have that v

maps to the point of M 1,1 lying over j = 0 in the coarse moduli space, for
j : M 1,1 → P1 the coarse moduli space of M 1,1.

We next introduce some notation used heavily in the remainder of the
proof.

Notation 6.2. — We will assume k = k. Suppose we have some vector
bundle V on M 1,1, a point x : Spec K → M 1,1, and a place v of K

so that δV ;v(x) = htv(x). Note that M 1,1 has coarse space given by the
j-invariant map j : M 1,1 → P1

k. Construct the universal tuning stack
C → M 1,1. Let B(Gv) denote the residual gerbe of C at the place v,
so that we obtain an induced map B(Gv) → BG

ι−→ M 1,1 inducing an
injection Gv → G on inertia groups. Let s denote the geometric point
over BG → M 1,1. Then, under the identification between vector bundles
on BG and G representations, ι∗V can be viewed as a G-representation
ρ : G → GL(V |s).

ANNALES DE L’INSTITUT FOURIER
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Now, recall that in Remark 3.1, we chose a splitting Z/4Z → G. Fix a
generator 1 of Z/4Z in G. This abelian group then has a diagonalizable
action on V |s. When we restrict ρ to a Z/4Z representation, we obtain a
decomposition ρ|Z/4Z ≃ ⊕3

i=0χ⊕bi
i where χi are the four characters of Z/4Z

given by χi(1) = ζi for ζ a fixed primitive 4th root of unity.

We can now characterize the bi appearing in the above decomposition of
ρ|Z/4Z. For the proof, it will be useful to recall the notation for local heights
introduced in Section 5.

Lemma 6.3. — Suppose V satisfies δV ;v(x) = htv(x) for some place
v at which x has type III reduction. Under the above decomposition of
ρ|Z/4Z ≃ ⊕3

i=0χ⊕bi
i from Notation 6.2, after possibly modifying our choice

of generator 1 for Z/4Z, we have b0 = dim ρ − 1, b1 = 1 and b2 = b3 = 0.

Proof. — We first set up notation to describe the Z/4Z representation.
From the explicit computation of the discriminant for an elliptic curve
x : Spec K → M 1,1 with a closed point v of type III reduction, we know
htv(x) = 1

4 , by [7, p. 365]. Therefore, we must have δV ;v(x) = 1/4. Now, x

induces a tuning stack map x : C → M 1,1 with coarse space π : C → C.
Let Cv be the local scheme at v ∈ C and let Cv = π−1(Cv). Because v

acquires semistable reduction after a degree 4 cyclic extension, but not
after any smaller extension, the residual gerbe of C at v is Gv := Z/4Z
and the induced map on residual gerbes B(Gv) → BG is obtained from
an injection Z/4Z = Gv → G. Denote by α : B(Gv) → BG → M 1,1 the
composite map above. We may view α∗V ∨ as a Z/4Z representation.

We claim that under the above identification, we may view α∗V ∨ as
the direct sum of a 1-dimensional faithful representation of Z/4Z and a
codimension 1 trivial representation. This will complete the proof because
after modifying the generator, we can assume the faithful representation is
χ1, in which case b0 = dim ρ − 1, b1 = 1 and b2 = b3 = 0.

To prove our claim, we will need the following assertion: In general,
if W is a vector bundle on Cv, we assert one can read off the degree of
W from the µ4 representation corresponding to the restriction of W to
the residual µ4 gerbe over v. We now explain how this assertion follows
from [1, Théorème 3.13], which shows there is a correspondence between
vector bundles on the tame stacky curve Cv and parabolic bundles on Cv.
This correspondence preserves degree, which is shown for proper curves
in [1, Théorème 4.3], but the proof works equally well for localizations by
restricting from the proper case. However, the definition of parabolic degree
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12 Aaron LANDESMAN

on Cv, as in [1, Définition 4.1] is then given in terms of the corresponding
µ4 representation obtained by restricting the vector bundle on Cv to v.

We next describe how to compute the degree of the vector bundle W

from the previous paragraph. Choose an isomorphism µ4 ≃ Z/4Z, which
is possible since k = k. Suppose the vector bundle W on Cv corresponds
to a Z/4Z-representation ρ′. It follows from the definition of parabolic
degree that we can express the degree of W as follows: Let ζ denote a fixed
primitive fourth root of unity as in Notation 6.2. There is some generator
g ∈ Z/4Z so that ρ′(g) has a bi dimensional eigenspace with eigenvalue ζi,
and deg W =

∑3
i=1

bi

4 .

We now return to proving our claim. If g is a generator of Z/4Z, we have
seen any nontrivial eigenvalue of ρ(g) contributes at least 1/4 to the degree
δV ;v(x). Since δV ;v(x) = 1/4, we find that α∗V ∨ must be the direct sum of
a codimension 1 trivial representation and a 1-dimensional nontrivial rep-
resentation. Moreover, that 1-dimensional representation must be faithful,
as otherwise δV ;v(x) = 1/4 would be a multiple of 1/2. □

In order to apply Lemma 6.3 to prove Theorem 3.2, we need to verify
its hypothesis holds. We verify this in Lemma 6.6 below. The specific x we
will use is the following elliptic curve.

Example 6.4. — The magma code
F<t> := FunctionField(GF(3));
E := EllipticCurve([0,t+t^2,0,t+t^2 +t^3,t^2+t^4+t^5]);
LocalInformation(E);

shows that the elliptic curve y2 = x3 + (t + t2)x2z + (t + t2 + t3)xz2 +
(t2 + t4 + t5)z3 has a unique place of additive reduction (t). Further, at (t),
this curve has reduction type III and discriminant of valuation 3.

We will use the following criterion for local stacky height to agree with
local Faltings height.

Lemma 6.5. — Suppose V is a vector bundle on M 1,1 for which
htV (x) = ht(x) for all points x : Spec K → M 1,1, for K a finite exten-
sion of k(t). Any point y : Spec k(t) → M 1,1 which has a unique place v

of additive reduction, i.e., a unique place with nontrivial local height, gives
an example of a point for which δV ;v(x) = htv(x).

Proof. — Let K/k(t) denote an extension on which y acquires semistable
reduction and let z : Spec K → M 1,1 denote the corresponding point. Be-
cause htV (z) = ht(z), and both htV (z) = htst

V (z) = deg(K/k(t)) htst
V (y)

and ht(z) = htst(z) = deg(K/k(t)) htst(y) [2, Proposition 2.14], we con-
clude htst

V (y) = htst(y). Because we are assuming htst
V (y) + δV ;v(y) =
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htV (y) = ht(y) = htst(y) + htv(y) and we have shown htst
V (y) = htst(y), we

conclude δV ;v(y) = htv(y). □

The next lemma verifies the hypothesis of Lemma 6.3.

Lemma 6.6. — Suppose V is a vector bundle on M 1,1 for which
htV (x) = ht(x) for all points x : Spec K → M 1,1, for K a finite exten-
sion of k(t). The point y : Spec k(t) → M 1,1 of Example 6.4 (base changed
from F3 to k) gives an example of a point for which δV ;v(x) = htv(x) at
the place (t) of additive type III reduction.

Proof. — Let v = (t) denote the place of k(t). Note this is the unique
place of k(t) at which y has additive reduction, by Example 6.4. The lemma
then follows from Lemma 6.5. □

We can now prove the main result, Theorem 3.2.

6.1. Proof of Theorem 3.2

Retain notation from Notation 6.2. By Lemma 6.6, the hypothesis of
Lemma 6.3 holds, and so an order 4 element of G has a 1-dimensional ζ

eigenspace and a codimension one 1-eigenspace. By Proposition 4.5, ι∗V

corresponds to a representation ρ : G → GL(V |s) that splits as the direct
sum of 1-dimensional representations. factoring through Z/4Z. Therefore,
ρ|Z/3Z is trivial. □
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