Moduli spaces of slope-semistable pure sheaves
[Espaces de modules de faisceaux purs semi-stables par rapport à la pente]
Annales de l'Institut Fourier, Tome 74 (2024) no. 5, pp. 2141-2186.

Nous construisons un espace de modules de faisceaux purs semi-stables par rapport à la pente en suivant les travaux antérieurs de Le Potier et Jun Li sur les faisceaux sans torsion sur des surfaces lisses. En particulier, notre construction fournit une compactification de l’espace de modules de Simpson des faisceaux réflexifs stables par rapport à la pente. Nous prouvons également un théorème de restriction effectif pour les faisceaux purs (semi-)stables en suivant une approche due à Langer.

We construct a moduli space of slope-semistable pure sheaves, building upon previous work of Le Potier and Jun Li on torsion-free sheaves over smooth surfaces. In particular, our construction provides a compactification of the Simpson moduli space of slope-stable reflexive sheaves. We also prove an effective restriction theorem for slope-(semi)stable pure sheaves following an approach due to Langer.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3633
Classification : 14D20, 14J60
Keywords: Coherent sheaves, Moduli spaces, Restriction theorems, Slope-stability.
Mot clés : Faisceaux cohérents, espaces de modules, théorèmes de restriction, stabilité par rapport à la pente

Pavel, Mihai 1

1 Université de Lorraine, IECL, F-54000 Nancy (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2024__74_5_2141_0,
     author = {Pavel, Mihai},
     title = {Moduli spaces of slope-semistable pure sheaves},
     journal = {Annales de l'Institut Fourier},
     pages = {2141--2186},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {74},
     number = {5},
     year = {2024},
     doi = {10.5802/aif.3633},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3633/}
}
TY  - JOUR
AU  - Pavel, Mihai
TI  - Moduli spaces of slope-semistable pure sheaves
JO  - Annales de l'Institut Fourier
PY  - 2024
SP  - 2141
EP  - 2186
VL  - 74
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3633/
DO  - 10.5802/aif.3633
LA  - en
ID  - AIF_2024__74_5_2141_0
ER  - 
%0 Journal Article
%A Pavel, Mihai
%T Moduli spaces of slope-semistable pure sheaves
%J Annales de l'Institut Fourier
%D 2024
%P 2141-2186
%V 74
%N 5
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3633/
%R 10.5802/aif.3633
%G en
%F AIF_2024__74_5_2141_0
Pavel, Mihai. Moduli spaces of slope-semistable pure sheaves. Annales de l'Institut Fourier, Tome 74 (2024) no. 5, pp. 2141-2186. doi : 10.5802/aif.3633. https://aif.centre-mersenne.org/articles/10.5802/aif.3633/

[1] Alper, Jarod; Halpern-Leistner, Daniel; Heinloth, Jochen Existence of moduli spaces for algebraic stacks, Invent. Math., Volume 234 (2023) no. 3, pp. 949-1038 | DOI | Zbl

[2] Dobbs, David E.; Shapiro, Jay Descent of minimal overrings of integrally closed domains to fixed rings, Houston J. Math., Volume 33 (2007) no. 1, pp. 59-82 | MR | Zbl

[3] Donaldson, Simon K. Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc., Volume 50 (1985) no. 1, pp. 1-26 | DOI | MR | Zbl

[4] Fischer, Gerd Complex analytic geometry, Lecture Notes in Mathematics, 538, Springer, 1976, vii+201 pages | DOI | MR | Zbl

[5] Flenner, Hubert Restrictions of semistable bundles on projective varieties, Comment. Math. Helv., Volume 59 (1984) no. 4, pp. 635-650 | DOI | MR | Zbl

[6] Fogarty, John Truncated Hilbert functors, J. Reine Angew. Math., Volume 234 (1969), pp. 65-88 | DOI | MR | Zbl

[7] Friedman, Robert; Morgan, John W. Smooth four-manifolds and complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 27, Springer, 1994, x+520 pages | DOI | MR | Zbl

[8] Gieseker, David On the moduli of vector bundles on an algebraic surface, Ann. Math., Volume 106 (1977) no. 1, pp. 45-60 | DOI | MR | Zbl

[9] Greb, Daniel; Ross, Julius; Toma, Matei Moduli of vector bundles on higher-dimensional base manifolds – construction and variation, Int. J. Math., Volume 27 (2016) no. 7, 1650054, 27 pages | DOI | MR | Zbl

[10] Greb, Daniel; Sibley, Benjamin; Toma, Matei; Wentworth, Richard Complex algebraic compactifications of the moduli space of Hermitian Yang–Mills connections on a projective manifold, Geom. Topol., Volume 25 (2021) no. 4, pp. 1719-1818 | DOI | MR | Zbl

[11] Greb, Daniel; Toma, Matei Compact moduli spaces for slope-semistable sheaves, Algebr. Geom., Volume 4 (2017) no. 1, pp. 40-78 | DOI | MR | Zbl

[12] Grothendieck, Alexandre Techniques de construction et théoremes d’existence en géométrie algébrique. IV : Les schemas de Hilbert, Sem. Bourbaki 13(1960/61), No. 221, 1961 | Zbl

[13] Hartshorne, Robin Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | MR | Zbl

[14] Höring, Andreas; Peternell, Thomas Algebraic integrability of foliations with numerically trivial canonical bundle, Invent. Math., Volume 216 (2019) no. 2, pp. 395-419 | DOI | MR | Zbl

[15] Huybrechts, Daniel; Lehn, Manfred The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, 2010, xviii+325 pages | DOI | MR | Zbl

[16] Kollár, János Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 32, Springer, 1996, viii+320 pages | DOI | MR | Zbl

[17] Kollár, János Families of varieties of general type (2017) (Available in https://scholar.google.ae/citations?view_op=view_citation&citation_for_view=xKUVD4MAAAAJ:SnGPuo6Feq8C)

[18] Langer, Adrian Semistable sheaves in positive characteristic, Ann. Math., Volume 159 (2004) no. 1, pp. 251-276 | DOI | MR | Zbl

[19] Langer, Adrian Moduli spaces and Castelnuovo–Mumford regularity of sheaves on surfaces, Am. J. Math., Volume 128 (2006) no. 2, pp. 373-417 | DOI | MR | Zbl

[20] Langer, Adrian Moduli spaces of semistable modules over Lie algebroids (2021) (https://arxiv.org/abs/2107.03128)

[21] Langton, Stacy G. Valuative criteria for families of vector bundles on algebraic varieties, Ann. Math., Volume 101 (1975), pp. 88-110 | DOI | MR | Zbl

[22] Laumon, Gérard; Moret-Bailly, Laurent Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 39, Springer, 2000, xii+208 pages | MR | Zbl

[23] Lazarsfeld, Robert Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | DOI | MR | Zbl

[24] Le Potier, Joseph Fibré déterminant et courbes de saut sur les surfaces algébriques, Complex projective geometry (Trieste, 1989/Bergen, 1989) (London Mathematical Society Lecture Note Series), Volume 179, Cambridge University Press, 1992, pp. 213-240 | DOI | MR | Zbl

[25] Le Potier, Joseph Module des fibrés semi-stables et fonctions thêta, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) (Lecture Notes in Pure and Applied Mathematics), Volume 179, Marcel Dekker, 1996, pp. 83-101 | MR | Zbl

[26] Li, Jun Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differ. Geom., Volume 37 (1993) no. 2, pp. 417-466 | MR | Zbl

[27] Maruyama, Masaki Moduli of stable sheaves. I, J. Math. Kyoto Univ., Volume 17 (1977) no. 1, pp. 91-126 | DOI | MR | Zbl

[28] Matsumura, Hideyuki Commutative ring theory. Transl. from the Japanese by M. Reid. Paperback ed, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989, xiv+320 pages | MR | Zbl

[29] Mehta, Vikram B.; Ramanathan, Annamalai Semistable sheaves on projective varieties and their restriction to curves, Math. Ann., Volume 258 (1981) no. 3, pp. 213-224 | DOI | MR | Zbl

[30] Mehta, Vikram B.; Ramanathan, Annamalai Restriction of stable sheaves and representations of the fundamental group, Invent. Math., Volume 77 (1984) no. 1, pp. 163-172 | DOI | MR | Zbl

[31] Mumford, David Projective invariants of projective structures and applications, Proc. Internat. Congr. Mathematicians (Stockholm, 1962), Inst. Mittag-Leffler (1963), pp. 526-530 | MR | Zbl

[32] Mumford, David; Fogarty, John; Kirwan, Frances Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge, 34, Springer, 1994, xiv+292 pages | MR | Zbl

[33] Olsson, Martin Sheaves on Artin stacks, J. Reine Angew. Math., Volume 603 (2007), pp. 55-112 | DOI | MR | Zbl

[34] Schmidt, Amy Properties of ring extensions invariant under group action, Int. Electron. J. Algebra, Volume 21 (2017), pp. 39-54 | DOI | MR | Zbl

[35] Simpson, Carlos T. Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math., Inst. Hautes Étud. Sci. (1994) no. 79, pp. 47-129 | DOI | MR | Zbl

[36] The Stacks Project Authors The Stacks project, https://stacks.math.columbia.edu, 2020

[37] Takemoto, Fumio Stable vector bundles on algebraic surfaces, Nagoya Math. J., Volume 47 (1972), pp. 29-48 | DOI | MR | Zbl

[38] Uhlenbeck, Karen; Yau, Shing-Tung On the existence of Hermitian-Yang–Mills connections in stable vector bundles, Commun. Pure Appl. Math., Volume 39 (1986), p. S257-S293 Frontiers of the mathematical sciences: 1985 (New York, 1985) | DOI | MR | Zbl

Cité par Sources :