As in algebraic geometry where the formal neighborhood of a point of a scheme contains informations about the singularities of the object, we extend this study to schemes where a point represents a solution of an algebraic differential equation. The obtained geometric object living naturally in a space of infinite dimension, a first step is to show that the formal neighborhood of a point not canceling the separant is noetherian, using considerations on the embedding dimension. We show that, in the neighborhood of points making the separant invertible, the embedding dimension is exactly the order of the considered differential equation. In a second step, we relate, for a certain type of differential equations of order two, the existence of essential singular components to the decrease of the embedding dimension, in the neighborhood of certain points.
À l’instar de la géométrie algébrique où le voisinage formel d’un point d’un schéma contient des informations sur les singularités de l’objet, nous étendons cette étude à des schémas dont un point représente une solution d’une équation différentielle algébrique. L’objet géométrique obtenu vivant naturellement dans un espace de dimension infinie, une première étape consiste à montrer que le voisinage formel d’un point n’annulant pas le séparant est noethérien, à l’aide de considérations sur la dimension de plongement. Nous montrons également, qu’au voisinage de points rendant le séparant inversible, la dimension de plongement est exactement l’ordre de l’équation différentielle considérée. Dans un second temps, nous relions, pour un certain type d’équations différentielles d’ordre deux, l’existence de composantes singulières essentielles à la décroissance de la dimension de plongement, au voisinage de certains points.
Revised:
Accepted:
Online First:
Keywords: Algebraic geometry, Differential algebra, Arc scheme, Deformations.
Mot clés : Géométrie algébrique, algèbre différentielle, schéma en arc, déformations.
@unpublished{AIF_0__0_0_A84_0, author = {Haiech, Mercedes}, title = {Deformations of solutions of algebraic differential equations}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3612}, language = {en}, note = {Online first}, }
Haiech, Mercedes. Deformations of solutions of algebraic differential equations. Annales de l'Institut Fourier, Online first, 43 p.
[1] Deformations of differential arcs, Bull. Aust. Math. Soc., Volume 94 (2016) no. 3, pp. 405-410 | DOI | MR | Zbl
[2] The Drinfeld–Grinberg–Kazhdan theorem for formal schemes and singularity theory, Confluentes Math., Volume 9 (2017) no. 1, pp. 29-64 | DOI | Numdam | MR | Zbl
[3] On the Grinberg–Kazhdan formal arc theorem, 2002 (https://arxiv.org/abs/math/0203263)
[4] Differentials on the arc space (https://arxiv.org/abs/1703.07505)
[5] Versal deformations of formal arcs, Geom. Funct. Anal., Volume 10 (2000) no. 3, pp. 543-555 | DOI | MR | Zbl
[6] Non-complete completions, Arc schemes and singularities, World Scientific, 2020, pp. 57-68 | DOI | MR | Zbl
[7] An introduction to differential algebra, Publications de l’Institut de Mathématique de l’Université de Nancago, No. V, Hermann, 1976, 64 pages (Actualités Scientifiques et Industrielles, No. 1251) | MR | Zbl
[8] Differential algebra and algebraic groups, Pure and Applied Mathematics, 54, Academic Press Inc., 1973, xviii+446 pages | MR | Zbl
[9] Commutative algebra, Mathematics Lecture Note Series, 56, Benjamin/Cummings Publishing Co., 1980, xv+313 pages | MR | Zbl
[10] Differential Algebra, Colloquium Publications, XXXIII, American Mathematical Society, 1950, viii+184 pages | MR | Zbl
[11] Stacks Project, https://stacks.math.columbia.edu/
[12] On flatness and completion for infinitely generated modules over Noetherian rings, Commun. Algebra, Volume 39 (2011) no. 11, pp. 4221-4245 | DOI | MR | Zbl
Cited by Sources: