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THURSTON’S COMPACTIFICATION VIA GEODESIC
CURRENTS: THE CASE OF NON-COMPACT FINITE

AREA SURFACES

by Marie TRIN (*)

Abstract. — In 1988, Bonahon gave a construction of Thurston’s compactifi-
cation of Teichmüller space using geodesic currents. His argument only applies in
the case of closed surfaces, and there are good reasons for that. We present a vari-
ant which applies to surfaces of finite area and to do so we prove a control theorem
for sequences of random geodesics. Note that this theorem may be of independant
interest, especially when the surface is non-compact.

Résumé. — En 1988, Bonahon a donné une preuve de la compactification de
Thurston de l’espace de Teichmüller utilisant les courants géodésiques. Pour des
raisons bien précises, cette preuve ne s’applique que dans le cas des surfaces fermées.
On présente ici une variante des arguments de Bonahon qui s’applique aux surfaces
d’aire finie grâce à un théorème de contrôle sur les suites de géodésiques aléatoires.
Notons que ce théorème a son propre intérêt notamment lorsque la surface n’est
pas compacte.

1. Introduction

The Teichmüller space T(S) of a surface S of finite topological type,
with no boundary and of negative Euler characteristic χ(S) is the space of
isotopy classes of (complete and finite volume) Riemannian metrics on S

of constant curvature −1. Teichmüller space is not compact but Thurston
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2 Marie TRIN

showed in [21] how it can be compactified by the space P+ML(S) of projec-
tive measured laminations on S. The starting point of Thurston’s compact-
ification is the embedding of T(S) into the space P+(RC(S)

+ ) = R+ \ RC(S)
+ :

ℓ : T(S) −→ P+

(
RC(S)

+

)
X 7−→ R+ℓX( · ).

Here ℓX is the length function associated to the hyperbolic structure X on
S and C(S) is the set of free homotopy classes of essential closed curves of
S. What Thurston did is to prove that the image of ℓ is locally compact
and to identify the boundary of T(S) in P+(RC(S)

+ ) with P+ML(S).

Theorem (Thurston’s compactification). — If S is a finite analytic type
surface with negative Euler characteristic, then the accumulation points of
T(S) in P+(RC(S)

+ ) are the projective classes of functions γ 7→ i(λ, γ) where
λ ∈ ML(S) is a measured lamination on S.

Thurston’s original proof is explained in [9]. Some versions using real-
trees are given by Morgan–Shalen [13], Bestvina [3] or Paulin [15]. An
overview of the different compactification methods is availlable in [16]
or [14]. A compactification for the set of flat-structures and using geodesic
currents is done in [7], note that this article is interested in both compact
and non-compact surfaces. Here, we will be mostly interested in a very el-
egant argument, for closed surfaces, due to Bonahon [5]. Let’s sketch the
proof. Recall that geodesic currents are π1(S)-invariant Radon measures on
the set of bi-infinite geodesics of the universal cover of S. Bonahon embeds
T(S) into the space C(S) of geodesic currents of S, sending each element
X ∈ T(S) of the Teichmüller space to the associated Liouville current
LX ∈ C(S). The Liouville current satisfies two important properties:

i(LX , γ) = ℓX(γ) for every essential closed curve γ, and(1.1)

i(LX , LX) = π2|χ(S)|.(1.2)

Here, i : C(S) × C(S) → R+ is the intersection form, a continuous bilinear
map extending the usual geometric intersection number between curves.
Compactness of S implies compactness of the space P+C(S) of projective
currents. It follows that each sequence (Xn)n∈N in Teichmüller space ad-
mits a subsequence, say the whole sequence, which projectively converges
to a non-zero current µ, meaning that there are positive reals εn such
that lim

n→∞
εnLXn

= µ. The continuity of i and property (1.1) ensure that
the length functions ℓXn

( · ) converge projectively to i(µ, ·). Moreover, εn

tends to zero unless Xn converges in T(S). Knowing that εn −−−−→
n→∞

0,

ANNALES DE L’INSTITUT FOURIER



THURSTON’S COMPACTIFICATION VIA GEODESIC CURRENTS 3

property (1.2) ensures that i(µ, µ) = 0, meaning that µ is a measured
lamination, as we needed to prove.

We stress that Bonahon’s argument, with all its simplicity, only applies
to closed surfaces. We will come back later to this specificity and to the
obstructions to a direct extension of his argument. Recently, Bonahon and
Šarić have given another proof of this theorem using geodesic currents. The
arguments in [6] are geared to infinite type surfaces, it is worth noticing
that working in such a general context implies the lost of the simplicity of
Bonahon’s original proof.

Our goal here is to adapt Bonahon’s original argument to be able to deal
with non-compact surfaces of finite analytic type .

Let’s look at the difficulties that prevent the extension of Bonahon’s proof
to the non-compact case. The intersection form, especially its continuity,
is the linchpin of Bonahon’s original proof. However, continuity fails when
the surface is not compact, even if it has finite area (see [18] or Example 2.1
below). We will therefore change our point of view to allow us to benefit
from the continuity of i. We will consider currents on Σ instead of S, where
Σ is a compact hyperbolic surface with geodesic boundary whose interior
is homeomorphic to S, that is S = Σ \ ∂Σ. The second key ingredient of
Bonahon’s proof is the existence of the Liouville current but, as we will see,
when working with currents on Σ we lose the Liouville current.

Proposition 2.2. — Let Σ be a compact hyperbolic surface with non-
empty boundary and X a hyperbolic structure on S = Σ \ ∂Σ. There is no
current LX on Σ which satisfies i(LX , γ) = ℓX(γ) for every essential closed
curve γ ∈ C(Σ).

In order to recover a version of properties (1.1) and (1.2), we will, for
every hyperbolic structure X on S, replace the Liouville current LX by spe-
cific sequences of random geodesics (γ(X)

n )n∈N, that is sequences of essential
closed geodesics whose associated probability measures in T 1X converge to
the Liouville measure with respect to the weak-∗ topology. They will be
chosen to satisfy (1.1) and (1.2) asymptotically, that is:

lim
n→∞

i

(
γn

ℓX(γn) , γ

)
= ℓX(γ)

π2|χ(S)| for all essential closed curve γ,(1.3)

lim
n→∞

i

(
γn

ℓX(γn) ,
γn

ℓX(γn)

)
= 1

π2|χ(S)| .(1.4)

As discussed in [8], any sequence of random geodesics (γn)n∈N satisfies (1.3).
Moreover, if the surface is compact then (1.4) is ensured for every sequence
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4 Marie TRIN

of random geodesics. However, for a non-compact surface, arbitrary se-
quences of random geodesics do not necessarily satisfy (1.4), see Exam-
ple 3.3 below. Indeed, a large part of this article will be dedicated to build-
ing sequences of random geodesics satisfying this property for non-compact
surfaces.

Theorem 1.1. — For every complete and finite area hyperbolic struc-
ture X on a finite analytic type surface S of negative Euler characteristic
χ(S), there is a sequence (γ(X)

N )n∈N of random geodesics such that:

lim
n→∞

i

(
γ

(X)
N

ℓX(γ(X)
N )

,
γ

(X)
N

ℓX(γ(X)
N )

)
= 1

π2|χ(S)| .

Theorem 1.1 is actually part of a more technical result, Theorem 3.6, that
we will prove in Section 3. The main additional content of Theorem 3.6 is
to ensure that the convergence rates in (1.3) and (1.4) hold with no depen-
dance on the structure X. This uniformity will be important to achieve the
proof of Thurston’s compactification in Section 4. Moreover, the proof of
the theorem also ensures that we can control the behavior of sequences of
random geodesics into some cusp’s neighborhoods.
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2. Preliminaries

In this section, we give some technical results and definitions. We refer the
reader to [4, 5] and [8] for details. From now on, let S be a non-compact sur-
face of finite analytic type, with negative Euler characteristic χ = χ(S) < 0.

ANNALES DE L’INSTITUT FOURIER



THURSTON’S COMPACTIFICATION VIA GEODESIC CURRENTS 5

We denote by X, X ′, Xn . . . points in the Teichmüller space of S, or maybe
just the underlying complete and finite area hyperbolic structure. Note
that, although not specified, all the hyperbolic structures are complete and
finite area. Moreover, we will write Z to refer indifferently to any finite area
hyperbolic surface, possibly with punctures or with geodesic boundaries. If
S is endowed with a hyperbolic structure X then every free homotopy class
of essential closed curves contains a unique geodesic representative, so we
identify a class with its geodesic representative when the hyperbolic struc-
ture is fixed. We will denote by C(S) the set of free homotopy classes of
essential closed curves, by essential we mean non-null-homotopic and non-
peripheral, or equivalently the set of essential closed geodesics. Let also
Σ be a compact hyperbolic surface with geodesic boundary whose interior
is homeomorphic to S. We fix a homeomorphism between S and Σ \ ∂Σ.
This homeomorphism immediately induces a correspondance between the
essential closed curves of S and the ones of Σ, that is

(2.1) C(S) = C(Σ).

The homeomorphism S = Σ \ ∂Σ also gives an identification between mea-
sured laminations of S and the ones of Σ supported by Σ \ ∂Σ:

(2.2) ML(S) = {λ ∈ ML(Σ) | λ supported by Σ \ ∂Σ}.

The identifications (2.1) and (2.2) will allow us to work on Σ rather than
on S.

2.1. Currents on surfaces

We recall now a few properties of currents that we will need in the
following. A geodesic current on Z is a π1(Z)-invariant Radon measure on
the set of bi-infinite geodesics on the universal cover Z̃ of Z (even if the
surface has non-empty boundary). The space C(Z) of geodesic currents on Z

was introduced by Bonahon in [4] and is endowed with the weak-∗ topology.
For more information on currents we refer to [1, 4, 5] and, [8, Chapter 3].

The currents we will be mainly interested in are weighted multicurves and
measured laminations and we will always consider currents on the compact
surface Σ. An advantage of doing so is that when Z is compact, the topo-
logical space C(Z) is locally compact, and the associated projective space
P+C(Z) = R+ \ (C(Z) \ {0}) is compact. Moreover, in the compact case,
the geometric intersection number between curves extends to a continuous
bilinear map i : C(Z) × C(Z) → R+. It will be important later on to know

TOME 0 (0), FASCICULE 0



6 Marie TRIN

that this form gives us a characterisation of the measured laminations as
being the currents µ ∈ C(Z) satisfying i(µ, µ) = 0. We can also notice that
the boundary curves are characterised by a zero intersection form with ev-
ery current. As mentioned earlier, the reason why we want to work with
the currents on the compact surface Σ, rather than with the currents on
S, is that the continuity of the intersection number fails in the latter case.

Example 2.1 (Discontinuity of the intersection form in the non-compact
case). — Take a hyperbolic surface with at least two cusps, fix an embedded
horocycle around each of them, and a simple geodesic arc between those
curves which meet them orthogonally. Note that this arc is part of a cusps-
to-cusps geodesic arc γ. Consider a sequence of closed curves (γn)n∈N, where
γn is the geodesic homotopic to the closed curve which runs the geodesic
arc mentioned above, turns n times around the first cusp following the
fixed horocycle, goes back along the geodesic arc and turns n times around
the second cusp as in Figure 2.1. The self-intersection number of such a
sequence is going to grow without bound. On the other hand, it approaches
the weight 2 current associated to γ which has 0 self-intersection number.

Figure 2.1. Obstruction to the continuity of i

See [18, Proposition 5.1] for a more detailed discussion on that obstruc-
tion to a continuous extension of the intersection number on the space of
currents for non-compact surfaces.

Example 2.1 shows that there is no continuous extension of the intersec-
tion number for currents on S — it is the reason why we chose to work with
currents on the compact surface Σ instead of the currents on S = Σ \ ∂Σ.
This solves the problem of continuity of i( · , · ) but raises a new problem:
we won’t be able to consider the Liouville current anymore.

Proposition 2.2. — Let Σ be a compact hyperbolic surface with non-
empty boundary and X a hyperbolic structure on S = Σ \ ∂Σ. There is no
current LX on Σ which satisfies i(LX , γ) = ℓX(γ) for every essential closed
curve γ ∈ C(Σ).

ANNALES DE L’INSTITUT FOURIER



THURSTON’S COMPACTIFICATION VIA GEODESIC CURRENTS 7

Proof. — If γ is a closed geodesic and µ a weighted multicurve of Σ then

(2.3) i(γ, µ) = min
{

♯(γ′ ∩ µ),
γ′ piecewise geodesic homotopic to γ

in µ-general position

}
,

where a piecewise geodesic homotopic to γ is in µ-general position if the
set of geodesics passing through the corners has vanishing µ measure.

Figure 2.2. Obstruction to the existence of the Liouville current

Now, consider b1 and b2 two boundary components of Σ, maybe the
same, and γ a non-trivial geodesic arc joining them. For every k, we define
γk as the unique closed geodesic homotopic to the piecewise geodesic which
follows γ, turns k times around b1, follows back γ and turns k times around
b2. We obtain from (2.3) that for any weighted multicurve µ,

i(γk, µ) ⩽ k♯(b1 ∩ µ) + k♯(b2 ∩ µ) + 2♯(γ ∩ µ) = 2♯(γ ∩ µ).

We want to extend the previous inequality for µ a current, to do so we
need a well-defined notion of intersection with γ. For this purpose we can
embed Σ into the closed doubled surface DΣ, for more details about how
to pass from Σ to DΣ the reader can refer to [22]. Hence, C(Σ) is a subset
of C(DΣ), the double γ̂ of γ is a curve and in C(DΣ) we have

(2.4) i(γk, µ) ⩽ 2i(γ̂, µ),

for any µ weighted multicurve of Σ. Moreover, the weighted multicurves are
dense in C(Σ) and the intersection number is continuous in C(DΣ) so (2.4)
induces that

(2.5) ∀ν ∈ C(Σ), i(γk, ν) ⩽ 2i(γ̂, ν) < ∞.

However, lim
k→∞

ℓX(γk) = ∞ for any hyperbolic structure X on S, so (2.5)
prevents any intersection with a fixed current to produce the length. □

TOME 0 (0), FASCICULE 0



8 Marie TRIN

2.2. Cusps neighborhoods and intersection number

Everything in the next section relies on a good understanding of the be-
haviour of geodesics in cusps. More precisely, if X is a hyperbolic structure
on S then we denote by Hi

k the embedded horosphere of length 1/k around
the i-th cusp. The horosphere Hi

k bounds the horoball Bi
k of area 1/k. We

will refer to Hi
k and Bi

k as the horosphere and horoball of depth k. We also
set Xk the compact core of X bounded by the horospheres Hi

k and Bk its
complement:

(2.6) Xk = X \
⋃

i

Bi
k, Bk =

⋃
i

Bi
k.

There is a direct link between the number of times a curve turns around
a cusp and the depth it reaches [2, Proposition 3.4]. It follows that every
curve that goes deep into a cusp has a large self-intersection number. To
make this link more clear we recall a notion introduced in [8, Definition 2.6]:
the peripheral self-intersection number.

Definition 2.3. — Let Z be a hyperbolic surface (compact or not)
and recall that a peripheral subgroup of π1(Z) is nothing other than a
cyclic subgroup generated by a non-essential closed curve. The peripheral
self-intersection number iper(γ, γ) of γ ∈ C(Z) is the supremum over all
maximal peripheral subgroups G ⊂ π1(Z) of the maximal number of times
that the image of a lift γ̃ of γ under Z̃ → G \ Z̃ meets itself transversely.

The peripheral self-intersection number is a topological invariant. It is
thus independent of the metric on S, or more specifically, whether one
considers the curves on S or on Σ. Moreover, for every compact subset K

of Z \∂Z there is a upper bound for the peripheral self-intersection number
of the closed geodesics contained in K. Conversely, for every N > 0 there
is a compact subset KN of Z \ ∂Z that contains all the geodesics γ with
iper(γ, γ) ⩽ N [8, Lemma 2.7]. In the absence of boundary, one can easily
quantify this property.

Lemma 2.4. — Let X be a non-compact finite topological type surface
with no boundary, and γ be an essential closed curve on X, this curve has
support on Xk if and only if iper(γ, γ) ⩽ 4k.

Proof. — If we think of the curves of π1(X) as deck transformations then
a peripheral subgroup of π1(X) is a subgroup generated by a parabolic ele-
ment. Let’s study a given cusp Ci, we can assume that the correspondence
between X̃ and H2 is such that an associated maximal parabolic element

ANNALES DE L’INSTITUT FOURIER



THURSTON’S COMPACTIFICATION VIA GEODESIC CURRENTS 9

is z 7→ z + 1. In that case, Hi
k lifts to the horizontal line {ℑ(z) = k}

and if γ is a closed geodesic of X then the number of times that the im-
age of a lift γ̃ under X̃ →< z 7→ z + 1 > \X̃ meets itself transversely is
♯{n ∈ Z \ {0} | γ̃ ∩ (γ̃ + n) ̸= ∅}. However, γ stays in Xk around Ci, if and
only if its lifts stay below the line {ℑ(z) = k}, if and only if its lifts are
half circles of radius at most k. Such a geodesic of H2 meets at most 4k

translations of itself (n = ±1, ±2, . . . , ±2k). The same process applies for
every cusps and then to every maximal parabolic subgroup and we obtain
the lemma. □

3. Construction of controled sequences of random
geodesics

In this section we prove that for all non-compact hyperbolic surfaces of
finite volume with no boundary there are sequences of random geodesics
satisfying (1.4). However, we will first see with Example 3.3 that in the non-
compact case not all the sequences of random geodesics have this property.

3.1. Sequences of random geodesics

As we saw in Proposition 2.2, the Liouville current does not exist any-
more in our setting. However, for every (complete and finite area) hyper-
bolic structure X on S the Liouville measure on T 1X still exists. Recall
that the Liouville measure LX is the measure on the unit tangent bun-
dle T 1X, obtained by pushing forward the Haar measure on PSL2(R) and
normalized so that LX(T 1X) = 2π volX(S) = 4π2|χ(S)|. We are going
to consider geodesics approximating the Liouville measure in the following
sense.

Definition 3.1. — A sequence (γn)n∈N of essential closed geodesics on
X is a sequence of random geodesics if the associated probability measures
converge to LX with respect to the weak-∗ topology, meaning that:∫

T 1X

f
dγn

ℓX(γn) −−−−−→
n→+∞

∫
T 1X

f
dLX

4π2|χ(S)| ,

for every f ∈ C0
c (T 1X) continuous and compactly supported function on

T 1X.

Remark 3.2. — We will generally use the notation γ̂ for the renormali-
sation γ

ℓX (γ) .

TOME 0 (0), FASCICULE 0
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The Birkhoff ergodic theorem, together with the ergodicity of the geo-
desic flow, implies the existence of such sequences of geodesics. We refer
to [8, Chapter 2] for some facts about sequences of random geodesics that
we will use here.

The construction of the Liouville measure ensures that for a compact
subsurface K of X we have LX(T 1K) = 2π volX(K). Then, if the boundary
of K is smooth, the Portmanteau Theorem implies that for every sequence
of random geodesics (γn)n∈N we have

ℓX(γn ∩ K)
ℓX(γn) −−−−−→

n→+∞

volX(K)
2π|χ(S)| .

Applying this property to our compact core Xk we have

(3.1) ℓX(γn ∩ Xk)
ℓX(γn) −−−−−→

n→+∞

volX(Xk)
2π|χ(S)| ,

and hence,

(3.2) ℓX(γn ∩ Bk)
ℓX(γn) −−−−−→

n→+∞

volX(Bk)
2π|χ(S)| .

What is much more surprising is that sequences of random geodesics can
also be used to compute lengths. More concretely, we have

(3.3) i(γn, I)
ℓX(γn) −−−−−→

n→+∞

ℓX(I)
π2|χ(S)| ,

for every compact geodesic segment I in X. This property is basically
due to Bonahon [5, Proposition 14], we also refer the reader to [8, Propo-
sition 2.4] for details. A direct consequence of (3.3) is that we can use
random geodesics (γn)n∈N to compute the length of any essential geodesic
γ ∈ C(S):

(3.4) i(γn, γ)
ℓX(γn) −−−−−→

n→+∞

ℓX(γ)
π2|χ(S)| .

Note that in this equation the curve γ is fixed. Meaning that a priori, (3.4)
does not say anything about i(γn, γn). However, for compact sets (3.3)
holds uniformly. As a consequence, cutting the geodesics γn into geodesic
segments we have

(3.5) i

(
γn

ℓX(γn) ,
γn|K

ℓX(γn|K)

)
−−−−−→
n→+∞

1
π2|χ|

.

for K any fixed compact subsurface of X.
All those considerations about sequences of random geodesics apply to

compact surfaces, hence, if S were compact, applying (3.5) to K = S,

ANNALES DE L’INSTITUT FOURIER
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then we would immediatly have that every sequence of random geodesics
satisfies (1.4). However, that is not necessarily true in general.

Example 3.3. — First, note that an excursion of length ℓ into some Bk
i

has between keℓ/2 − 2 and 4keℓ/2 self-intersections. Consider now a se-
quence of random geodesics (γn)n∈N. Add to γn an excursion of length
6 log(ℓX(γn)) at depth kn −−−−→

n→∞
∞ and pull it tight into a new geodesic

γ′
n. If we add the excursions in a well-chosen way (for example, gluing it

at the deepest point of an excursion) then the (γ′
n)n∈N are still random

geodesics and
i(γ′

n, γ′
n)

ℓX(γ′
n)2 ≈ i(γn, γn) + knℓX(γn)3

(ℓX(γn) + 6 log(ℓX(γn)))2 ∼
+∞

i(γn, γn)
ℓX(γn)2 + knℓX(γn) −−−−→

n→∞
∞.

One can can also refer to the arguments in Lemma 3.5 below to prove that
such sequences of random geodesics exist.

In [11] or [12, Corollary 11.2], Lalley gives a construction of random
geodesics that justifies the use of the term “random”: if for all n the geodesic
γn is randomly chosen among the geodesics of length at most n then (γn)n∈N
is a sequence of random geodesics with probability 1. Hence, we wonder
which proportion of sequences of random geodesics satisfies (1.4). This
problem might be linked to the study of the length of cusp excursions for
random geodesics, see for example [10, 17, 20] and the references therein.

Anyway, the above example makes clear that to obtain (1.4) in the non-
compact case we have to control the excursions of the sequences of random
geodesics into cusps neighborhoods. We will do it through the cutting pro-
cess described below.

3.2. Cutting process

Suppose that X is a fixed complete and finite area hyperbolic structure
for S. Recall that Xt denotes the compact core of X bounded by the
horospheres of length 1/t around the cusps of S and that Bt = X \ Xt

is its complement. Given two parameters k ∈ N and 0 < θ < π/4, and a
curve γ we want to cut the excursions of γ in Bk in order to prevent γ

from leaving Xk/ sin(θ). To do so, we will study γ through its lifts in the
universal cover X̃ of X. We focus here on a given cusp but we apply the
same construction around each cusps of X. For k ⩾ 1 we denote by Hk the
horosphere of depth k around this cusp and Bk the horoball it bounds. Since
X is a hyperbolic surface endowed with a complete hyperbolic metric, its
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universal cover identifies with H2, and we can suppose that the parabolic
element associated to the cusp we are interested in is z 7→ z + 1. With
this normalization Hk lifts to the horizontal line {ℑ(z) = k} and we have
that if a curve enters Hk with some angle α ∈ [0, π/2) then it reaches the
horosphere Hk/ sin(α) (we measure the non-oriented angle with the normal
to the horosphere). We want to cut γ in order to replace its long excursions
into Bk (ie. the ones which cross Hk/ sin(θ)) by short ones (excursions staying
between Hk/ sin(2θ) and Hk/ sin(θ)). To make it explicit we make a description
of the process on the universal cover.

If γ makes excursions in Bk we are going to modify γ explaining the pro-
cess on a fixed lift γ̃ which makes an excursion in the horoball {ℑ(z) > k}
bounded by {ℑ(z) = k} but the same process applies to all lifts of Bk.
First, if γ̃ enters with an angle greater than θ then we don’t change it. On
the other hand, if it enters with an angle smaller than θ then we replace this
arc by a geodesic arc I which enters with angle between θ and 2θ and whose
exit point coincides with the exit point of a different lift γ̃′ of γ (see Fig-
ure 3.1). This is always possible as long as 2k cotan(θ) − 2k cotan(2θ) ⩾ 1.
If we apply the same process to all the excursions of γ around every cusp
then γ is replaced by a closed piecewise geodesic γ′.

Figure 3.1. Cutting process

Now, pulling γ′ tight we obtain a closed geodesic γ∗: we refer to γ∗ as
the geodesic obtained by cutting process of parameters k and θ from γ.
Note that if θ is small then γ′ and γ∗ have basically the same length, more
precisely, they can be mapped one to each other through a homotopy with
small displacement and without disturbing to much the lengths. For the
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lengths, it is easy to see that there is some eθ −−−→
θ→0

0, independent from
X, such that for every k ⩾ 1 and θ small

(3.6) ℓX(γ′) ⩽ (1 + eθ)ℓX(γ∗).

Here ℓX(γ′) refer to the arc length of γ′, we will use again this abuse of
notation but its meaning is clear from the context.

3.3. Construction of controled sequences of random geodesics

Lemma 3.4. — There is some θ0 > 0 such that if (γn)n∈N is a sequence
of random geodesics on X and (γ∗

n)n∈N is obtained from the γn applying the
cutting process of parameters k > 1 and θ0 > θ then there is µn −−−−→

n→∞
0

such that
1 ⩽

ℓX(γn)
ℓX(γ∗

n) ⩽ (1 + µn) volX(S)
volX(Xk) (1 + eθ),

for every n. Here, eθ is as in (3.6).

Proof. — We use the same notation as in the description of the cutting
process, and, as above, we denote by ℓX(γ′

n) the arc length of the piecewise
geodesics.

We take θ0 small enougth such that (3.6) occurs. The γn being random
geodesics, (3.1) ensures that we can find a sequence µn −−−−→

n→∞
0 such that

ℓX (γn)
ℓX (γ

n|Xk ) = (1 + µn) volX (S)
volX (Xk) . The construction of γ′

n ensures that γn|Xk =

γ′
n|Xk , thus ℓX (γ

n|Xk )
ℓX (γ′

n) ⩽ 1 and if θ0 > θ then ℓX (γ′
n)

ℓX (γ∗
n) ⩽ (1 + eθ). The upper

bound follows from those three inequalities.
Now, γn and γ′

n coincide on Xk but γ′
n has shorter excursions than γn in

Bk, hence, ℓX (γn)
ℓX (γ′

n) ⩾ 1. The geodesic γ∗
n is the unique geodesic representative

of the free homotopy class of γ′
n which proves that ℓX (γ′

n)
ℓX (γ∗

n) ⩾ 1 and the lower
bound follows. □

Lemma 3.5. — Let (γn)n∈N be a sequence of random geodesics. If
(γ∗

n)n∈N is obtained from (γn)n∈N applying the cutting processes of param-
eters kn −−−−→

n→∞
∞ and θn −−−−→

n→∞
0, then (γ∗

n)n∈N is a sequence of random
geodesics.

Proof. — In this proof, we denote by γ̃ the canonical lift of a geodesic γ

to the unit tangent bundle of X.
Let f ∈ C0

c (T 1X) be a continuous and compactly supported function on
T 1X, there is K a compact core of X such that Supp(f) ⊂ T 1K. Since
kn −−−−→

n→∞
∞ then there is n0 ∈ N such that for all n ⩾ n0, γn|K = γ′

n|K .
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The homotopy between γ′
n and γ∗

n induces that the arcs of γn|K are freely
homotopic to geodesic arcs of γ∗

n. Such a homotopy induces a projection
from γn|K to γ∗

n and lifts to Ψn : γ̃n|K → γ̃∗
n, which is a homeomorphism on

its image. The homotopy can be chosen to have low displacement, that is
d(p, Ψn(p)) ⩽ εn −−−−→

n→∞
0 for every p ∈ γ̃n|K , and not to distort too much

the lengths. Moreover, we can find φn : [0, ℓX(γn|K)] → R+ a piecewise
smooth reparametrization of [0, ℓX(γn|K)] such that for all t ∈ [0, ℓX(γn|K)],
Ψn(γ̃n|K(t)) = γ̃∗

n(φn(t)). The homotopy between γ′
n and γ∗

n does not dis-
tort too much the lengths, hence, we have some δn −−−−→

n→∞
0 such that

1 − δn ⩽ φ′
n ⩽ 1 + δn where it is defined.

Fix some µ > 0. A compactly supported continuous function is uni-
formly continuous, thus, there is εµ > 0 such that if d(p, q) ⩽ εµ then
|f(p) − f(q)| ⩽ µ. We can suppose that for every n ⩾ n0, εn ⩽ εµ. We have

∫
T 1X

fdγ∗
n =

∫ ℓX (Ψn(γn|K))

0
f ◦ γ̃∗

n(t)dt =
∫ ℓX (γn|K)

0
f ◦ γ̃∗

n(φn(s))φ′
n(s)ds,

it follows that

(1−δn)
∫ ℓX (γn|K)

0
f(Ψn(γ̃n|K(s))ds ⩽

∫
T 1X

fdγ∗
n

⩽ (1+δn)
∫ ℓX (γn|K)

0
f(Ψn(γ̃n|K(s))ds

⇒ (1−δn)
(∫

T 1X

fdγn − µℓX(γn|K)
)

⩽
∫

T 1X

fdγ∗
n

⩽ (1+δn)
(∫

T 1X

fdγn + µℓX(γn|K)
)

⇒ (1−δn)ℓX(γn)
ℓX(γ∗

n)

(∫
T 1X

fdγ̂n − µ

)
⩽
∫

T 1X

fdγ̂∗
n

⩽ (1+δn)ℓX(γn)
ℓX(γ∗

n)

(∫
T 1X

fdγ̂n + µ

)

Adapting the proof of Lemma 3.4 we have ℓX (γn)
ℓX (γ∗

n) −−−−→
n→∞

1, and passing to
the limit in n we obtain∫

T 1X

f
dLX

4π2|χ(S)| − µ ⩽ limn

∫
T 1X

fdγ̂∗
n ⩽ limn

∫
T 1X

fdγ̂∗
n

⩽
∫

T 1X

f
dLX

4π2|χ(S)| + µ.
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This is true for all µ, hence,

lim
n→∞

∫
T 1X

fdγ̂∗
n =

∫
T 1X

f
dLX

4π2|χ(S)|
and we have proved that (γ∗

n)n∈N is a sequence of random geodesics. □

Now, for every hyperbolic structure X on S, we will be able to build
sequences (γ(X)

n )n∈N of random geodesics satisfying (1.4). Moreover, we will
build them in such a way that neither the converging rates in (1.4) and (3.4),
nor the peripheral self-intersection numbers iper(γ(X)

n , γ
(X)
n ) depend on X.

Theorem 3.6. — For every complete and finite area hyperbolic struc-
ture X on a finite analytic type surface of negative Euler characteristic S,
there is a sequence (γ(X)

n )n∈N of random geodesics such that :

lim
n→∞

i

(
γ

(X)
n

ℓX(γ(X)
n )

,
γ

(X)
n

ℓX(γ(X)
n )

)
= 1

π2|χ(S)| .

More precisely, they can be chosen such that
(1) i(γ̂(X)

n , γ̂
(X)
n ) ⩽ 1

π2|χ(S)|
(
1 + 1

n

)
, ∀n ∈ N,

(2) ∀α ∈ C(S), ∃nα ∈ N : |i(γ̂(X)
n , α)( ℓX (α)

π2|χ| )−1 − 1| ⩽ 3
n , ∀n ⩾ nα,

(3) iper(γ(X)
n , γ

(X)
n ) ⩽ Cn, ∀n ∈ N,

where Cn and nα do not depend on X.

Proof. — To obtain the desired sequence (γ(X)
n )n∈N we start with an

arbitrary sequence of random geodesics (γn)n∈N. For every p we set kp =
ep/2 and θp = e−p/2, if we apply the cutting process with parameters kp and
θp to the sequence (γn)n∈N then we obtain a sequence (γ̃p

n)n∈N of piecewise
geodesics and by pulling it tight a sequence (γp

n)n∈N of geodesics. We will
chose the (γ(X)

N )N∈N among the γp
n.

First, study the self-intersection number of those γp
n. As γp

n is the geodesic
representative of γ̃p

n, its self-intersection number is lower than the number
of self-intersections of γ̃p

n. To count it, we divide X into two parts, the
compact core Xk and its complement Bk. On Xk, the geodesic arcs γ̃p

n|Xk

and γn|Xk are identical so γ̃p
n has i(γn|Xk , γn) self-intersections. On the

complement, we count the self-intersections of γ̃p
n considering its different

excursions in Bk:

i(γp
n, γp

n) ⩽ i(γn ∩ Xk, γn) +
∑

I,J excursions in Bk

i(I, J).

We can distinguish two types of pairs (I, J): the ones where at least one of
the excursions stays in Bk ∩ Xk/ sin(2θ), and the ones where both I and J
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reach Bk/ sin(2θ). In the first case, I and J meet at most as many times as
the corresponding excursions of γn and then:

i(γp
n, γp

n) ⩽ i(γn ∩ Xk/ sin(2θ), γn) +
∑

I,J excursions in Bk

which reach Bk/ sin(2θ)

i(I, J).

Moreover, an excursion of γ̃p
n in Bk which reaches Bk/ sin(2θ) has a length

of at least ln(1/θ), a lower bound for the length of the geodesic arc which
enters with angle 2θ. It follows that there is at most ℓX (γn∩Bk)

ln(1/θ) such excur-
sions. Also, the intersection number of two excursions reaching Bk/ sin(2θ)

is at most 4k/θ, the self-intersection number of the excursion which enters
with angle θ. All in all,

i(γp
n, γp

n) ⩽ i(γn ∩ Xk/2θ, γn) +
(

ℓX(γn ∩ Bk)
ln(1/θ)

)2 4k

θ
.

Applying equations (3.5) and (3.2) we have

i(γn ∩Xk/2θ,γn) = (1 + εp
n)ℓX(γn)ℓX(γn ∩ Xk/2θ)

π2|χ|
and

ℓX(γn ∩Bk) = (1+δp
n)ℓX(γn)

2π|χ|
C

k
where C is the number of cusps of S,

where εp
n −−−−→

n→∞
0 and δp

n −−−−→
n→∞

0 depend on X. As a consequence,

i(γp
n, γp

n) ⩽ (1 + εp
n)ℓX(γn)2

π2|χ|
+
(

(1 + δp
n) CℓX(γn)

2π|χ| · k · ln(1/θ)

)2 4k

θ

and we obtain a upper bound for the self-intersection number of the nor-
malized curves:

(3.7) i

(
γp

n

ℓX(γp
n) ,

γp
n

ℓX(γp
n)

)
⩽

1
π2|χ|

(
(1 + εp

n) + (1 + δp
n)2 C2

|χ|
4
p2

)(
ℓX(γn)
ℓX(γp

n)

)2
.

We next study the intersection number of the γp
n with closed curves. The

set C(S) is infinite and can be enumerated with C(S) = {αq | q ∈ N} in
such a way that iper(αq, αq) ⩽ 4q for every q. This enumeration is fixed
whatever the structure X. Recall that for every p we have k = kp = ep/2

and θ = θp = e−p/2. Hence, when p is big enough, for q ⩽ p the curve αq

is included in Xq ⊂ Xk. However in Xk we have i(γn, ·) = i(γp
n, ·) thus

(3.8) i(γ̂p
n, αq) = ℓX(γn)

ℓX(γp
n) i(γ̂n, αq).
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Now, applying Lemma 3.4, for every p there is µp
n −−−−→

n→∞
0, depending

on X, such that

(3.9) 1 ⩽
ℓX(γn)
ℓX(γp

n) ⩽ (1 + µp
n) volX(S)

volX(Xk) (1 + ep).

with ep = ee−p/2 with the notation of (3.6).
Therefore, there are mp large enough such that εp

mp
, δp

mp
, µp

mp
⩽ 1

p , and

| i(γ̂mp ,αq)
ℓX (αq)/π2|χ| − 1| ⩽ 1

p for every q ⩽ p. Thus (3.9) and (3.7) give us

(3.10) 1 ⩽
ℓX(γmp)
ℓX(γp

mp) ⩽
volX(S)

volX(Xk) (1 + 1
p

)(1 + ep) −−−→
p→∞

1,

(3.11) i(γ̂p
mp

, γ̂p
mp

)

⩽
1

π2|χ|

(
1+
(

1+ 1
p

)
4C2

p2|χ|

)
volX(S)

volX(Xk)

(
1+ 1

p

)2
(1+ep) −−−→

p→∞

1
π2|χ|

.

The terms on the right in inequalities (3.10) and (3.11) do not depend
on X anymore so, for N an integer there is pN , independent from X and
with pN > pN−1, such that 1 ⩽

ℓX (γpN
)

ℓX (γ
pN
mpN

) ⩽ 1 + 1
N and i(γ̂pN

mpN
, γ̂pN

mpN
) ⩽

1
π2|χ| (1 + 1

N ). As a consequence, we can take γ
(X)
N = γpN

mpN
.

The previous constructions ensure that i(γ̂(X)
N , γ̂

(X)
N ) ⩽ 1

π2|χ| (1+ 1
N ), and

we have proved (1) in the statement of the theorem.
Applying Proposition 2.4 we have iper(γ(X)

N , γ
(X)
N ) ⩽ 4epN where pN does

not depend on X, which gives us the third point.
At last, (3.8) and the choice of pN and mp induces that

1 − 3
N

⩽ (1 − 1
N

) ⩽ i(γ̂(X)
N , αq)

ℓX(αq)/π2|χ|
⩽ (1 + 1

N
)2 ⩽ 1 + 3

N
, ∀q ⩽ N,

hence, we obtain the second point with nα = q when α = αq.
Moreover, up to passing to a subsequence, the (γ(X)

N )N∈N are built from
the sequence (γN )N∈N of random geodesics through cutting processes of
parameters kN = epN /2 −−−−→

N→∞
∞ and θN = e−pN /2 −−−−→

N→∞
0. As a con-

sequence, Lemma 3.5 ensures that we have built a sequence of random
geodesics. At last, for K a compact subsurface of X we have

i

γ̂(X)
n ,

γ
(X)
n|K

ℓX(γ(X)
n|K)

 ⩽ i
(

γ̂(X)
n , γ̂(X)

n

)
⩽

1
π2|χ|

(
1 + 1

n

)
,
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and if we pass to the limit, using (3.5), we obtain that

lim
N→∞

i
(

γ̂
(X)
N , γ̂

(X)
N

)
= 1

π2|χ|
. □

4. Proof of Thurston’s compactification

Armed with Theorem 3.6, we are now able to prove Thurston’s compact-
ification. As we already mentioned in the introduction, the starting point
of this compactification is the embedding of T(S) and P+ML(S) into the
space P+(RC(S)

+ ):

ℓ : T(S) −→ P+

(
RC(S)

+

)
X 7−→ R+ℓX( · ),

ι : P+ML(S) −→ P+

(
RC(S)

+

)
λ 7−→ R+i(λ, · ).

The image of T(S) in P+(RC(S)
+ ) is included into a compact set (use (4.1)

for instance), thus, the closure T(S) of T(S) is compact. The boundary of
this set is given by the following theorem.

Theorem (Thurston’s compactification). — If S is a finite analytic type
surface with negative Euler characteristic then the accumulation points of
T(S) in P+(RC(S)

+ ) are the projective classes of functions γ 7→ i(λ, γ) where
λ ∈ ML(S) is a measured lamination on S.

Our arguments apply to the compact case, but for the sake of concrete-
ness we will focus on non-compact surfaces.

Let Xk ∈ T(S) be a sequence which converges in P+(RC(S)
+ ) and leaves all

compact sets of T(S), meaning that there are a non-zero element F of RC(S)
+

and a sequence (εk)k∈N of positive real numbers such that lim
k→∞

εkℓk( ·) = F

pointwise (we have written ℓk for ℓXk
). We will prove that F is given by

taking the intersection number with a suitable measured lamination.
Fix a filling curve β on S, that is a closed curve such that the connected

components of S \β are balls and annular neighborhoods of the cusps. Such
a curve gives us a bound on the length of every curve γ ∈ C(S), namely,

(4.1) ℓX(γ) ⩽ ℓX(β)i(γ, β)(1 + i(γ, γ))
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for every hyperbolic structure X [19, Lemma 2.1]. Since F = lim
k→∞

εkℓk( ·)
is non-zero, there is γ ∈ C(S) with F (γ) ̸= 0. We obtain from (4.1) that

0 < F (γ) ⩽ F (β)(1 + i(γ, γ))i(γ, β)

and hence that F (β) ̸= 0. Since we are only interested in convergence in
P+(RC(S)

+ ), we can assume that F (β) = 1, meaning that

lim
k→∞

δk ℓk( · )
π2|χ|

= F,

where δk = π2|χ|
ℓk(β) .

We will now prove that F is of the form i(µ, · ) where µ is a measured
lamination on S.

Applying Theorem 3.6 to each Xk, we obtain some sequences of essen-
tial closed geodesics (γ(k)

n )n∈N = (γ̂(Xk)
n )n∈N with lim

n→∞
i(γ(k)

n /ℓk(γ(k)
n ), · ) =

ℓk( · )/π2|χ|. As all along, let Σ be a compact complete hyperbolic sur-
face with boundary whose interior is homeomorphic to S and let’s iden-
tify C(S) with C(Σ). In particular, we can consider the weighted curves
γ̂

(k)
n = γ

(k)
n /ℓk(γ(k)

n ) as currents of Σ. The space P+C(Σ) being compact
each (γ̂(k)

n )k∈N projectively converges to a non-zero current µn ∈ C(Σ).
We first want to show that the µn are measured laminations. Consider

the sequence (γ̂(k)
n )k∈N for n fixed, there are some εk

n > 0 such that εk
nγ̂

(k)
n

tends to µn up to a subsequence in k. So, by diagonal extraction we can
suppose that εk

nγ̂
(k)
n −−−−→

k→∞
µn for every n. What we have to show is that

lim
k→∞

εk
n = 0 for every n. The sequence (Xk)k∈N leaves every compact set

of T(S) so there is a simple closed curve α such that lim
k→∞

ℓk(α) = ∞. Re-
call that to prove Theorem 3.6 we have enumerated C(S) = {αn|n ∈ N}
such that iper(αn, αn) ⩽ 4n, since α is a simple curve we can suppose that
α = α1. The γ

(k)
n come from Theorem 3.6 thus |i(γ̂(k)

n , α)( ℓk(α)
π2|χ| )

−1 −1| ⩽ 3
n

whatever k and n. By hypothesis ℓk(α) −−−−→
k→∞

∞ and we can suppose, up

to a shift in n, that for every n, |i(γ̂(k)
n , α( ℓk(α)

π2|χ| )
−1 − 1| < 1

2 . As a con-
sequence i(γ̂(k)

n , α) −−−−→
k→∞

∞. However, ∞ > i(µn, α) = lim
k→∞

εk
ni(γ̂(k)

n , α)

thus εk
n −−−−→

k→∞
0 for every n, and i(γ̂(k)

n , γ̂
(k)
n ) is bounded independently

from k and n, hence, i(µn, µn) = lim
k→∞

(εk
n)2i(γ̂(k)

n , γ̂
(k)
n ) = 0 and µn is a

measured lamination on Σ. By construction, iper(γ(k)
n , γ

(k)
n ) ⩽ Cn for every

k and n, as mentioned earlier (or in [8, Lemma 2.7]) it ensures that for n

fixed the γ
(k)
n are all included in the same compact subsurface of Σ \ ∂Σ.
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It follows that µn is supported on a compact set of Σ \ ∂Σ and by (2.2) it
is a measured lamination of S.

Recall that β is a filling curve of S, as a consequence, i(µn, β) ̸= 0 and
hence, we can suppose that i(µn, β) = 1 for every n and we obtain

(4.2) lim
k→∞

δk
nγ̂(k)

n = µn in C(Σ),

where δk
n = 1

i(β,̂γ
(k)
n )

is well-defined.
To sum up, we have the following convergence diagram, where all the

convergences are pointwise.

δ1 ℓX1 (.)
π2|χ| δ2 ℓX2 (.)

π2|χ| · · · δk ℓXk
(.)

π2|χ| · · · −−→ F ∈ RC(S)
+x x · · ·

x · · ·
x?

...
... · · ·

... · · ·
...

δ1
ni(γ̂(1)

n , ·) δ2
ni(γ̂(2)

n , ·) · · · δk
ni(γ̂(k)

n , ·) · · · −−→ i(µn, ·)
...

... · · ·
... · · ·

...
...

δ1
2i(γ̂(1)

2 , ·) δ2
2i(γ̂(2)

2 , ·) · · · δk
2 i(γ̂(k)

2 , ·) · · · −−→ i(µ2, ·)
δ1

1i(γ̂(1)
1 , ·) δ2

1i(γ̂(2)
1 , ·) · · · δk

1 i(γ(k)
1 , ·) · · · −−→ i(µ1, ·)

We want F to be the pointwise limit of (i(µn, ·))n∈N. To prove it, it is
sufficient to show that the convergence δk

ni(γ̂(k)
n , γ) −−−−→

n→∞
δk ℓk(γ)

π2|χ| is uniform
in k when γ ∈ C(S) is fixed.

If γ ∈ C(S) is fixed then Theorem 3.6 ensures that | δk
n

δk − 1| ⩽ ϵn and
|i(γ̂(k)

n , γ)( ℓk(γ)
π2|χ| )

−1 − 1| ⩽ ϵn for every k and for n large enough (nγ and
nβ do not depend on k) with ϵn −−−−→

n→∞
0. Moreover, fixing γ we know that

δk ℓk(γ)
π2|χ| −−−−→

k→∞
F (γ) hence the sequence (δk ℓk(γ)

π2|χ| )k∈N is bounded by some
dγ and we obtain∣∣∣∣δk

ni(γ̂(k)
n , γ) − δk ℓk(γ)

π2|χ|

∣∣∣∣ ⩽ vndγ −−−−→
n→∞

0.

Hence, the convergence holds uniformly in k, and

lim
n→∞

lim
k→∞

δk
ni(γ̂(k)

n , γ) = lim
k→∞

lim
n→∞

δk
ni(γ̂(k)

n , γ),

which implies that
F (γ) = lim

n→∞
i(µn, γ).

Moreover, ML(S) is a closed subset of RC(S)
+ hence F ( · ) = lim

n→∞
i(µn, ·) is

of the form F ( · ) = i(µ, ·) where µ ∈ ML(S), which was what we needed
to prove. □
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