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BRANCHING OF UNITARY
O(1, n + 1)-REPRESENTATIONS WITH NON-TRIVIAL

(g, K)-COHOMOLOGY

by Clemens WEISKE (*)

Abstract. — Let G = O(1, n + 1) with maximal compact subgroup K and let
Π be a unitary irreducible representation of G with non-trivial (g, K)-cohomology.
Then Π occurs inside a principal series representation of G, induced from the O(n)-
representation

∧p(Cn) and characters of a minimal parabolic subgroup of G at the
limit of the complementary series. Considering the subgroup G′ = O(1, n) of G with
maximal compact subgroup K′, we prove branching laws and explicit Plancherel
formulas for the restrictions to G′ of all unitary representations occurring in such
principal series, including the complementary series, all unitary G-representations
with non-trivial (g, K)-cohomology and further relative discrete series representa-
tions in the cases p = 0, n. Discrete spectra are constructed explicitly as residues of
G′-intertwining operators which resemble the Fourier transforms on vector bundles
over the Riemannian symmetric space G′/K′.

Résumé. — Soient G = O(1, n+1), K un sous-groupe compact maximal de G et
Π une représentation unitaire irréductible de G possédant une (g, K)-cohomologie
non triviale. Alors Π apparaît comme une sous-représentation d’une série princi-
pale de G, induite depuis la représentation de O(n) sur

∧p(Cn) et un caractère
d’un sous-groupe parabolique maximal de G à la limite de la série complémentaire.
En considérant le sous-groupe G′ = O(1, n) de G ayant un sous-groupe compact
maximal K′, nous prouvons des lois de branchement et des formules de Plancherel
explicites pour la restriction à G′ de toutes les représentations unitaires apparais-
sant dans de telles séries principales. Ceci inclut la série complémentaire, toutes
les représentations unitaires de G ayant une (g, K)-cohomologie non triviale, et
d’autres représentations de la série discrète relative dans les cas p = 0, n. Les
spectres discrets sont construits explicitement en tant que résidus d’opérateurs
d’entrelacement qui ressemblent à la transformée de Fourier pour des fibrés vecto-
riels sur l’espace symétrique riemannien G′/K′.

Keywords: Real reductive groups, unitary representations, branching laws, direct inte-
gral, symmetry breaking operators.
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Introduction

Unitary representations of reductive Lie groups with non-trivial (g,K)-
cohomology appear in several branches of mathematics, for example in the
theory of locally symmetric spaces, where for a Lie-group G with finite
center, maximal compact subgroup K and discrete cocompact subgroup Γ,
by the Matsushima–Murakami formula (see [1, VII, Theorem 3.2])

H∗(Γ\G/K,C) =
⊕
π∈Ĝ

m(Γ, π)H∗(g,K;πK)

the cohomology of Γ\G/K is given by (g,K)-cohomologies of unitary rep-
resentations of G with multiplicities, which are essentially the dimensions
of spaces of automorphic forms on Γ\G/K. All representations with non-
trivial (g,K)-cohomology are constructed and their cohomologies calcu-
lated in [5]. The unitary ones are well known for the indefinite orthogo-
nal group O(1, n + 1) and classified for example for GL(n,R) (see [17]).
In our case of interest O(1, n + 1) the unitary cohomological representa-
tions occur as limits of complementary series representations in the Fell
topology on the unitary dual and on the automorphic dual in the sense of
Burger–Sarnak [3]. Restrictions of these representations are of particular
importance in the latter setting, since by [3], the restriction of automorphic
representations to certain subgroups is again automorphic for the subgroup.
In [18] it is proven that the restrictions of the cohomological representations
of O(1, n+ 1) to O(1, n) contain a certain cohomological representation of
the subgroup discretely. The main result of this article is the full branch-
ing law for the cohomological representations of O(1, n + 1) restricted to
O(1, n), extending the result of [18] to a complete decomposition.

For an irreducible unitary representation π of a reductive Lie group G

which is typically infinite dimensional, the restriction to a subgroup G′

decomposes into a direct integral

π|G′ ≃
∫ ⊕

Ĝ′
m(π, τ)τ dµπ(τ)

with a certain measure dµπ on the unitary dual Ĝ′ of G′ and possibly in-
finite multiplicities m(π, τ). Only in special cases the support of the mea-
sure is discrete and in general it might contain a continuous and a discrete
part. Many special cases have been studied recently using analytic methods
(e.g. [10, 13, 15, 16]).

For pointwise evaluation of the continuous spectrum of a unitary branch-
ing law in terms of G′-intertwining operators, it is necessary to restrict
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BRANCHING OF COHOMOLOGICAL O(1, n + 1)-REPRESENTATIONS 3

ourselves to the smooth vectors of unitary representations, since the exis-
tence of continuous G′-intertwining operators in the unitary case already
implies the images to be in the discrete spectrum, while for the smooth vec-
tors, intertwiners exist for the whole spectrum almost everywhere (see [6]).
In our case the cohomological representations of O(1, n + 1) can be real-
ized as quotients of principal series representations induced from the O(n)-
representation

∧p(Cn) at the limit of the complementary series. To obtain
the direct integral decomposition of the cohomological representations, we
prove branching laws for the unitary principal series and use an analytic
continuation procedure to extend the result onto the complementary series
and towards the cohomological representations. In particular we obtain
branching laws for the complementary series and also for all other unita-
rizable quotients which occur within the principal series in question. More
precisely we collect discrete components in the decomposition as residues
of G′-intertwining operators between smooth vectors, so called symmetry
breaking operators by Kobayashi [9] and we make use of the detailed clas-
sification and study of these operators in the relevant case by Kobayashi–
Speh [12].

Main results

Let G = O(1, n + 1), n > 1 and let P = MAN ⊆ G be a minimal
parabolic subgroup. Then M ∼= O(1) × O(n). Consider the representation(

α⊗
∧p

(Cn)
)

⊗ eλ ⊗1

of MAN on the vector space V ±
p,λ where we use the superscript + if α is

the trivial irreducible O(1)-representation and − if it is the non-trivial one
and λ ∈ a∗

C which we identify by C by mapping the half sum of all positive
roots ρ to n

2 . Let π±
p,λ be the principal series representation of G on the

smooth sections of the homogeneous bundle

G×P V ±
p,λ+ρ −→ G/P

over the real flag variety G/P . Our normalization is chosen such that π±
p,λ

is unitary for λ ∈ iR and such that π±
p,λ contains a submodule Πp,± whose

underlying (g,K)-module has non-trivial (g,K)-cohomology for λ = p− ρ.
Let G′ = O(1, n) embedded in G such that P ′ = G′ ∩ P is a minimal

parabolic subgroup of G′. Similarly we consider the P ′ = M ′AN ′ represen-
tation (

α⊗
∧q

(Cn−1)
)

⊗ eν ⊗1
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4 Clemens WEISKE

on the vector space W±
q,ν and denote by τ±

q,ν the principal series represen-
tation which is given by the smooth sections of the bundle

G′ ×P ′ W±
q,ν+ρ′ −→ G′/P ′,

where ρ′ is the obvious and under the identification above equal to n−1
2 . Our

normalization is again such that the unitary principal series is given on the
imaginary axis and such that τ±

q,ν contains a cohomological representation
Π′

q,± as a submodule for ν = q − ρ′.
For G and G′ we denote the unitary closures of unitarizable representa-

tions π in the following by π̂. For the unitary principal series we prove the
following branching laws. For the uniform formulation for all p = 0, . . . , n
we set τ̂±

q,ν = {0} for q = −1, n.

Theorem A (Branching laws for the unitary principal series, see
Lemma 12.4). — For λ ∈ iR and p ̸= n

2 we have

π̂±
p,λ|G′ ≃

⊕
α=+,−

⊕
q=p−1,p

∫ ⊕

iR+

τ̂α
q,ν dν.

For λ ∈ iR and p = n
2 we have

π̂±
p,λ|G′ ≃ Π̂′

n
2 ,+ ⊕ Π̂′

n
2 ,− ⊕

⊕
α=+,−

⊕
q=p−1,p

∫ ⊕

iR+

τ̂α
q,ν dν.

If p ̸= ρ = n
2 , there is a complementary series. More precisely π±

p,λ is a
complementary series representation if and only if λ ∈ (−|ρ − p|, |ρ − p|),
for which we also prove unitary branching laws and where complementary
series of G′ occur discretely. We formulate the result only for the negative
half of the complementary series. The result for the positive parameters
follows by duality.

Theorem B (see Theorem 13.4). — For λ ∈ (−|ρ− p|, 0) we have

π̂±
p,λ|G′ ≃

⊕
α=+,−

⊕
q=p−1,p


∫ ⊕

iR+

τ̂α
q,ν dν ⊕

⊕
k∈
[

0,
−λ−1+(α 1

2 )
2

)
∩Z

τ̂±α
q,λ+1−(α 1

2 )+2k

 .

Moreover we prove unitary branching laws for the unitarizable quotients
Πp,± whose underlying (g,K)-modules have non-trivial (g,K)-cohomology,
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BRANCHING OF COHOMOLOGICAL O(1, n + 1)-REPRESENTATIONS 5

sitting as quotients at the limit of the complementary series. Here comple-
mentary series as well as cohomological representations occur in the discrete
spectrum.

Theorem C (see Theorem 13.5).

(i) For the one dimensional quotients we have

Π̂0,±|G′ ≃ Π̂′
0,±, Π̂n+1,±|G′ ≃ Π̂′

n,±.

(ii) For 0 < p ⩽ n
2 we have

Π̂p,±|G′ ≃ Π̂′
p,± ⊕

⊕
k∈(0,ρ′−p+1)∩Z

τ̂
∓(−1)k

p−1,p−1−ρ′+k ⊕
⊕

α=+,−

∫ ⊕

iR+

τ̂α
p−1,ν dν.

(iii) For n odd and p = n+1
2 we have

Π̂ n+1
2 ,±|G′ ≃

⊕
α=+,−

∫ ⊕

iR+

τ̂α
n−1

2 ,ν
dν.

(iv) For n+1
2 < p ⩽ n we have

Π̂p,±|G′ ≃ Π̂′
p−1,± ⊕

⊕
k∈(0,p−1−ρ′)∩Z

τ̂
±(−1)k

p−1,ρ′−p+1+k ⊕
⊕

α=+,−

∫ ⊕

iR+

τ̂α
p−1,ν dν.

Speh–Venkataramana proved the inclusions

Π̂′
p,± ⊆ Π̂p,±|G′ p <

n+ 1
2 ,

Π̂′
p−1,± ⊆ Π̂p,±|G′ p >

n+ 1
2 ,

(see [18, Theorem 1.4]) and the theorem above gives the full decomposition
of the cohomological representations Π̂p,±|G′ .

For p ̸= 0, n, the representations Πp,± are the only proper unitarizable
composition factors of π±

p,λ. For p = 0, n there are additional unitarizable
composition factors Ip,j,± for each positive integer j, occuring as quotients
in π±

p,λ for λ = −ρ − j. We prove branching laws for the closures of these
representations as well. Here complementary series, a cohomological repre-
sentation, as well as the corresponding quotients for the subgroup I ′

q,k,±,
with q = 0, n− 1 and k positive integers occur discretely.

TOME 0 (0), FASCICULE 0
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Theorem D (see Theorem 13.6).
(i) For p = 0 we have

Î0,j,±|G′ ≃ Π̂′
1,∓ ⊕

j⊕
k=1

Î ′
0,k,±(−1)k+j

⊕
⊕

k∈(0,ρ′)∩Z

τ̂
±(−1)k+j

0,−ρ′+k ⊕
⊕

α=+,−

∫ ⊕

iR+

τ̂α
0,ν dν.

(ii) For p = n we have

În,j,±|G′ ≃ Π̂′
n−1,± ⊕

j⊕
k=1

Î ′
n−1,k,±(−1)k+j

⊕
⊕

k∈(0,ρ′)∩Z

τ̂
±(−1)k+j

n−1,−ρ′+k ⊕
⊕

α=+,−

∫ ⊕

iR+

τ̂α
n−1,ν dν.

For all branching laws we obtain an explicit Plancherel theorem (see
Corollary 13.3). We remark that the decompositions in the spherical case,
i.e. p = 0 have been proven before by Möllers–Oshima in [13] by a different
approach which is likely to generalize to arbitrary p. Our method of proof
offers a more systematical perspective which does not rely on the nilradical
to be abelian.

Method of proof

The subgroup G′ acts on the real flag variety G/P with an open orbit
which is as a G′-space given by a Z/2Z-fibration over the Riemannian
symmetric space G′/K ′, where K ′ is the maximal compact subgroup of
G′ (see Proposition 2.3 and Lemma 9.1). Restriction to the open orbit
naturally induces a G′-map

Φ : π±
p,λ −→ L2

(
G′/K ′,

∧p
(Cn)

)
if Reλ > − 1

2 (see Lemma 9.4). The Plancherel and inversion formula for
the space L2 (G′/K ′,

∧p(Cn)) is essentially due to [4]. It is given in terms
of Fourier transforms on L2 (G′/K ′,

∧p(Cn)), which are G′-intertwining
maps into principal series τ±

q,ν . By composition of the map Φ and the
Fourier transforms we obtain elements of the space HomG′(π±

p,λ|G′ , τ±
q,ν)

of symmetry breaking operators, which are in this special case classified
by Kobayashi–Speh in [12]. The symmetry breaking operators we obtain

ANNALES DE L’INSTITUT FOURIER



BRANCHING OF COHOMOLOGICAL O(1, n + 1)-REPRESENTATIONS 7

in this procedure are given by families of integral kernel operators with
meromorphic dependence on λ and ν and the meromorphic structure of
the operators is studied in [12] in great detail. This allows us to carefully
analytically continue the Plancherel formula of L2 (G′/K ′,

∧p(Cn)) in λ

over the critical point λ = − 1
2 on the real axis, towards the complementary

series and unitarizable quotients Πp,±.

Structure of this article

In Section 1 we recall some facts about symmetry breaking operators
between principal series representations and establish the necessary no-
tation for principal series representations of G in Section 2. In Section 3
we discuss the restriction to the identity component of the representations
in question which will be used for arguments later in the article. In Sec-
tion 4 and Section 5 we study the composition series of the principal series
representations and give criteria for reducibility and unitarizability. In Sec-
tion 6 we recall the classification of symmetry breaking operators between
π±

p,λ|G′ and τ±
q,ν from [12] as well as their meromorphic structure. We re-

call functional equations of symmetry breaking operators and the standard
Knapp–Stein intertwining operators in Section 7 and extend them to op-
erators into quotients of principal series representations in Section 8. We
establish the structure of the open G′-orbit in G/P as a homogeneous G′-
space in Section 9 and prove a Plancherel formula for the corresponding
space in Section 11 using the Plancherel formula for the restriction to the
connected component of [4] (Section 10). We lift these results to the rep-
resentation π±

p,λ around the unitary axis in Section 12. The main result
here is Theorem 12.1, by which the Fourier transform on the homogeneous
G′-space is essentially given by symmetry breaking operators classified by
Kobayashi–Speh on the principal series. Finally Section 13 is dedicated to
the proof of the main theorems where we analytically continue the Planch-
erel formula around the unitary axis towards the complementary series and
the unitary composition factors.
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Notation

For two sets B ⊆ A we use the Notation A \ B = {a ∈ A : a /∈ B}. We
denote Lie groups by Roman capitals and their corresponding Lie algebras
by the corresponding Fraktur lower cases.

1. Symmetry breaking operators between principal series
representations

We recall the basic facts about symmetry breaking operators between
principal series representations from [12].

1.1. Principal series representations

Let G be a real reductive Lie group and P a minimal parabolic subgroup
of G with Langlands decomposition P = MAN . For a finite-dimensional
representation (ξ, V ) ofM , a character λ ∈ a∗

C and the trivial representation
1 of N we obtain a finite-dimensional representation (ξ ⊗ eλ ⊗1, Vξ,λ) of
P = MAN . By smooth normalized parabolic induction this representation
gives rise to the principal series representation

πξ,λ := IndG
P (ξ ⊗ eλ ⊗1)

as the left-regular representation of G on the space

{φ ∈ C∞(G,V ) : φ(gman) = ξ(m)−1a−(λ+ρ)φ(g) ∀man ∈ MAN},

where ρ := 1
2 tr ad |n ∈ a∗

C. Let Vξ,λ := G ×P Vξ,λ+ρ → G/P be the homo-
geneous vector bundle associated to Vξ,λ+ρ. Then πξ,λ identifies with the
left-regular action of G on the space of smooth sections C∞(G/P,Vξ,λ).

Now let G′ < G be a reductive subgroup. Similarly we let P ′ = M ′A′N ′

be a minimal parabolic subgroup of G′. For a finite-dimensional represen-
tation (η,W ) of M ′ and ν ∈ (a′

C)∗ we obtain a finite-dimensional repre-
sentation (η ⊗ eν ⊗1,Wη,λ) of P ′ and the corresponding principal series
representation

τη,ν := IndG′

P ′ (η ⊗ eν ⊗1).
Again we identify τη,ν with the smooth sections C∞(G′/P ′,Wη,ν) of the
homogeneous vector bundle Wη,ν := G′ ×P ′ Wη,ν+ρ′ → G′/P ′, where ρ′ :=
1
2 tr ad |n′ .

ANNALES DE L’INSTITUT FOURIER



BRANCHING OF COHOMOLOGICAL O(1, n + 1)-REPRESENTATIONS 9

1.2. Symmetry breaking operators

In these realizations the space of symmetry breaking operators between
πξ,λ and τη,ν is given by the continuous linear G′-maps between the smooth
sections of the two homogeneous vector bundles

HomG′(πξ,λ|G′ , τη,ν) = HomG′(C∞(G/P,Vξ,λ)), C∞(G′/P ′,Wη,ν)).

The Schwartz Kernel Theorem implies that every such operator is given by
a G′-invariant distribution section of the tensor bundle Vξ∗,−λ ⊠Wη,ν over
G/P × G′/P ′, where ξ∗ is the representation contradigent to ξ. Since G′

acts transitively on G′/P ′ we can consider these distributions as sections
on G/P with a certain P ′-invariance:

Theorem 1.1 ([11, Proposition 3.2]). — There is a natural bijection

HomG′(πξ,λ|G′ , τη,ν) ∼−→ (D′(G/P,Vξ∗,−λ) ⊗Wη,ν+ρ′)P ′
,

T 7−→ uT .

In our case of interest the dimension of HomG′(πξ,λ|G′ , τη,ν) is in partic-
ular generically bounded by 1.

Theorem 1.2 ([19, Theorem B]). — For (G,G′) = (O(1, n+1),O(1, n))
we have

dim HomG′(π|G′ , τ) ⩽ 1
for all irreducible Casselman–Wallach representations π of G and τ of G′.

1.3. Restriction to the open Bruhat cell

From now on assume M ′ = M ∩G′, A′ = A ∩G′ and N ′ = N ∩G′. Let
N be the nilradical of the parabolic opposite to P . Since N is unipotent we
obtain a parameterization of the open Bruhat cell NP/P ⊆ G/P in terms
of the Lie algebra n by the map

n
exp−→ N ↪−→ G −→ G/P,

such that we can consider n as an open dense subset of G/P . Then the
restriction

D′(G/P,Vξ∗,−λ) −→ D′(n,Vξ∗,−λ|n)
can be used to define a g-action on D′(n,Vξ∗,−λ|n) ∼= D′(n) ⊗ Vξ∗,−λ+ρ by
vector fields. Moreover, since Ad(M ′A′) leaves n invariant, the restriction
is further M ′A′-equivariant. If we assume P ′NP = G, i.e. every P ′-orbit in
G/P meets the open Bruhat cell NP , then symmetry breaking operators
can be described in terms of (M ′A′, n′)-invariant distributions on n:

TOME 0 (0), FASCICULE 0



10 Clemens WEISKE

Theorem 1.3 ([11, Theorem 3.16]). — Assume P ′NP = G, then there
is a natural bijection

HomG′(πξ,λ|G′ , τη,ν) ∼−→ (D′(n) ⊗ Vξ∗,−λ+ρ ⊗Wη,ν+ρ′)M ′A′,n′
.

Given a distribution kernel uT , the corresponding operator

T ∈ HomG′(πξ,λ|G′ , τη,ν)

is given by

(1.1) Tφ(h) = ⟨uT , φ(h exp( · ))⟩.

2. Principal series representations of rank one orthogonal
groups

Let G = O(1, n+ 1) denote the group of (n+ 2) × (n+ 2) matrices over
R preserving the quadratic form

(z0, z1, . . . , zn+1) 7−→ −|z0|2 + |z1|2 + · · · + |zn+1|2.

Let P be the minimal parabolic subgroup of G with Langlands decom-
position P = MAN given by

M =


a a

b

 : a ∈ O(1), b ∈ O(n)

 ,

A = exp(a) where a = RH, H =

0 1
1 0

0n

 ,

N = exp(n) where n =


 0 0 X

0 0 X

XT −XT 0n

 : X ∈ Rn

 .

Note that X ∈ Rn is considered as a row vector. We identify a∗
C

∼= C by
λ 7→ λ(H). Then in particular

ρ = 1
2 tr ad |n(H) = n

2 .

Consider the finite dimensional representations

ξ = α⊗ σp,

ANNALES DE L’INSTITUT FOURIER



BRANCHING OF COHOMOLOGICAL O(1, n + 1)-REPRESENTATIONS 11

of M = O(1) × O(n), with α ∈ {1, sgn} ∼= Ô(1) and σp =
∧p (Cn) with

p ∈ {0, . . . , n}. We define the principal series representations

π±
p,λ := Ind(ξ ⊗ eλ ⊗1)

where we use the index + if α = 1 and − if α = sgn.
Similarly we consider the finite dimensional M ′ representations

η = α⊗ δq

with α as above and δq =
∧q (Cn−1) with q ∈ {0, . . . , n − 1} and denote

the corresponding prinicpal series representations by τ±
q,ν .

2.1. The non-compact picture

Let N be the nilradical of the parabolic subgroup opposite to P . Since
N is unipotent, we identify it with its Lie algebra n ∼= Rn in terms of the
exponential map:

Rn −→ N, X 7−→ nX := exp

 0 0 X

0 0 −X
XT XT 0n

 .

Here we consider X ∈ Rn again as a row vector. Since NP is open and
dense in G, the restriction of π±

p,λ to functions on N is one-to-one. The
resulting realization in C∞(N) of π±

p,λ is called the non-compact picture
of π±

p,λ. For g ∈ NMAN we write g = n(g)m(g)a(g)n(g) for the obvious
decomposition. Then the G-action in the non-compact picture is given by

(2.1) π±
p,λ(g)f(X) = ξ−1(m(g−1nX))a(g−1nX)−(λ+ρ)f(logn(g−1nX)),

whenever g−1nX ∈ NMAN .
Let w̃0 = diag(−1, 1,1n), then w̃0 represents the longest Weyl group

element of G with respect to A. The following Lemma is easily verified by
standard calculations.

Lemma 2.1.
(i) Let m = diag(a, a, b−1) ∈ M with a ∈ O(1) and b ∈ O(n), then

mnXm
−1 = naXb.

(ii) Let t ∈ R and a = exp(tH), then

anXa
−1 = ne−t X .

TOME 0 (0), FASCICULE 0



12 Clemens WEISKE

(iii) Let X ̸= 0, then w̃0nX = nUman with n ∈ N and

U = −X
|X|2

, a = exp(2 log(|X|)H).

m = diag (−1,−1, ψn(X)) ,
with

ψn(X) = 1n − 2XTX

|X|2
∈ O(n)

.

These decompositions immediately imply the following formulas for the
action of P and w̃0:

Proposition 2.2.
(i) For m = diag(a−1, a−1, b) ∈ M with a ∈ O(1) and b ∈ O(n):

π±
p,λ(m)u(X) = ξ−1(m)u(aXb).

(ii) For t ∈ R and a = exp(tH):

π±
p,λ(a)u(X) = e(λ+ρ)t u(et X).

(iii) For Y ∈ Rn:

π±
p,λ(nY )u(X) = u(X − Y ).

(iv) For the action of w̃0 we have

π±
p,λ(w̃0)u(X) = ξ−1(diag(−1,−1, ψn(X)))|X|−2(λ+ρ)u(σ(X)).

where σ : n \ {0} → n \ {0} is the inversion given by

σ(X) = −X
|X|2

.

Note that X ∈ Rn is a row vector, so that matrix multiplication is from
the right.

2.2. Orbit structure of G/P

By [7, Proposition 2.9], the P ′-orbits in G/P are given by the following.

Proposition 2.3. — The P ′-orbits in G/P and their closure relations
are

OA
1 OB

n−1 OC ,
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where

OA = P ′ · w̃0nP = w̃0(N \N ′)P,

OB = P ′ · w̃0P = w̃0N
′P,

OC = P ′ · 1n+2P,

for some n ∈ N \N ′. Here X k Y means that Y is a subvariety of X of
co-dimension k.

In particular the orbit OA is open in G/P .

3. The component group G/G0

We study the restriction of representations of G to the identity compo-
nent G0.

3.1. Global characters of O(1, n+ 1)

G = O(1, n+1) is a disconnected group with four connected components
and the identity component G0 is isomorphic to SO0(1, n+1). The compo-
nent group is given by G/G0 ∼= Z/2Z × Z/2Z. Hence there are four global
characters χ±,± of G which are restricted to the subgroup M = O(1)×O(n)
given by

χ+,+|M = 1 ⊗ 1, χ+,−|M = 1 ⊗ det,
χ−,+|M = sgn ⊗1, χ−,−|M = sgn ⊗ det .

We remark that χ+,− is the determinant on G.
Note that as O(n)-representations we have∧p

(Cn) ∼=
∧n−p

(Cn) ⊗ det

such that for the principal series representation π±
p,λ we have

χ+,− ⊗ π±
p,λ

∼= π±
n−p,λ, χ−,+ ⊗ π±

p,λ
∼= π∓

p,λ, χ−,− ⊗ π±
p,λ

∼= π∓
n−p,λ.
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3.2. Restriction to the identity component

The following lemma is similar to [12, Lemma 15.2].

Lemma 3.1. — Let π be an irreducible admissible representation of G.
(i) If χ⊗π ̸∼= π for all χ ∈ {χ+,−, χ−,+, χ−,−} then π|G0 is irreducible.
(ii) If χ0⊗π ∼= π for χ0 ∈ {χ+,−, χ−,+, χ−,−} and χ⊗π ̸∼= π for all χ0 ̸=

χ ∈ {χ+,−, χ−,+, χ−,−}, then π|G0 = π(+) ⊕ π(−) decomposes into
two non-isomorphic irreducible G0 representations π(+) and π(−)

In the following we denote by

π±
p,λ := π±

p,λ|G0

the restriction to the identity component. We immediately obtain the fol-
lowing.

Lemma 3.2.
(i) If p ̸= n

2 , the restriction π±
p,λ is irreducible as G0-representation

if and only if π±
p,λ is irreducible as a G-representation. If π±

p,λ is
reducible, the composition series of π±

p,λ is given by the composition
factors of π±

p,λ restricted to G0.
(ii) If p = n

2 , the restriction π±
p,λ = π

±(+)
p,λ ⊕ π

±(−)
p,λ is always reducible

and decomposes into two non-isomorphic G0-representations π±(+)
p,λ

and π
±(−)
p,λ . The representations π±(±)

p,λ are irreducible if and only
if π±

p,λ is irreducible. If π±
p,λ is reducible, the composition series of

π
±(±)
p,λ is given by the composition factors of π±

p,λ restricted to G0,
which are contained in π

±(±)
p,λ .

We use the corresponding notation τ±
q,ν and τ

±(±)
q,ν for the components

of the restriction to G′
0

∼= SO0(1, n).

4. Composition series of π±
p,λ

We recall results about the composition series of π±
p,λ and give explicit

realizations as kernels of the standard Knapp–Stein intertwining operators.

4.1. Irreducibility of principal series representations

Theorem 4.1 ([12, Theorem 2.18]). — π±
p,λ is reducible if and only if

λ ∈ (−ρ− 1 − Z⩾0) ∪ (ρ+ 1 + Z⩾0) ∪ {ρ− p,−ρ+ p}.
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BRANCHING OF COHOMOLOGICAL O(1, n + 1)-REPRESENTATIONS 15

4.2. The Knapp–Stein intertwining operator

The composition series is closely connected to the Knapp–Stein inter-
twining operators which we introduce in this section. Following [12, Chap-
ter 8] we define the (normalized) Knapp–Stein intertwining operator Tp,λ

as an element of D′(Rn) ⊗ EndC(ξ) by

Tp,λ =
{

1
Γ(λ) |X|2(λ−ρ)σp(ψn(X)) if p ̸= n

2 ,
1

Γ(λ+1) |X|2(λ−ρ)σp(ψn(X)) if p = n
2 .

This defines a non-vanishing holomorphic family of intertwining operators

Tp,λ : π±
p,λ −→ π±

p,−λ.

The composition series of π±
p,λ is given in the following proposition which

is [12, Proposition 2.18 and Proposition 8.17]

Proposition 4.2. — If π±
p,λ is reducible it has composition series of

length two and if additionally λ ̸= 0 it has a unique irreducible submodule
given by kerTp,λ. If λ = 0 and π±

p,λ is reducible (hence p = n
2 ) it decomposes

into the direct sum of two irreducible representations which are given by

ker
(
Tp,0 ± πp

p! id
)
.

Similarly we denote by T ′
q,ν the Knapp–Stein intertwining operator for

the subgroup G′, similarly defined and normalized.

5. Unitary representations in the principal series of
O(1, n+ 1)

The principal series representation π±
p,λ is the smooth vectors of a tem-

pered unitary representation if and only if λ ∈ iR and hence unitarizable
(unitary principal series) and we denote its unitary closure by π̂±

p,λ. But for
real parameters the principal series representation might be non-tempered
unitarizable and irreducible (complementary series) or contain unitarizible
composition factors which might be tempered or not.

TOME 0 (0), FASCICULE 0



16 Clemens WEISKE

5.1. Criterion for unitarizability

Lemma 5.1 (See [12, Example 3.32]). — π±
p,λ is a complementary series

representation if and only if

λ ∈ (−|ρ− p|, |ρ− p|).

The following Proposition can easily be deduced using the calculations
in [2, Chapter 3.a].

Proposition 5.2. — Let p ̸= 0, n
2 , n. π±

p,λ contains a unitarizable com-
position factor if and only if λ ∈ {ρ−p, p−ρ}. In this case both the unique
submodule as well as the unique quotient are unitarizable. If p = n

2 , π±
p,λ

contains a unitarizable composition factor if and only if λ = 0. In this case
both submodules are unitarizable. If p = 0, n, π±

p,λ contains a unitarizable
composition factor if and only if λ ∈ {±(ρ + j), j ∈ Z⩾0}. If λ = −ρ − j,
the quotient π±

p,λ/ kerTp,λ is unitarizable and if λ = ρ + j the submodule
kerTp,λ is unitarizable. Only in the special case λ = ±ρ, also the other
composition factor is unitarizable and one dimensional in this case.

5.2. Composition factors with non-trivial (g,K)-cohomology

We introduce notation for the unitarizible composition factors. For p ̸=
n
2 , 0 < p < n let Πp,± be the unique proper submodule of π±

p,p−ρ and for
p = n

2 let

Π n
2 ,± := ker

(
Tn

2 ,0 − π
n
2

( n
2 )! id

)
⊆ π±

n
2 ,0.

Moreover let
Π0,+ := χ+,+, Π0,− := χ−,+,

Πn+1,+ := χ+,−, Πn+1,− := χ−,−.

These four one-dimensional representations correspond to the unique finite
dimensional unitarizable composition factors for p = 0, n.

The following results are all due to [12, Theorem 2.20]

Theorem 5.3.
(i) For 0 ⩽ p ⩽ n we have the following exact sequences of G-modules.

0 −→ Πp,± −→ π±
p,p−ρ −→ Πp+1,∓ −→ 0,

0 −→ Πp+1,∓ −→ π±
p,ρ−p −→ Πp,± −→ 0.

These sequences split if and only if p = n
2 .
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(ii) The set {Πp,α, 0 ⩽ p ⩽ n + 1, α = +,−} characterizes exactly all
irreducible smooth admissibleG-representations whose infinitesimal
character coincides with the infinitesimal character of the trivial
representation (trivial infinitesimal character).

(iii) All irreducible, unitarizable (g,K)-modules with non-trivial (g,K)-
cohomology are exactly given by the underlying (g,K)-modules of
the elements of {Πp,α, 0 ⩽ p ⩽ n+ 1, α = +,−}.

(iv) The set of irreducible tempered representations of G with trivial
infinitesimal character is given for n even by

{Π n
2 ,α,Π n

2 +1,α, α = +,−}

and for n odd by

{Π n+1
2 ,α, α = +,−}.

In the odd case both representations are discrete series representa-
tions.

(v) We have the following isomorphisms of G-modules

χ+,− ⊗ Πp,± ∼= Πn+1−p,∓, χ−,+ ⊗ Πp,± ∼= Πp,∓,

χ−,− ⊗ Πp,± ∼= Πn+1−p,±.

By Lemma 3.1 and Theorem 5.3(v) we immediately obtain the following.

Corollary 5.4. — The restriction Πp,± := Πp,±|G0 is reducible if and
only if p = n+1

2 . In this case Π n+1
2 ,± decomposes as

Π n+1
2 ,± = Π(+)

n+1
2 ,± ⊕ Π(−)

n+1
2 ,±

into two non-isomorphic G0-representations.

The restriction to the identity component becomes reducible if and only
if Πp,± is a discrete series representation. In this case clearly both Π(+)

n+1
2 ,±

and Π(−)
n+1

2 ,± are discrete series representations of G0 and are contained in
π±

n+1
2 , 1

2
as submodules.

In the following we adapt the notation for the subgroup G′ and denote
the representations with non-trivial (g′,K ′)-cohomology by Π′

q,±.

5.3. The additional cases for p = 0, n

We recall some facts about the infinite dimensional unitarizable com-
position factors in the cases p = 0, n. The standard reference here is [8].
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For λ = ρ + j, j ∈ Z>0 we denote by Ip,j,± the unique proper submodule
of π±

p,ρ+j and by Fp,j,± the unique proper submodule of π±
p,−ρ−j which is

finite dimensional. Then we have the following non-splitting short exact
sequences of G-modules.

0 −→ Ip,j,± −→ π±
p,ρ+j −→ Fp,j,± −→ 0,

0 −→ Fp,j,± −→ π±
p,−ρ−j −→ Ip,j,± −→ 0.

Similarly we use the notation I ′
q,j,± and F ′

q,j,± for the composition factors
of the G′-representations with q = 0, n− 1.

5.4. Inner products on the complementary series and on
unitarizable quotients

Combining the results of the K-spectrum of the Knapp-Stein operator
in [12, Chapter 8.3.2] with the relations between the scalars acting on K-
types in [2, Chapter 3.a] we obtain the following.

Proposition 5.5. — Let λ ∈ [ρ−p, p−ρ]\{0}. If p < n
2 the Knapp-Stein

operator Tp,λ acts by non-negative scalars on all K-types in π±
p,λ and if p >

n
2 it acts by non-positive scalars on all K-types in π±

p,λ. If the Knapp–Stein
operator vanishes on a K-type it is contained in the submodule kerTp,λ.
For p = 0 and λ ∈ (−ρ − 1 − Z⩾0),the Knapp-Stein operator T0,λ acts by
non-negative scalars on all K-types in π±

0,λ and if p = n and λ ∈ (−ρ −
1 −Z⩾0),the Knapp-Stein operator Tn,λ acts by non-positive scalars on all
K-types in π±

n,λ.

In the case p = n
2 the only unitarizable composition factors occur at

λ = 0 which is already in the unitary principal series and there is no
complementary series. By the proposition above we define the following
pairing which is an inner product on the complementary series.

⟨· , ·⟩p,λ :=
{

⟨·, Tp,λ·⟩L2(K) if p < n
2 ,

−⟨·, Tp,λ·⟩L2(K) if p > n
2 .

We denote the corresponding unitary closures by π̂±
p,λ. Let λ ∈ (−ρ − 1 −

Z⩾0) ∪ ({ρ− p, p− ρ} \ {0}) such that π±
p,λ contains a unitarizable quotient

and let prλ be the projection. Since kerTp,λ is the unique proper submodule,
we obtain an induced intertwiner

T quo
p,λ : π±

p,λ/ kerTp,λ −→ π±
p,−λ
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which is an isomorphism onto the unique proper submodule of π±
p,−λ and

which is essentially the Knapp-Stein operator. Then we similarly define the
following inner product on the quotients.

⟨· , ·⟩p,λ,quo :=
{

⟨·, T quo
p,λ ·⟩L2(K) if p < n

2 ,
−⟨·, T quo

p,λ ·⟩L2(K) if p > n
2 .

We remark that by construction for f ∈ π±
p,λ we have

⟨prλ f, prλ f⟩p,λ,quo = ⟨f, f⟩p,λ.

We denote the corresponding unitary closures by Π̂p,± resp. Îp,j,±. In the
following we use the notation T ′quo

q,ν similary for G′, ⟨· , ·⟩q,ν , ⟨· , ·⟩q,ν,quo for
the inner products and Π̂′

q,± and Î ′
q,j,± for the corresponding unitary clo-

sures.

6. Classification of symmetry breaking operators

We recall main result of [12]. By [12, Theorem 1.5] we have that

HomG′(π±
p,λ|G′ , τ±

q,ν) ̸= {0} ⇒ q ∈ {p− 2, p− 1, p, p+ 1}.

We will restrict ourselves to the cases q = p− 1, p, since the two cases are
enough for our purpose of decomposing unitary representations in π±

p,λ.
For Re(ν) ≪ 0 and Re(λ)+Re(ν) ≫ 0 consider the HomC(σp, δq)-valued

distribution kernel

u+
(p,λ),(q,ν)(X) := |X|−2(ν+ρ′)|Xn|λ−ρ+ν+ρ′

prσp→δq
(σp(ψn(X)))

on Rn ∼= N . By [12, Theorem 3.10], u+
(p,λ),(q,ν) defines a symmetry breaking

operator
A+

(p,λ),(q,ν) ∈ HomG′(π±
p,λ|G′ , τ±

q,ν)
in the sense of Theorem 1.3.

Similarly for Re(ν) ≪ 0 and Re(λ)+Re(ν) ≫ 0 the HomC(σp, δq)-valued
distribution kernel

u−
(p,λ),(q,ν)(X) := |X|−2(ν+ρ′)|Xn|λ−ρ+ν+ρ′

sgn(Xn) prσp→δq
(σp(ψn(X))),

defines a symmetry breaking operator

A−
(p,λ),(q,ν) ∈ HomG′(π±

p,λ|G′ , τ∓
q,ν).

We define the renormalizations

Ã+
(p,λ),(q,ν) := 1

Γ( λ+ρ+ν−ρ′

2 )Γ( λ+ρ−ν−ρ′

2 )
A+

(p,λ),(q,ν)
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and
Ã−

(p,λ),(q,ν) := 1
Γ( λ+ρ+ν−ρ′+1

2 )Γ( λ+ρ−ν−ρ′+1
2 )

A−
(p,λ),(q,ν).

Then Ã±
(p,λ),(q,ν) define families of symmetry breaking operators which ex-

tend holomorphically in λ, ν ∈ C (see [12, Theorem 3.10]). In this sense
we can consider A±

(p,λ),(q,ν) meromorphically extended to the whole plane
(λ, ν) ∈ C2, with their meromorphic behavior encoded in the normaliz-
ing Gamma-factors. In particular we can consider the distribution kernels
u±

(p,λ),(q,ν) meromorphically extended to (λ, ν) ∈ C2. According to (1.1) we
explicitly have the following formulas for the action of A±

(p,λ),(q,ν).

Proposition 6.1. — For f ∈ π±
p,λ and h ∈ G′ we have(

A±
(p,λ),(q,ν)f

)
(h) =

∫
Rn

u±
(p,λ),(q,ν)(X)f(hnX) dX.

We define the following subsets of C2 for α ∈ {+,−}.

Lα := {(−ρ−j,−ρ′ − i), i, j ∈ Z, 0 ⩽ j ⩽ i and i+ 1 − (α1)
2 ≡ j mod 2},

L(p, q)α :=



Lα if p = q = 0 or p = q + 1 = n,
(L+ \ {ν = −ρ′})

∪ {(p− ρ, q − ρ′)}
if 1 ⩽ p < n, q = p, α = +,

(L− \ {ν = −ρ′}) if 1 ⩽ p < n, q ∈ {p− 1, p}, α = −,
(L+ \ {ν = −ρ′})

∪ {(ρ− p, ρ′ − q)}
if 1 ⩽ p < n, q = p− 1, α = +.

Theorem 6.2 ([12, Theorem 3.19]). — Ã±
(p,λ),(q,ν) = 0 if and only if

(λ, ν) ∈ L(p, q)±.

Moreover we define two renormalizations of A±
(p,λ),(q,ν). Fix ν such that

there exists a µ ∈ C so that (µ, ν) ∈ L(p, q)±. We define

˜̃
A

+

(p,λ),(q,ν) := Γ
(
λ+ ρ− ν − ρ′

2

)
Ã+

(p,λ),(q,ν),

˜̃
A

−

(p,λ),(q,ν) := Γ
(
λ+ ρ− ν − ρ′ + 1

2

)
Ã−

(p,λ),(q,ν).

Then ˜̃A±

(p,λ),(q,ν) defines a non-vanishing family of symmetry breaking op-
erators which is holomoprhic in λ.
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For fixed λ+ρ−ν−ρ′ ∈ −Z⩾0 and q = p−1, p we define the meromorphic
functions

cC(p, q, ν) := Γ(ν + ρ′ + 1)

×


1 if p ̸= 0, n and λ− ν ̸= − 1

2 ,
1

ν+ρ′−p if p = 0 or λ− ν = − 1
2 and q = p,

1
ν−ρ′+p−1 if p = n or λ− ν = − 1

2 and q = p− 1

and we define the operators

C+
(p,λ),(q,ν) := cC(p, q, ν)Ã+

(p,λ),(q,ν),

for λ+ ρ− ν − ρ′ ∈ −2Z⩾0 and

C−
(p,λ),(q,ν) := cC(p, q, ν)Ã−

(p,λ),(q,ν),

for λ + ρ − ν − ρ′ ∈ −1 − 2Z⩾0. Then C±
(p,λ),(q,ν) defines a non-vanishing

family of symmetry breaking operators which is holomoprhic in ν.
We remark that we set all symmetry breaking operators for p = 0 and

q = p− 1 as well as p = n and q = p to zero. That way we can prove many
results in the following in a uniform way.

Theorem 6.3 (Classification of symmetry breaking operators, see [12,
Theorem 3.19 and Theorem 3.26]). — For (λ, ν) /∈ L(p, q)+ we have

HomG′(π±
p,λ|G′ , τ±

q,ν) = CÃ+
(p,λ),(q,ν)

and for (λ, ν) ∈ L(p, q)+ we have

HomG′(π±
p,λ|G′ , τ±

q,ν) = C ˜̃A+

(p,λ),(q,ν) ⊕ CC+
(p,λ),(q,ν).

For (λ, ν) /∈ L(p, q)− we have

HomG′(π±
p,λ|G′ , τ∓

q,ν) = CÃ−
(p,λ),(q,ν)

and for (λ, ν) ∈ L(p, q)− we have

HomG′(π±
p,λ|G′ , τ∓

q,ν) = C ˜̃A−

(p,λ),(q,ν) ⊕ CC−
(p,λ),(q,ν).

7. Functional equations

We recall the following functional equations for the symmetry breaking
operators and the Knapp–Stein intertwiners.
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Theorem 7.1 ([12, Theorem 9.24, Theorem 9.25 and Theorem 9.31]).

T ′
p−1,ν ◦ Ã±

(p,λ),(p−1,ν) = − π
n−1

2

Γ(ν + ρ′ + 1) Ã
±
(p,λ),(p−1,−ν)

×

{
(ν − ρ′ + p− 1) if p ̸= n+1

2 ,
1 if p = n+1

2 .

T ′
p,ν ◦ Ã±

(p,λ),(p,ν) = π
n−1

2

Γ(ν + ρ′ + 1) Ã
±
(p,λ),(p,−ν)

×

{
(ν + ρ′ − p) if p ̸= n−1

2 ,
1 if p = n−1

2 .

Ã±
(p,−λ),(p−1,ν) ◦ Tp,λ = π

n
2

Γ(−λ+ ρ+ 1) Ã
±
(p,λ),(p−1,ν)

×

{
(λ+ ρ− p) if p ̸= n

2 ,
1 if p = n

2 .

Ã±
(p,−λ),(p,ν) ◦ Tp,λ = − π

n
2

Γ(−λ+ ρ+ 1) Ã
±
(p,λ),(p,ν)

×

{
(λ− ρ+ p) if p ̸= n

2 ,
1 if p = n

2 .
For the case ν = 1

2 and p = n
2 we have˜̃

A
+

(p,0),(p,ν) ◦ Tp,0 = π
n
2

( n
2 )!
˜̃
A

+

(p,0),(p,ν),

˜̃
A

+

(p,0),(p−1,ν) ◦ Tp,0 = − π
n
2

( n
2 )!
˜̃
A

+

(p,0),(p,ν),

and for general ν such that ˜̃A(p,λ),(q,ν) exists we have for p ̸= n
2

T ′
q,ν ◦ ˜̃A±

(p,λ),(q,ν) = 0.

We remark that the last functional equation is not contained in [12] but
is proven in the same way as the one before in [12, Theorem 9.28]. By
the theorem above we define for q = p, p − 1 the meromorphic functions
t′(p, q, ν) and t(p, q, λ) such that

T ′
q,ν ◦ Ã±

(p,λ),(q,ν) = t′(p, q, ν)Ã±
(p,λ),(q,−ν)

and
Ã±

(p,−λ),(q,ν) ◦ Tp,λ = t(p, q, λ)Ã±
(p,λ),(q,ν).
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8. Symmetry breaking operators into quotients

Let ν ∈ R \ {0} such that τ±
q,ν has an unique non-trivial quotient, i.e.

ν ∈ (−ρ′ − 1 − Z⩾0) ∪ (ρ′ + 1 + Z⩾0) ∪ {ρ′ − q, q − ρ′} \ {0} and let

prν : τq,ν −→ τq,ν/ kerTq,ν

be the projection. Then for a smooth admissible G-representation π, clearly
an element A ∈ HomG′(π|G′ , τ±

q,ν) defines by composition with the projec-
tion an element of Aquo ∈ HomG′(π|G′ , τ±

q,ν/ kerT ′
q,ν). Since the unique

submodule of τ±
q,ν is kerT ′

q,ν , the Knapp-Stein operator T ′
q,ν induces an

intertwiner
T ′quo

q,ν : τ±
q,ν/ kerT ′

q,ν −→ τ±
q,−ν ,

which is an isomorphism onto imT ′
q,ν = kerT ′

q,−ν , which is the unique
proper submodule of τ±

q,−ν .

Proposition 8.1. — Let ν ∈ (−ρ′ − 1 − Z⩾0) ∪ (ρ′ + 1 + Z⩾0) ∪ {ρ′ −
q, q − ρ′} \ {0} and q = p− 1, p .

(i) For the operator Ãquo
(p,λ),(q,ν) the following functional equations holds.

T ′quo
q,ν ◦ Ã±,quo

(p,λ),(q,ν) = t′(p, q, ν)Ã±
(p,λ),(q,−ν)

(ii) For (λ0,−ν) ∈ L±(p, q) the renormalized operator

˜̃̃
A

±,quo

(p,λ),(q,ν) := lim
λ→λ0

(
Γ
(
λ+ ρ+ ν − ρ′

2 − ±1 − 1
4

)
prν ◦Ã±

(p,λ),(q,ν)

)
is a well defined symmetry breaking operator and satisfies the func-
tional equation

T ′quo
q,ν ◦

˜̃̃
A

±,quo

(p,λ),(q,ν) = t′(p, q, ν) ˜̃A±

(p,λ0),(q,−ν).

Proof.
(i). — It follows immediately from the functional equations of Theo-

rem 7.1.
Ad (ii). — Again by Theorem 7.1 we have

t′(p, q, ν) ˜̃A±

(p,λ0),(q,−ν)

= lim
λ→λ0

(
t′(p, q, ν)Γ

(
λ+ ρ+ ν − ρ′

2 − ±1 − 1
4

)
◦ Ã±

(p,λ),(q,−ν)

)
.

Then the statement follows from the application of (i). □
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We consider the special case ν = − 1
2 and p = n

2 . In this case both τ±
p,ν

and τ∓
p−1,ν contain the discrete series representation Π′

p,± as a quotient.

Proposition 8.2. — For λ ∈ iR and f ∈ π±
n
2 ,λ

|λ|2

4 ∥Ã+,quo
( n

2 ,λ),( n
2 ,− 1

2 )f∥2
n
2 ,− 1

2 ,quo = ∥Ã−,quo
( n

2 ,λ),( n
2 −1,− 1

2 )f∥2
n
2 −1,− 1

2 ,quo,

|λ|2

4 ∥Ã+,quo
( n

2 ,λ),( n
2 −1,− 1

2 )f∥2
n
2 ,− 1

2 ,quo = ∥Ã−,quo
( n

2 ,λ),( n
2 ,− 1

2 )f∥2
n
2 −1,− 1

2 ,quo,

and for λ = 0 and f ∈ π±
n
2 ,0

∥
˜̃̃
A

+,quo

( n
2 ,λ),( n

2 ,− 1
2 )f∥2

n
2 ,− 1

2 ,quo = ∥Ã−,quo
( n

2 ,λ),( n
2 −1,− 1

2 )f∥2
n
2 −1,− 1

2 ,quo,

∥
˜̃̃
A

+,quo

( n
2 ,λ),( n

2 −1,− 1
2 )∥2

n
2 ,− 1

2 ,quo = ∥Ã−,quo
( n

2 ,λ),( n
2 ,− 1

2 )f∥2
n
2 −1,− 1

2 ,quo.

Proof. — Since χ−,− ⊗ Π′
p,± = Π′

p,±, the map

⊗χ−,− : τ±
p,ν −→ τ∓

p−1,ν

induces an isomorphism of the quotients τ±
p,ν/ kerT ′

p,ν and τ∓
p−1,ν/ kerT ′

p−1,ν

which are both isomorphic to Π′
n
2 ,±. Then by Theorem 1.2 composition with

this isomorphism yields an isomorphism

HomG′(π|G′ , τ±
p,ν/ kerT ′

p,ν) −→ HomG′(π|G′ , τ∓
p−1,ν/ kerT ′

p−1,ν)

for each irreducible G-representation π. Hence for λ ∈ iR \ {0}

∥Ã+,quo
( n

2 ,λ),( n
2 ,− 1

2 )f∥2
n
2 ,− 1

2 ,quo and ∥Ã−,quo
( n

2 ,λ),( n
2 −1,− 1

2 )f∥2
n
2 −1,− 1

2 ,quo

as well as

∥Ã+,quo
( n

2 ,λ),( n
2 −1,− 1

2 )f∥2
n
2 ,− 1

2 ,quo and ∥Ã−,quo
( n

2 ,λ),( n
2 ,− 1

2 )f∥2
n
2 −1,− 1

2 ,quo

must be constant positive scalar multiples of each other for every f . Then
it is enough to check the eigenvalues of the symmetry breaking operators
in question on a K-type contained in the quotient which yields the result
for λ ̸= 0 by [12, Theorem 9.8]. For λ = 0 we take the limit λ → 0 to obtain
the result by Proposition 8.1. □

9. Structure of the open orbit as homogeneous G′-space

The following Lemma is a key point in the decomposition of unitary
representations to come. It reduces the problem of decomposing a unitary
representation into a problem of harmonic analysis on a homogeneous G′-
space.
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Lemma 9.1.
(i) Let K̃ ′ := StabG′(nenP ). Then K̃ ′ = O(n) and K ′/K̃ ′ ∼= O(1).
(ii) We have G′ · nen

P = OA is the open P ′-orbit in G/P .

Lemma 9.1 implies that OA
∼= G′/K̃ ′ = O(1, n)/O(n).

For proving this lemma we make use of the explicit action of G′ on
G/P ∼= K/M and of the Iwasawa-decomposition of elements of N . There-
fore consider the map

K/M −→ Sn ⊆ Rn+1

given by

k =

a b ∗
c ∗

 7−→
(
b

a
,
c

a

)
.

Lemma 9.2.
(i) The map

K/M −→ Sn ⊆ Rn+1

k =

a b ∗
c ∗

 −→
(
b

a
,
c

a

)
is a G equivariant isomorphism with the action of G on Sn given
by

g · ω = (g(1, ω)t)′

(g(1, ω)t)1 ,

where ( · )1 is the first and ( · )′ the remainign coordinates of the
vector.

(ii) We have nX = κ(nX) eH(nX ) n ∈ KAN , with

κ(nX) =

a b ∗
c ∗

 ,

with

a = 1 + |X|2√
(1 + |X|2)2

, b = 1 − |X|2√
(1 + |X|2)2

and
c = 2XT

(1 + |X|2) ,

and
H(nX) = log(1 + |X|2)H.
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Using the KAN decomposition of the Lemma above,we obtain a map

n −→ K/M ∼= Sn,

by multiplying with diag(a−1, a−1,1n) ∈ M from the right:

(9.1) nX 7−→
(

1 − |X|2

1 + |X|2
,

2X
1 + |X|2

)
.

Proof. — This is easily checked by computing the corresponding matrix
decomposition. □

Proof of Lemma 9.1.
Ad (i). — From Lemma 9.2(i) and (9.1) it follows immediately that

K ′
0 = O(n), embedded in K ′ in the bottom right corner.
Ad (ii). — By Proposition 2.2(iv) we have nenP = w̃0n−enP such that

by Corollary 2.3 we have P ′ · nen
P = (N \N ′)P , since w0 fixes (N \N ′)P

again by Proposition 2.2(iv). By the Bruhat-decompositon we have G′ =
P ′ ⊔N ′w̃0P

′ and N ′w̃0 = w̃0N
′ obviously fixes (N \N ′)P . □

By Lemma 9.1 we can define an G′-equivariant map given by

Φ : f 7−→ f |OA
( · nen

).

In fact this map is up to inner-automorphism onto the smooth sections of
the G′-bundle over G′/K̃ ′, corresponding to the representation

∧p(Cn) of
K̃ ′ = O(n). In the following let for g ∈ G, g = n eH(g) κ(g) ∈ NAK be the
NAK Iwasawa-decomposition. We define

w :=
(

−1n−1
−1

)
∈ O(n).

Then it is easily verified, that for k ∈ O(n)

(9.2) diag(1, k, 1)nen = nen diag(1, 1, wkw−1).

Lemma 9.3. — The map Φ defines a linear continuous G′-equivariant
map

π±
p,λ|G′ −→ C∞

(
G′/K̃ ′,

∧p
(Cn)

)
.

Proof. — This follows immediately from (9.2). □

By Mackey theory, the restriction to an open subset carries enough in-
formation for our purpose.

Lemma 9.4. — For Re(λ) > − 1
2 , the map Φ extends to a G′-equivariant

map
π±

p,λ|G′ −→ L2
(
G′/K̃ ′,

∧p
(Cn)

)
which is unitary for λ ∈ iR.
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Recall that by the Iwasawa decomposition the following integral formula
holds

(9.3)
∫

G′/K′
f(g) dg =

∫
N ′×a

f(n eX) e2ρ′(X) dN ′dX.

Moreover, let ω = ±1 and Ξ = diag(ω, ω,1n) ∈ M ′. Then by Lemma 2.1(ii),

(9.4) Ξnen
= nωen

Ξ.

Proof of Lemma 9.4. — Let f ∈ π±
p,λ. We choose representatives Ξ of

K ′/K̃ ′ ∼= O(1). By (9.3)

∥Φf∥2
L2(G′/K̃′)

=
∫

G′
|f(gnen

)|2 dg

=
∫

N ′×a×O(1)
|f(n(X′,0) erH Ξnen)|2 e2ρ′r dX ′ dr dω

=
∫

N ′×a×O(1)
|f(n(X′,e−r ω))|2 e−2r(Re(λ)+ρ−ρ′) dX ′ dr dω

=
∫

N ′×R+×O(1)
|f(n(X′,tω))|2t2(Re(λ)+ρ−ρ′)−1 d(X ′, Z) dtdω

=
∫

N

|f(n(X′,Xn))|2|Xn|2 Re(λ) dX.(9.5)

Now as above we have

n(X′,Xn) = k elog(1+|X′|2+|Xn|2)H n ∈ KAN,

such that there exists a non-negative constant cf such that

|f(n(X′,Xn))|2 ⩽ cf ((1 + |X ′|2 + |Xn|2)2)−(Re(λ)+ρ).

Hence

∥Φf∥2
L2(G′/K̃′)

⩽cf

∫
N

(1 + |X ′|2 + |Xn|2)−2(Re(λ)+ρ)|Xn|2 Re(λ) dX

= c̃f

∫
(R+)2

(1 + r2 + s2)−2(Re(λ)+ρ)rn−2s2 Re(λ) dr ds,

where c̃f = 2 Vol(Sn−2)cf . Using polar coordinates on (R+)2 we find

∥Φf∥2
L2(G′/K̃′)

⩽
c̃f

4

∫ π
2

0
cosn−2 ϕ sin2 Re(λ) ϕ dϕ

×
∫ ∞

0
x(Re(λ)+ρ)−1(1 + x)−2(Re(λ)+ρ) dx,

which converges for Reλ > − 1
2 . That the map is a unitary one for the

unitary principal series follows from the equation (9.5). □
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Clearly the bundle C∞
(
G′/K̃ ′,

∧p(Cn)
)

fibers over Ô(1) such that it
decomposes as

C∞
(
G′/K̃ ′,

∧p
(Cn)

)
∼= C∞

(
G′/K ′,

∧p
(Cn)

)
⊕
(
χ−,+ ⊗ C∞

(
G′/K ′,

∧p
(Cn)

))
.

Concretely this map is given for f ∈ π±
p,λ by

Φf = Φ+f + Φ−f

with
Φ+f(g) = 1

2(f(gnen
) ± f(gw̃0nen

))

and
Φ−f(g) = 1

2(f(gnen
) ∓ f(gw̃0nen

)).

Then by restriction to G′
0 we obtain the following.

Corollary 9.5. — As G′
0-representations there is a G′

0-equivariant lin-
ear continuous map

π±
p,λ|G′

0
−→ C∞

(
G′

0/K
′
0,
∧p

(Cn)
)

⊕ C∞
(
G′

0/K
′
0,
∧p

(Cn)
)
,

which extends for Re(λ) > − 1
2 to

π±
p,λ|G′

0
−→ L2

(
G′

0/K
′
0,
∧p

(Cn)
)

⊕ L2
(
G′

0/K
′
0,
∧p

(Cn)
)
,

which is a unitary map for λ ∈ iR.

Let prO(1),prO(n) denote the projections of K ′ ∼= M ∼= O(1) × O(n)
to the O(1) and O(n) factors. Moreover denote m(g) the M -factor in the
NMAN decomposition.

Corollary 9.6.
(i) We have

H(e−rH n(−X,0)) = rH + log(|(X ′, e−r)|2)H.

(ii) We have

prO(n)(κ(g−1)) = w−1 prO(n)(m(w̃0gnen))w.

(iii) We have for Xn ∈ R× and g ∈ G′ with n(X′,Xn) ∈ gnen
P ,

prO(1)(κ(g−1)) = sgnXn.
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Proof.
Ad (i). — This follows immediately from Lemma 9.2(ii).
Ad (ii). — By (9.2) we have

diag(1, k, 1)nen
= nen

diag(1, 1, wkw−1),

where
w =

(
−1n−1

−1

)
∈ O(n),

which implies by the NMAN decomposition that for all g ∈ G,

prO(n)(κ(g)) = w−1 prO(n)(m(gnen
))w.

Moreover κ(g) = κ((w̃0g)−1)w̃0 and since w̃0 ∈ K with prO(n)(w̃0) = 1n

this implies the statement.
Ad (iii). — We have

diag
(
Xn

|Xn|
,
Xn

|Xn|
,1n

)
κ(g−1) = κ

(
elog|Xn|H n(−X′,0)

)
= κ

(
n(−|Xn|−1X′,0)

)
.

Then the statement follows from Lemma 9.2(ii). □

10. A Plancherel formula for L2(G′
0/K

′
0, σp)

We introduce the notation σ = σ|SO(n) for admissible representations of
O(n) and similarly for representations of O(n− 1) restricted to SO(n− 1).
In [4] a Plancherel formula for vector bundles over Riemannian symmet-
ric spaces is established and the example of L2(SO0(1, n)/SO(n),

∧p(Cn))
carried out in great detail. We recall this example in this section. Let
ϕ : G′

0 → End(σp) be a spherical function, i.e. satisfying

(10.1)
∫

K′
0

ϕ(gkh) dk = ϕ(g)ϕ(h), ϕ(kgk′) = σp(k)ϕ(g)σp(k′).

and normalized to ϕ(1n+1)) = 1.

10.1. The Plancherel measure

Recall that as SO(n) resp. SO(n − 1)-representations we have the iso-
morphism

σp
∼= σn−p, δq

∼= δn−1−q
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and that for n even, σ n
2

is reducible and decomposes into two non-isomorphic
irreducibles as

σ n
2

= σ
(+)
n
2

⊕ σ
(−)
n
2
,

as well as for n odd, δ n−1
2

is reducible and decomposes into two non-
isomorphic irreducibles as

δ n−1
2

= δ
(+)
n−1

2
⊕ δ

(−)
n−1

2
.

Lemma 10.1.
(i) For p ̸= n

2 ,
n±1

2 we have

σp|SO(n−1) = δp−1 ⊕ δp.

(ii) For p = n
2 we have

σ
(±)
n
2

|SO(n−1) = δ n
2
.

(iii) For p = n−1
2 we have

σ n−1
2

|SO(n−1) = δ n−3
2

⊕ δ
(+)
n−1

2
⊕ δ

(+)
n−1

2
.

Then in the case p = n
2 also the bundle L2(G′

0/K
′
0, σ n

2
) is reducible

L2(G′
0/K

′
0, σ n

2
) ∼= L2(G′

0/K
′
0, σ

(+)
n
2

) ⊕ L2(G′
0/K

′
0, σ

(−)
n
2

).

The following Plancherel formula holds

(10.2) L2(G′
0/K

′
0, σp) ∼=

∫ ⊕

Ĝ′
0(σp)

mσp
(τ)τ dµσp

(τ),

with a Plancherel measure dµσp
, Ĝ′

0(σp) ⊆ Ĝ′
0 being the support of the

measure and mσp
the multiplicities. We denote the corresponding Planch-

erel measures for p = n
2 as

µσ n
2

= µ
σ

(+)
n
2

+ µ
σ

(−)
n
2

.

We recall the support and normalization of the Plancerel measure dµσp

from [4, Section 4]. Let P ′
0 be a minimal parabolic of G′

0, for example
P ′ ∩G′

0. Consistent with the notation of Section 3.2

τ q,ν = IndG′
0

P ′
0
(δq ⊗ eν ⊗1)

is the principal series representation and we denote for n odd

τ
(±)
n−1

2 ,ν
= IndG′

0
P ′

0

(
δ

(±)
n−1

2
⊗ eν ⊗1

)
.
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Proposition 10.2.
(i) The continuous part of the support of dµσp

is for p ̸= n
2 ,

n±1
2 given

by all τ q,ν with q ∈ {p−1, p}∩Z⩾0 and ν ∈ iR and all multiplicities
are one.

(ii) The continuous part of the support of dµ
σ

(±)
n
2

is given by all τ n
2 ,ν

with ν ∈ iR and all multiplicities are one in each case respectively.
(iii) The continuous part of the support of dµσ n−1

2
is given by all τ (±)

n−1
2 ,ν

and all τ n−3
2 ,ν with ν ∈ iR and all multiplicities are one.

(iv) The discrete part of the support of dµσp
is empty if and only if

p ̸= n
2 . If p = n

2 , the discrete part of the support of dµ
σ

(±)
p

is given

by Π′(±)
n
2 ,+. The discrete series representation occurs with multiplicity

one in each case respectively.

Proposition 10.2 gives an explicit description of the Plancherel for-
mula (10.2). For our purposes we are further interested in the explicit
inversion formula. We therefore define the End(σp)-valued function ϕp,ν

given by
ϕp,ν(g) =

∫
K′

0

σp(κ(gk)k−1) e(ν−ρ′)H(gk) dk,

which is a spherical function (see e.g. [14, (3.7)]).

Lemma 10.3.

ϕp,ν(g−1h)

=
∫

K′
0

σp(κ(h−1k)) e(ν−ρ′)H(h−1k) σp(κ(g−1k)−1) e−(ν+ρ′)H(g−1k) dk.

Proof. — First note that g−1hk = g−1κ(hk) eH(hk) n, and since A nor-
malizes N ′ we have

(10.3) κ(g−1hk) = κ(g−1κ(hk)), H(g−1hk) = H(hk)+H(g−1κ(hk)),

such that

ϕp,ν(g−1h) =
∫

K′
0

σp(κ(h−1κ(gk))σp(κ(g−1κ(gk))−1)

× e(−ν+ρ′)H(g−1κ(gk)) e(ν−ρ′)H(h−1κ(gk)) dk.

By the formula∫
K′

0

F (κ(gk)) dk =
∫

K′
0

F (k) e−2ρH(g−1k) dk

we obtain the Lemma. □
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According to Lemma 10.3 we have for f ∈ C∞
0 (G′

0/K
′
0, σp),

ϕp,ν ∗ f(h) =
∫

K′
0

σp(κ(h−1k)) e(ν−ρ′)H(h−1k)

×
∫

G′
0

σp(κ(g−1k)−1) e−(ν+ρ′)H(g−1k) f(g) dg dk

and we define the corresponding Fourier transform by

f̃(k, p, ν) :=
∫

G′
0

σp(κ(g−1k)−1) e−(ν+ρ′)H(g−1k) f(g) dg.

Then clearly for f ∈ C∞
0 (G′

0/K
′
0, σp) and man ∈ M ′AN ′,

f̃(kman, p, ν) = σp(m−1)a−(ν+ρ′)f̃(k, p, ν),

such that the Fourier transform defines a G′
0-intertwining operator

C∞
0 (G′

0/K
′
0, σp) −→ IndG′

0
P ′

0
(σp|M ′

0
⊗ eν ⊗1).

Now σp|M ′
0

is reducible and decomposes into SO(n− 1)-representations ac-
cording to Lemma 10.1. And on the one hand if δ is a M ′

0-representation
occuring in σp|M ′

0
and IndG′

0
P ′

0
(δ⊗eν ⊗1) ∈ Ĝ′

0(σp), every other principal se-

ries IndG′
0

P ′
0
(δ′⊗eν ⊗1) ∈ Ĝ′

0(σp) for all other δ′ occurring in σp|M ′
0

according
to Proposition 10.2. Applying these results to the Plancherel formula (10.2)
and the corresponding inversion formula [4, (39)] we obtain the following
Theorem.

Theorem 10.4 (Inversion formula). — We have for p ̸= n
2

L2(G′
0/K

′
0, σp) ≃

∫ ⊕

iR+

L2 − IndG′
0

P ′
0
(σp|M ′

0
⊗ eν ⊗1) dµσp

(ν)

and for all f ∈ C∞
0 (G′

0/K
′
0, σp)

f(g) =
∫

iR
ϕp,ν ∗ f(g) dµσp

(ν).

For p = n
2 we have

L2(G′
0/K

′
0, σ

(±)
p )

≃
∫ ⊕

iR+

L2 − IndG′
0

P ′
0
(σ(±)

p |M ′
0

⊗ eν ⊗1) dµ
σ

(±)
p

(ν) ⊕ Π̂
′(±)
n
2 ,+
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and for all f ∈ C∞
0 (G′

0/K
′
0, σ

(±)
p )

f(g) =
∫

iR
ϕp,ν ∗ f(g) dµ

σ
(±)
p

(ν) + cpϕp, 1
2

∗ f(g)

with cp ∈ C a constant.

Following [4, Example 4.4] we have explicitly for p ̸= n
2 , p∈ {1, . . . , ⌊n−1

2 ⌋},

dµσp
(ν) =

(
n− 1
p

)
dν

c(p, ν)c(p,−ν) ,

with c-function

c(p, ν) = 2−n+2 Γ( n
2 )(ν + ρ′ − p)Γ(ν)
Γ(ν + ρ′ + 1)

and for p = n
2

dµ
σ

(±)
p

(ν) = 1
2

(
n− 1
p

)
dν

c(p, ν)c(p,−ν) ,

with c-function as above and discrete constant

cn
2

= 2−n n!
( n

2 )!

n
2 −1∏
s=1

(2s)!.

11. The Plancherel formula for L2(G′/K ′, σp)

In this section we lift the results of the previous section to the discon-
nected group G′. we choose representatives ṽ0, w̃0 ∈ K ′ generating the
component group G′/G′

0 given by

w̃0 = diag(−1,1n+1), ṽ0 = diag(−1, m̃),

with m̃ = diag(−1,1n). For f ∈ L2(G′
0/K

′
0, σp) we define for g ∈ G′

0

f(w̃0g) := f(w̃0gw̃
−1
0 ) and f(ṽ0g) := σ(m̃−1)f(ṽ0gṽ

−1
0 ),

where σ ∈ {σp, σn−p}, such that σ|SO(n) = σp.

Moreover we define the End(σp)-valued function on G′

ϕp,ν(g) =
∫

K′
σp(κ(gk)k−1) e(ν−ρ′)H(gk) dk.
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Theorem 11.1. — We have for p ̸= n
2

L2(G′/K ′, σp) ≃
∫ ⊕

iR+

L2 − IndG′

P ′ (σp|M ′ ⊗ eν ⊗1) dµσp
(ν)

and for all f ∈ C∞
0 (G′/K ′, σp)

f(g) =
∫

iR
ϕp,ν ∗ f(g) dµσp

(ν).

For p = n
2 we have

L2(G′/K ′, σp) ≃
∫ ⊕

iR+

L2 − IndG′

P ′ (σp|M ′ ⊗ eν ⊗1) dµσp(ν) ⊕ Π′
n
2 ,+

and for all f ∈ C∞
0 (G′/K ′, σp)

f(g) =
∫

iR
ϕp,ν ∗ f(g) dµσp(ν) + cpϕp, 1

2
∗ f(g)

with cp ∈ C as before and

dµσp
(ν) = dµσmin(p,n−p)(ν)

in the notation of the last section.

Proof. — Let p ̸= n
2 and w.l.o.g. p < n− p. Let f ∈ C∞

0 (G′/K ′, σp) and
h = hch0 ∈ G′ with h0 ∈ G′

0 and hc ∈ G′/G′
0. Then by the construction

above

f(h) = σp(h−1
c )

∫
iR
ϕp,ν ∗ f(hch0h

−1
c ) dµσp

(ν)

= σp(h−1
c )

∫
iR

∫
K′

0

σp(κ(hch
−1
0 h−1

c k)) e(ν−ρ′)H(hch−1
0 h−1

c k)

×
∫

G′
0

σp(κ(g−1k)−1) e−(ν+ρ′)H(g−1k) f(g) dg dk dµσp
(ν).

The K ′
0-integral is right M ′

0-invariant and the G′
0-integral is right K ′

0-
invariant. Moreover K ′

0/M
′
0 = K ′/M ′ and G′

0/K
′
0 = G′/K ′ and since

σp = σp|SO(n), if we replace σp by σp we obtain right M ′ and right K ′

invariant integrals

=
∫

iR

∫
K′
σp(κ(h−1k)) e(ν−ρ′)H(h−1k)

×
∫

G′
σp(κ(g−1k)−1) e−(ν+ρ′)H(g−1k) f(g) dg dk dµσp(ν)

=
∫

iR
ϕp,ν ∗ f(h) dµσp

(ν).
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For p = n
2 the proof works in the same way using the direct sum σ n

2
=

σ
(+)
n
2

⊕ σ
(−)
n
2

and carrying the discrete summand through the calculation. If
p > n− p we have to apply the SO0(1, n)-Plancherel and inversion formula
for σn−p which concludes the argument. □

Similarly we define the corresponding Fourier-transform for functions
f ∈ C∞(G′/K ′, σw

p ) by

f̃(k, p, ν) =
∫

G′
σw

p (κ(g−1k)−1) e(−ν−ρ′)H(g−1k) f(g) dg.

Then clearly for ν ∈ iR

(11.1) ⟨ϕp,ν ∗ f, f⟩L2(G′) = ∥f̃(·, p, ν)∥2
L2(K′).

We remark that we use the equivalent representation σw
p which is twisted

by w for convenience in the following.

12. Branching laws for unitary representations

We lift the results of the section before to π±
p,λ and prove the main

theorems.

Theorem 12.1. — Let Re(λ) > − 1
2 and f ∈ π±

p,λ. We have

2Φ̃±f(·, p, ν) = A∓
(p,λ),(p−1,ν)f +A±

(p,λ),(p,ν)f.

Proof. — We carry out the proof for α = 1 since the other case works
analogously. Let f ∈ π+

p,λ. By Lemma 9.4 Φ+f ∈ L2(G′/K ′, σw
p ) such that

we can apply the Fourier transform. Clearly the integrand is right K ′-
invariant in g such that we have by the N ′AK ′ Iwasawa decomposition
and by the integral formula∫

G′/K′
f(g) dg =

∫
N×a

e2ρ′X f(n eX) dndX,

∫
G′
σp

w(prO(n)(κ(g−1h)) e−(ν+ρ′)H(g−1h) Φ+f(g) dg

=
∫
Rn−1×R

σp
w(prO(n)(κ(e−rH n(−X′,0)))

× e−(ν+ρ′)H(e−rH n(−X′,0)) Φ+f(hn(X′,0) erH) dX ′ dr
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which is by Corollary 9.6

=
∫
Rn−1×R

σp(prO(n)(m(w̃0n(X′,0) erH nen))

× e(−ν+ρ′)r|e−2r +|X ′|2|−ν−ρ′
Φ+f(hn(X′,0) erH) dX ′ dr

which is by Lemma 2.1

= 1
2

∫
Rn−1×R+

σp(ψn(X ′, Xn))|Xn|λ−ρ−ν−ρ′
||Xn|2 + |X ′|2|−ν−ρ′

× (f(hn(X′,|Xn|)) + f(hn(X′,−|Xn|) diag(1n+1,−1)) dX ′ dXn

= 1
2

∫
Rn−1×R+

σp(ψn(X ′, Xn))|Xn|λ−ρ−ν−ρ′
||Xn|2 + |X ′|2|−ν−ρ′

× (f(hn(X′,|Xn|)) + (−1)pσp(diag(−1n−1, 1))f(hn(X′,−|Xn|)) dX ′ dXn

Since σP |M ′ = δp−1 ⊕ δp we project to the two subspaces separately. Since
δq(−1n−1) = (−1)q we obtain

= 1
2

∫
Rn−1×R+

prσp→δp
◦σp(ψn(X ′, Xn))|Xn|λ−ρ−ν−ρ′

||Xn|2 + |X ′|2|−ν−ρ′

× (f(hn(X′,|Xn|)) + f(hn(X′,−|Xn|)) dX ′ dXn

+ 1
2

∫
Rn−1×R+

prσp→δp−1 ◦σp(ψn(X ′, Xn))|Xn|λ−ρ−ν−ρ′

× ||Xn|2 + |X ′|2|−ν−ρ′
(f(hn(X′,|Xn|)) − f(hn(X′,−|Xn|)) dX ′ dXn

= 1
2

∫
Rn

prσp→δp
◦σp(ψn(X))|Xn|λ−ρ−ν−ρ′

|X|−2(ν+ρ′)f(hnX) dX

+ 1
2

∫
Rn

prσp→δp−1 ◦σp(ψn(X))

× |Xn|λ−ρ−ν−ρ′
|X|−2(ν+ρ′) sgn(Xn)f(hnX) dX

which is by Proposition 6.1 equal to

= 1
2

(
A+

(p,λ),(p,ν)f
)

(h) + 1
2

(
A−

(p,λ),(p−1,ν)f
)

(h) □

Combining this result with Lemma 9.4 and Theorem 11.1 we immediately
obtain the unitary branching law and Plancherel formula for the unitary
principal series. Therefore we define the following functions which depend
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meromorphically on λ and ν.

c(p, λ, ν)± := c(min{p, n− p}, ν)
Γ( λ+ρ+ν−ρ′

2 − ±1−1
4 )Γ( −λ+ρ+ν−ρ′

2 − ±1−1
4 )

× c(min{p, n− p},−ν)
Γ( λ+ρ−ν−ρ′

2 − ±1−1
4 )Γ( −λ+ρ−ν−ρ′

2 − ±1−1
4 )

,

c(p, λ, q, k)±
Res := πResµ=λ+1−(± 1

2 )+2k

(
1

c(p, λ, µ)±t′(p, q, µ)cC(p, q, µ)2

)
,

c(λ)d :=
cn

2
Γ(ρ)Γ( −λ+1

2 )Γ( −λ+2
2 )Γ( λ+1

2 )Γ( λ+2
2 )

2π n−1
2

.

The following can be easily read off the definitions of these scalars.

Lemma 12.2.

(i) Let p = 0 and k ∈ Z⩾0. The function c(0, λ, 0, k)+
Res is holomorohic

in λ in the range Reλ < − 1
2 − 2k and strictly positive for Imλ = 0.

The function c(0, λ, 0, k)−
Res is holomorphic in λ in the range Reλ <

− 3
2 − 2k and strictly positive for Imλ = 0.

(ii) Let 0 < p < n−1
2 , q = p − 1, p and k ∈ Z⩾0. The function

c(p, λ, q, k)+
Res holomorphic in λ in the range Reλ ∈ [p−ρ,− 1

2 −2k)
and strictly positive for Imλ = 0. The function c(p, λ, q, k)−

Res is
holomorphic in λ in the range Reλ ∈ [p − ρ,− 3

2 − 2k)and strictly
positive for Imλ = 0.

(iii) Let n+1
2 < p < n, q = p − 1, p and k ∈ Z⩾0. The function

c(p, λ, q, k)+
Res is holomorphic in λ in the range Reλ ∈ [ρ− p,− 1

2 −
2k) and strictly negative for Imλ = 0. The function c(p, λ, q, k)−

Res
is holomorphic in λ in the range Reλ ∈ [ρ−p,− 3

2 −2k) and strictly
negative for Imλ = 0.

(iv) Let p = n and k ∈ Z⩾0. The function c(n, λ, n − 1, k)+
Res is holo-

morphic in λ in the range Reλ < − 1
2 − 2k and strictly negative for

Imλ = 0.The function c(n, λ, n−1, k)−
Res is holomorphic in λ in the

range Reλ < − 3
2 − 2k and strictly negative for Imλ = 0.

Remark 12.3. — For example we have

c(0, λ, 0, k)+
Res

=
22n−3(−λ− 1

2 − 2k)Γ(−λ+ ρ− 1 − 2k)Γ(−λ− k)Γ(k + 1
2 )

π
n−3

2 Γ( n
2 )2k!Γ(−λ− k + 1

2 )
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and

c(0, λ, 0, k)−
Res

=
22n−3(−λ− 1

2 − 2k)Γ(−λ+ ρ− 1 − 2k)Γ(−λ− k + 1)Γ(k + 3
2 )

π
n−3

2 Γ( n
2 )2k!Γ(−λ− k + 1

2 )
.

We don’t give the explicit expressions in every case for the sake of the
length and readability of this article.

Lemma 12.4. — For λ ∈ iR and p ̸= n
2 we have

π̂±
p,λ|G′ ≃

⊕
α=±

⊕
q=p−1,p

∫ ⊕

iR+

τ̂α
q,ν dµσp

(ν)

and for f ∈ π±
p,λ

∥f∥2
L2(K) = 1

4
∑

α=+,−

∑
q=p−1,p

∫
iR

∥Ãα
(p,λ),(q,ν)f∥2

L2(K′)
dν

c(p, λ, ν)α
.

For λ ∈ iR and p = n
2 we have

π̂±
p,λ|G′ ≃ Π̂′

n
2 ,+ ⊕ Π̂′

n
2 ,− ⊕

⊕
α=±

⊕
q=p−1,p

∫ ⊕

iR+

τ̂α
q,ν dµσp

(ν)

and for f ∈ π±
p,λ

∥f∥2
L2(K) = 1

4
∑

α=+,−

∑
q=p−1,p

∫
iR

∥Ãα
(p,λ),(q,ν)f∥2

q,ν

dν
c(p, λ, ν)α

+ c(λ)d∥Ã−,quo
(p,λ),(p,− 1

2 )f∥2
p,− 1

2 ,quo + c(λ)d∥Ã−,quo
(p,λ),(p−1,− 1

2 )f∥2
p−1,− 1

2 ,quo.

Proof. — Let λ ∈ iR and f ∈ πα
p,λ. Then by Lemma 9.4 Φ = Φ+ + Φ− is

a unitary map such that by orthogonality

∥f∥2
L2(K) = ∥Φf∥2

L2(G′) = ∥Φ+f∥2
L2(G′) + ∥Φ−f∥2

L2(G′).

Let p ̸= n
2 . Then applying the inversion formula of Theorem 11.1 and

Theorem 12.1 and (11.1) we obtain

∥Φ±f∥2
L2(G′)

= 1
4

∫
iR

(
∥A∓

(p,λ),(p−1,ν)f∥2
L2(K′) + ∥A±

(p,λ),(p,ν)f∥2
L2(K′)

)
dµσp

(ν)

= 1
4

(∫
iR

∥Ã∓
(p,λ),(p−1,ν)f∥2

L2(K′)
dν

c(p, λ, ν)∓

+
∫

iR
∥Ã±

(p,λ),(p,ν)f∥2
L2(K′)

dν
c(p, λ, ν)±

)
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by renormalization to holomorphic families. For p = n
2 the argument for

the continuous part of the Plancherel formula is the same. For the discrete
summands we reformulate for λ ̸= 0

⟨ϕp, 1
2

∗ Φ+f,Φ+f⟩L2(G′) =
〈

Φ̃+f

(
·, p, 1

2

)
, Φ̃+f

(
·, p,−1

2

)〉
L2(K′)

= ⟨A−
(p,λ),(p−1, 1

2 )f,A
−
(p,λ),(p−1,− 1

2 )f⟩L2(K′)

+ ⟨A+
(p,λ),(p, 1

2 )f,A
+
(p,λ),(p,− 1

2 )f⟩L2(K′).

Then

⟨A+
(p,λ),(p, 1

2 )f,A
+
(p,λ),(p,− 1

2 )f⟩L2(K′)

= Γ
(

−λ
2

)
Γ
(

−λ+ 1
2

)
Γ
(
λ

2

)
Γ
(
λ+ 1

2

)
× ⟨Ã+

(p,λ),(p, 1
2 )f, Ã

+
(p,λ),(p,− 1

2 )f⟩L2(K′)

Since the image of Ã+
(p,λ),(p, 1

2 ) is Π′
p,α, we have

⟨Ã+
(p,λ),(p, 1

2 )f, Ã
+
(p,λ),(p,− 1

2 )f⟩L2(K′)

= ⟨Ã+
(p,λ),(p, 1

2 )f, Ã
+,quo
(p,λ),(p,− 1

2 )f⟩L2(K′).

Then applying Proposition 8.1 we obtain

⟨Ã+
(p,λ),(p, 1

2 )f, Ã
+,quo
(p,λ),(p,− 1

2 )f⟩L2(K′)

= − Γ(ρ)
π

n−1
2

⟨T ′quo
p,− 1

2
◦ Ã+,quo

(p,λ),(p,− 1
2 )f, Ã

+,quo
(p,λ),(p,− 1

2 )f⟩L2(K′)

= Γ(ρ)
π

n−1
2

∥Ã+,quo
(p,λ),(p,− 1

2 )f∥2
p,− 1

2 ,quo

= 4Γ(ρ)
λ(−λ)π n−1

2
∥Ã−,quo

(p,λ),(p−1,− 1
2 )f∥2

p−1,− 1
2 ,quo

by Proposition 8.2. Similarly

⟨A−
(p,λ),(p−1, 1

2 )f,A
−
(p,λ),(p−1,− 1

2 )f⟩L2(K′)

=
Γ(ρ)Γ( −λ+1

2 )Γ( −λ+2
2 )Γ( λ+1

2 )Γ( λ+2
2 )

π
n−1

2
∥Ã−,quo

(p,λ),(p−1,− 1
2 )f∥2

p−1,− 1
2 ,quo.

For Φ−f the argument works analogously. □
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13. Analytic continuation

Since we have by Lemma 9.4 good behavior for Re(λ) > − 1
2 we can

extend this Plancherel formula onto the real axis. We remark that we abuse
notation and write ∥f∥p,λ for ⟨f, f⟩p,λ even if the bilinear pairing is not a
norm.

Corollary 13.1. — For Reλ ∈ (− 1
2 ,

1
2 ), p ̸= n

2 and f ∈ π±
p,λ we have

∥f∥2
p,λ = 1

4
∑

α=+,−

∑
q=p−1,p

∫
iR

∥Ãα
(p,λ),(q,ν)f∥2

L2(K′)
|t(p, q, λ)|
c(p, λ, ν)α

dν.

Proof. — In the following we abbreviate the integral pairings∫
∗
f(h)g(h) dh

by (f, g)∗ for the Lie group ∗. First by the same calculation as in the proof
of Lemma 9.4 we have for λ ∈ R and f ∈ π±

p,λ that

(Φf,Φ ◦ Tp,λf)G′ = ∥f∥2
p,λ,

for p < n
2 and

(Φf,Φ ◦ −Tp,λf)G′ = ∥f∥2
p,λ,

for p > n
2 , since Tp,λf ∈ π±

p,−λ. Moreover by Lemma 9.4 both Φf ∈
L2(G′/K ′, σp) and Φ ◦ Tp,λf ∈ L2(G′/K ′, σp) for Re(λ) ∈ (− 1

2 ,
1
2 ) such

that we can apply the inversion formula of Theorem 11.1 to f and ex-
change orders of integrals. For p ̸= n

2 we obtain

(f, Tp,λf)K

= 1
4
∑

α=+,−

∑
q=p−1,p

∫
iR

(Ãα
(p,λ),(q,ν)f, Ã

α
(p,−λ),(q,−ν) ◦ Tp,λf)K′

dν
c(p, λ, ν)α

in the same way as in Lemma 12.4. Applying the functional equation for
Tp,λ of Theorem 7.1 this proves the statement since t(p, q, α) ⩾ 0 for all
p < n

2 and t(p, q, α) ⩽ 0 for all p > n
2 . □

Rewriting the parings of the Plancherel formula in the Corollary above
as integral pairings we obtain an equality for λ ∈ (− 1

2 ,
1
2 )

(13.1) (f, Tp,λf)K

= 1
4
∑

α=+,−

∑
q=p−1,p

∫
iR

(Ãα
(p,λ),(q,ν)f, Ã

α
(p,−λ),(q,−ν)◦Tp,λf)K′

t(p, q, λ)
c(p, λ, ν)α

dν.

In this sense the left hand side of this equation is holomorphic in λ if we
consider f as a function in the compact picture, i.e. as a function on K/M .
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The right hand side on the other hand is meromorphic in λ and has its
meromorphic structure governed by the function c(p, λ, ν)± since t(p, q, λ)
is a regular function for Re(λ) ⩽ 1

2 . Hence we can analytically continue the
right hand side towards λ ∈ (−∞, 0), where the left hand side is essentially
∥f∥p,λ, to obtain Plancherel formulas on the whole complementary series
and on unitarizable quotients.

Proposition 13.2. — For p ̸= 0, n
2 , n with λ ∈ [−|ρ − p|, 1

2 ) and for
p = 0, n with λ ∈ (−∞, 1

2 )

(f, Tp,λf)K = 1
4
∑

α=+,−

∑
q=p−1,p

(∫
iR

∥Ãα
(p,λ),(q,ν)f∥2

L2(K′)
t(p, q, λ)
c(p, λ, ν)α

dν

+
∑

k∈[0,
−λ−1+(α 1

2 )
2 )∩Z

t(p, q, λ)c(p, λ, q, k)α
Res

× ∥Cα
(p,λ),(q,λ+1−(α 1

2 )+2k)f∥2
q,λ+1−(α 1

2 )+2k

)
.

Proof. — By Corollary 13.1 we have for Reλ ∈ (− 1
2 ,

1
2 )

(f, Tp,λf)K

= 1
4
∑

α=+,−

∑
q=p−1,p

∫
iR

(Ãα
(p,λ),(q,ν)f, Ã

α
(p,−λ),(q,−ν) ◦ Tp,λf)K′

t(p, q, λ)
c(p, λ, ν)α

dν.

We prove that this has a holomorphic extension to Reλ < 0 if p = 0, n and
to Reλ ∈ [−|ρ− p|, 0) in the other cases. We prove for each of the integrals
that this extension is for Reλ /∈ −1 + (α 1

2 ) − 2Z⩾0 given by∫
iR

(Ãα
(p,λ),(q,ν)f, Ã

α
(p,λ),(q,−ν)f)K′

t(p, q, λ)
c(p, λ, ν)α

dν

+ 4πResµ=λ+1−(α 1
2 )+2k

(
(Ãα

(p,λ),(q,µ)f, Ã
α
(p,λ),(q,−µ)f)K′

t(p, q, λ)
c(p, λ, µ)α

)
and that the residues are of the claimed form.

We prove the statement by induction. Conisder the statement holding
for Reλ ∈ (− 1

2 − 2k,−2k) and consider the integral for α = + of (13.1)

(13.2)
∫

iR
(Ã+

(p,λ),(q,ν)f, Ã
+
(p,λ),(q,−ν)f)K′

t(p, q, λ)
c(p, λ, ν)+ dν.

Then for Re ν ∈ [0, 1
2 ], and Reλ ∈ (− 1

2 − 2k,−2k), c(p, λ, ν)+ vanishes if
and only if ν = λ+ 1

2 + 2k such that the integral has a simple pole. Then
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moving the contour of integration we obtain∫
iR+ 1

2

(Ã+
(p,λ),(q,ν)f, Ã

+
(p,λ),(q,−ν)f)K′

t(p, q, λ)
c(p, λ, ν)+ dν

+ 2πResµ=λ+ 1
2 +2k

(
(Ã+

(p,λ),(q,µ)f, Ã
+
(p,λ),(q,−µ)f)K′

t(p, q, λ)
c(p, λ, µ)+

)
.

Now for Re ν = 1
2 , c(p, λ, ν)+ does not vanish for λ ∈ (−1 − 2k,−2k). On

the other hand for Re ν ∈ [0, 1
2 ] and Reλ ∈ (−1 − 2k,− 1

2 − 2k), c(p, λ, ν)+

vanishes only at ν = −λ− 1
2 − 2k. Then moving the contour of integration

back towards Re ν = 0 we have for λ ∈ (−1 − 2k,− 1
2 − 2k)∫

iR+ 1
2

(Ã+
(p,λ),(q,ν)f, Ã

+
(p,λ),(q,−ν)f)K′

t(p, q, λ)
c(p, λ, ν)+ dν

=
∫

iR
(Ã+

(p,λ),(q,ν)f, Ã
+
(p,λ),(q,−ν)f)K′

t(p, q, λ)
c(p, λ, ν)+ dν

− 2πResµ=−λ− 1
2 −2k

(
(Ã+

(p,λ),(q,µ)f, Ã
+
(p,λ),(q,−µ)f)K′

t(p, q, λ)
c(p, λ, µ)+

)
.

Consider the residue

Resµ=λ+ 1
2 +2k

(
(Ã+

(p,λ),(q,µ)f, Ã
+
(p,λ),(q,−µ)f)K′

t(p, q, λ)
c(p, λ, µ)+

)
.

Then by inserting the Knapp–Stein intertwiner we have

πResµ=λ+ 1
2 +2k

(
(Ã+

(p,λ),(q,µ)f, Ã
+
(p,λ),(q,−µ)f)K′

t(p, q, λ)
c(p, λ, µ)+

)
(13.3)

= πResµ=λ+ 1
2 +2k

(
(Ã+

(p,λ),(q,µ)f, T
′
q,µ ◦ Ã+

(p,λ),(q,µ)f)K′

× t(p, q, λ)
c(p, λ, µ)+t′(p, q, µ)

)
= t(p, q, λ)c(p, λ, p, k)+

Res

× (C+
(p,λ),(q,λ+ 1

2 +2k)f, T
′+
p,λ+ 1

2 +2k
◦ C+

(p,λ),(q,λ+ 1
2 +2k)f)K′ ,

which is holomorphic in λ for Reλ < − 1
2 − 2k by Lemma 12.2. Similarly

we have

− πResµ=−λ− 1
2 −2k

(
(Ã+

(p,λ),(q,µ)f, Ã
+
(p,λ),(q,−µ)f)K′

t(p, q, λ)
c(p, λ, µ)+

)
= −πt(p, q, λ) Resµ=−λ− 1

2 −2k

(
1

c(p, λ,−µ)+t′(p, p,−µ)cC(p, q,−µ)2

)
× (T ′

p,λ+ 1
2 +2k ◦ C+

(p,λ),(q,λ+ 1
2 +2k)f, C

+
(p,λ),(q,λ+ 1

2 +2k)f)K′ ,
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which coincides with (13.3). Hence we obtain

∫
iR

(Ã+
(p,λ),(q,ν)f, Ã

+
(p,λ),(q,−ν)f)K′

t(p, q, λ)
c(p, λ, ν)+ dν

+ 4πResµ=λ+ 1
2 +2k

(
(Ã+

(p,λ),(q,µ)f, Ã
+
(p,λ),(q,−µ)f)K′

t(p, q, λ)
c(p, λ, µ)+

)

as the analytic continuation of (13.2) on λ ∈ (−1 − 2k,− 1
2 − 2k). Since

c(p, λ, ν)+ does not vanish for Reλ ∈ (− 1
2 −2(k+1),− 1

2 −2k) and Re ν = 0,
this even defines an analytic continuation on Reλ ∈ (− 1

2 −2(k+1),− 1
2 −2k).

Now taking the limit along the real line towards λ = − 1
2 − 2k from the

right proves the statement. For

∫
iR

(Ã−
(p,λ),(q,ν)f, Ã

−
(p,λ),(q,−ν)f)K′

t(p, q, λ)
c(p, λ, ν)− dν

the argument works in the same way. □

To state the main result we formulate the residues c(p, λ, q, k)±
Res more

explicitly. The following can be deduced by simple calculations using the
definitions of the functions c(p, λ, ν)±, t′(p, q, ν) and cC(p, q, ν)±.

By Lemma 12.2 the formula of Proposition 13.2 immediately yields
Plancherel formulas for the unitarizable representations occurring in π±

p,λ.

Corollary 13.3.

(i) Let p = 0. For λ ∈ (−ρ, 0) ∪ −ρ− Z⩾0 we have for f ∈ π±
0,λ

∥f∥2
0,λ = 1

4
∑

α=+,−

(∫
iR

∥Ãα
(0,λ),(0,ν)f∥2

L2(K′)
|t(0, 0, λ)|
c(p, λ, ν)α

dν

+
∑

k∈[0,
−λ−1+(α 1

2 )
2 )∩Z

|t(0, 0, λ)|c(0, λ, 0, k)α
Res

× ∥Cα
(0,λ),(0,λ+1−(α 1

2 )+2k)f∥2
0,λ+1−(α 1

2 )+2k

)
.
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(ii) For 0 < p < n. For λ ∈ [−|p− ρ|, 0) we have for f ∈ π±
p,λ

∥f∥2
p,λ = 1

4
∑

α=+,−

∑
q=p−1,p

(∫
iR

∥Ãα
(p,λ),(q,ν)f∥2

L2(K′)
|t(p, q, λ)|
c(p, λ, ν)α

dν

+
∑

k∈[0,
−λ−1+(α 1

2 )
2 )∩Z

|t(p, q, λ)|c(p, λ, q, k)α
Res

× ∥Cα
(p,λ),(q,λ+1−(α 1

2 )+2k)f∥2
q,λ+1−(α 1

2 )+2k

)
.

(iii) Let p = n. For λ ∈ (−ρ, 0) ∪ −ρ− Z⩾0 we have for f ∈ π±
n,λ

∥f∥2
n,λ = 1

4
∑

α=+,−

(∫
iR

∥Ãα
(n,λ),(n−1,ν)f∥2

L2(K′)
|t(n, n− 1, λ)|
c(p, λ, ν)α

dν

+
∑

k∈[0,
−λ−1+(α 1

2 )
2 )∩Z

|t(n, n− 1, λ)|c(n, λ, n− 1, k)α
Res

× ∥Cα
(n,λ),(n−1,λ+1−(α 1

2 )+2k)f∥2
n−1,λ+1−(α 1

2 )+2k

)
.

We remark that for p ̸= n
2 , t(p, p − 1, p − ρ) = t(p, p, ρ − p) = 0 while

t(p, q, λ) ̸= 0 in all other cases. By the corollary above we immeditelly
obtain unitary branching laws for the complementary series.

Theorem 13.4.

(i) For p = 0 and λ ∈ (−ρ, 0) we have

π̂±
0,λ|G′ ≃

⊕
α=+,−

∫ ⊕

iR+

τ̂α
0,ν dν ⊕

⊕
k∈[0,

−λ−1+(α 1
2 )

2 )∩Z

τ̂±α
0,λ+1−(α 1

2 )+2k

 .

(ii) for 0 < p < n and λ ∈ (−|ρ− p|, 0) we have

π̂±
p,λ|G′ ≃

⊕
α=+,−

⊕
q=p−1,p

∫ ⊕

iR+

τ̂α
q,ν dν ⊕

⊕
k∈[0,

−λ−1+(α 1
2 )

2 )∩Z

τ̂±α
q,λ+1−(α 1

2 )+2k

 .
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(iii) For p = n and λ ∈ (−ρ, 0) we have

π̂±
n,λ|G′ ≃

⊕
α=+,−

∫ ⊕

iR+

τ̂α
n−1,ν dν ⊕

⊕
k∈[0,

−λ−1+(α 1
2 )

2 )∩Z

τ̂±α
n−1,λ+1−(α 1

2 )+2k

 .

Similarly we can deduce unitary branching laws for the unitary quotients
with non-trivial (g,K)-cohomology.

Theorem 13.5.
(i) For the one dimensional unitary quotients we have

Π̂0,±|G′ ≃ Π̂′
0,±, Π̂n+1,±|G′ ≃ Π̂′

n,±.

(ii) For 0 < p ⩽ n
2 we have

Π̂p,±|G′ ≃ Π̂′
p,± ⊕

⊕
k∈(0,ρ′−p+1)∩Z

τ̂
∓(−1)k

p−1,p−1−ρ′+k ⊕
⊕

α=+,−

∫ ⊕

iR+

τ̂α
p−1,ν dν.

(iii) For p = n+1
2 we have

Π̂ n+1
2 ,±|G′ ≃

⊕
α=+,−

∫ ⊕

iR+

τ̂α
n−1

2 ,ν
dν.

(iv) For n+1
2 < p ⩽ n we have

Π̂p,±|G′ ≃ Π̂′
p−1,± ⊕

⊕
k∈(0,p−1−ρ′)∩Z

τ̂
±(−1)k

p−1,ρ′−p+1+k ⊕
⊕

α=+,−

∫ ⊕

iR+

τ̂α
p−1,ν dν.

Proof. — The statement for the one-dimensional representations is clear.
For 0 ⩽ p ⩽ n−1

2 the statement follows from Corollary 13.3 in the following
way. Since ∥f∥p,p−ρ = ∥prp−ρ f∥p,p−ρ,quo for all f ∈ π̂±

p,p−ρ the Plancherel
formula of Corollay 13.3 is essentially the Plancherel formula for the quo-
tient Π̂p+1,∓. Then the statement follows since t(p, p − 1, p − ρ) = 0 and
t(p, p, p − ρ) ̸= 0. Similarly for n+1

2 ⩽ p ⩽ n, and the quotient Π̂p,± of
π̂±

p,ρ−p since t(p, p, ρ− p) = 0 and t(p, p− 1, ρ− p) ̸= 0. For p = n
2 we have

that
Π n

2 ,± := ker
(
Tn

2 ,0 − π
n
2

( n
2 )! id

)
⊆ π±

n
2 ,0

and
Π n

2 +1,∓ := ker
(
Tn

2 ,0 + π
n
2

( n
2 )! id

)
⊆ π±

n
2 ,0.

Then the statement follows from the functional equations Theorem 7.1. □
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In the same way as above we obtain branching laws for the unitarizable
representations Ip,j,± for p = 0, n.

Theorem 13.6.
(i) For p = 0 we have

Î0,j,±|G′ ≃ Π̂′
1,∓ ⊕

j⊕
k=1

Î ′
0,k,±(−1)k+j

⊕
⊕

k∈(0,ρ′)∩Z

τ̂
±(−1)k+j

0,−ρ′+k

⊕
α=+,−

⊕
∫ ⊕

iR+

τ̂α
0,ν dν.

(ii) For p = n we have

În,j,±|G′ ≃ Π̂′
n−1,± ⊕

j⊕
k=1

Î ′
n−1,k,±(−1)k+j

⊕
⊕

k∈(0,ρ′)∩Z

τ̂
±(−1)k+j

n−1,−ρ′+k ⊕
⊕

α=+,−

∫ ⊕

iR+

τ̂α
n−1,ν dν.
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