Let be a smooth complex projective rationally connected threefold with nef anticanonical divisor . We give a classification for the case when is not semi-ample.
Soit une variété complexe projective lisse rationnellement connexe de dimension trois à fibré anticanonique nef. On donne une classification dans le cas où n’est pas semiample.
Revised:
Accepted:
Online First:
Keywords: Minimal Model Program, rationally connected threefolds, anticanonical class.
Mot clés : Programme du modèle minimal, variétés rationnellement connexes de dimension trois, classe anticanonique.
Xie, Zhixin 1
@unpublished{AIF_0__0_0_A76_0, author = {Xie, Zhixin}, title = {Rationally connected threefolds with nef and bad anticanonical divisor}, journal = {Annales de l'Institut Fourier}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, year = {2024}, doi = {10.5802/aif.3620}, language = {en}, note = {Online first}, }
Xie, Zhixin. Rationally connected threefolds with nef and bad anticanonical divisor. Annales de l'Institut Fourier, Online first, 32 p.
[1] Boundedness and for log surfaces, Int. J. Math., Volume 5 (1994) no. 6, pp. 779-810 | DOI | MR | Zbl
[2] A reduction map for nef line bundles, Complex geometry (Göttingen, 2000), Springer, 2002, pp. 27-36 | DOI | MR | Zbl
[3] Nef reduction and anticanonical bundles, Asian J. Math., Volume 8 (2004) no. 2, pp. 315-352 | DOI | MR | Zbl
[4] Boundedness of elliptic Calabi–Yau varieties with a rational section (2020) (https://arxiv.org/abs/2010.09769v1)
[5] Holomorphic vector bundles over compact complex surfaces, Lecture Notes in Mathematics, 1624, Springer, 1996, x+170 pages | DOI | MR | Zbl
[6] A decomposition theorem for projective manifolds with nef anticanonical bundle, J. Algebr. Geom., Volume 28 (2019) no. 3, pp. 567-597 | DOI | MR | Zbl
[7] Kähler manifolds with numerically effective Ricci class, Compos. Math., Volume 89 (1993) no. 2, pp. 217-240 | Numdam | MR | Zbl
[8] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR
[9] Fano threefolds. I, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 41 (1977) no. 3, p. 516-562, 717 | MR
[10] Fano threefolds. II, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 42 (1978) no. 3, pp. 506-549 | MR | Zbl
[11] Almost del Pezzo manifolds, Adv. Geom., Volume 8 (2008) no. 3, pp. 387-411 | DOI | MR | Zbl
[12] A generalization of Kodaira–Ramanujam’s vanishing theorem, Math. Ann., Volume 261 (1982) no. 1, pp. 43-46 | DOI | MR | Zbl
[13] Pluricanonical systems on minimal algebraic varieties, Invent. Math., Volume 79 (1985) no. 3, pp. 567-588 | DOI | MR | Zbl
[14] Flops, Nagoya Math. J., Volume 113 (1989), pp. 15-36 | DOI | MR | Zbl
[15] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages | DOI | MR | Zbl
[16] Positivity in algebraic geometry. I. Classical setting: line bundles and linear series, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 48, Springer, 2004, xviii+387 pages | DOI | MR | Zbl
[17] Quelques résultats de Višik sur les problèmes elliptiques nonlinéaires par les méthodes de Minty–Browder, Bull. Soc. Math. Fr., Volume 93 (1965), pp. 97-107 | DOI | MR | Zbl
[18] Curves disjoint from a nef divisor, Mich. Math. J., Volume 65 (2016) no. 2, pp. 321-332 | DOI | MR | Zbl
[19] Threefolds whose canonical bundles are not numerically effective, Ann. Math., Volume 116 (1982) no. 1, pp. 133-176 | DOI | MR | Zbl
[20] Classification of Fano -folds with , Manuscr. Math., Volume 36 (1981) no. 2, pp. 147-162 | DOI | MR | Zbl
[21] On Fano -folds with , Algebraic varieties and analytic varieties (Tokyo, 1981) (Advanced Studies in Pure Mathematics), Volume 1, North-Holland, 1983, pp. 101-129 | DOI | MR | Zbl
[22] Algebraic geometry. V (Shafarevich, I. R., ed.), Encyclopaedia of Mathematical Sciences, 47, Springer, 1999, iv+247 pages | DOI | MR | Zbl
[23] Géométrie des diviseurs anticanoniques pour certaines variétés rationnellement connexes de petite dimension, Ph. D. Thesis, Université Côte d’Azur (2021)
Cited by Sources: