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DEFORMATIONS OF SOLUTIONS OF ALGEBRAIC
DIFFERENTIAL EQUATIONS

by Mercedes HAIECH

Abstract. — As in algebraic geometry where the formal neighborhood of a
point of a scheme contains informations about the singularities of the object, we
extend this study to schemes where a point represents a solution of an algebraic
differential equation. The obtained geometric object living naturally in a space of
infinite dimension, a first step is to show that the formal neighborhood of a point
not canceling the separant is noetherian, using considerations on the embedding
dimension. We show that, in the neighborhood of points making the separant in-
vertible, the embedding dimension is exactly the order of the considered differential
equation. In a second step, we relate, for a certain type of differential equations
of order two, the existence of essential singular components to the decrease of the
embedding dimension, in the neighborhood of certain points.

Résumé. — À l’instar de la géométrie algébrique où le voisinage formel d’un
point d’un schéma contient des informations sur les singularités de l’objet, nous
étendons cette étude à des schémas dont un point représente une solution d’une
équation différentielle algébrique. L’objet géométrique obtenu vivant naturellement
dans un espace de dimension infinie, une première étape consiste à montrer que le
voisinage formel d’un point n’annulant pas le séparant est noethérien, à l’aide de
considérations sur la dimension de plongement. Nous montrons également, qu’au
voisinage de points rendant le séparant inversible, la dimension de plongement est
exactement l’ordre de l’équation différentielle considérée. Dans un second temps,
nous relions, pour un certain type d’équations différentielles d’ordre deux, l’exis-
tence de composantes singulières essentielles à la décroissance de la dimension de
plongement, au voisinage de certains points.

Introduction

The study of the deformations of solutions of differentials equations can
be seen as a natural generalization of the local study of the arc scheme.
The arc scheme is an object introduced by J. Nash in the 60’s in an article
published later. It is constructed as the arcs drawn on a given scheme. More
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2 Mercedes HAIECH

precisely, if X is a scheme over a field K -in this article K is assumed to
be of characteristic zero-, and if A is a K-algebra, then an A-point of the
arc scheme of X corresponds to an AJT K-point of X.

On the other hand the arc scheme has a natural definition thanks to
differential algebra. Let K{y1, . . . , yn} := K[yi,j | 1 ⩽ i ⩽ n, j ∈ N] be the
ring of differential polynomials endowed with the derivation ∆ such that
∆(yi,j) = yi,j+1. Then if X = Spec(K[y1, . . . , yn]/I), where I is some ideal
of K[y1, . . . , yn], then the arc scheme of X, denoted by L∞(X), can be
described by the K-scheme Spec(K{y1, . . . , yn}/[I]), where [I] stands for
the differential ideal generated by I.

In the case of X = Spec(K[y1, . . . , yn]/I), the ideal that defines the arc
scheme is -differentially- generated by elements of order 0. This idea can
be generalized by studying geometrical objects like Spec(K{y1, . . . , yn}/J)
with J a differential ideal of K{y1, . . . , yn} (not necessarily generated by
differentials polynomials of order 0).

In addition to be some natural generalization of the arc scheme, it
has also a meaning regarding differential algebra. The scheme
Spec(K{y1, . . . , yn}/J) can be understood as the solutions -which are
formal series- of the elements of J seen as differential equations. In or-
der to underline the link between this object and the arc scheme, and since
it is related to differential equations, we are going to refer to schemes like
Spec(K{y1, . . . , yn}/J) as differential arc schemes.

Motivated by a result about the local structure of the arc scheme at the
neighborhood of a rational point by M. Grinberg & D. Kazhdan and V.
Drinfeld (see [3] and [5]) D. Bourqui & J. Sebag began the study of the
local structure of differential arc scheme.

Theorem 1 (Drinfeld, Grinberg–Kazhdan). — Let X be a scheme of
finite type over a field K, let γ : Spec KJT K → X be a non-degenerated
rational arc, i.e an element of (L∞(X) \L∞(nSm(X)))(k). We denote by
L∞(X)γ the formal neighborhood of γ in L∞(X). Assume that
dimγ(0)(X) ⩾ 1. There exists a K-scheme S of finite type, a point s ∈ S(k)
and an isomorphism of formal K-schemes

L∞(X)γ
∼= Ss ×k Spf(KJ(Ti)i∈NK).

The local structure theorem of the arc scheme states that all the infor-
mation about the formal neighborhood of a rational arc is encoded by a
scheme of finite type although the arc scheme is, in general, not of finite
type. The result of D. Bourqui & J. Sebag (see [1]) states that for differen-
tial arc schemes defined by a differential equation F of order 1 the formal
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DEFORMATIONS OF ADE’S SOLUTIONS 3

neighborhood of non degenerated points is a formal disk of dimension 1.
More precisely:

Theorem 2 (Bourqui–Sebag). — Let K be a field of characteristic zero.
Let F ∈ K{y} be a nonconstant differential polynomial of order 1. Let
X∂ = Spec(K{y}/[F ]). Let γ ∈ X∂(k) be a nonconstant differential arc.
Assume that the separant of F does not vanish at γ(T ). Then the formal
neighborhood of γ, denoted X∂

γ , is isomorphic to Spf(KJT K).

A natural question is to wonder if this theorem remains true for differ-
ential polynomials of order greater than 1. By looking at several examples,
it turns out that it is not the case (see Section 6.2). However, we can show
that, as in Theorem 2, the formal neighborhood of a solution of F = 0
remains Noetherian.

This article is organized as follow : the first section recalls some facts
and theorems about differential algebra. In particular we will state the
Low power theorem due to J. F. Ritt with gives a effective way, given F a
differential polynomial, to decide if a differential polynomial A gives rise to
an essential component of F . In the second and third sections we recall the
definitions of the functor of deformations (Definition 2.10) and embedding
dimension (Definition 3.1) and some useful properties to deal with it. Along
the way, we prove the following theorem

Theorem 1. — Let (A,MA) be a local ring. The following assertions
are equivalent:

(1) The embedding dimension of the local ring A, denoted emb.dim(A)
is finite.

(2) The completion Â := lim←−n
A/Mn

A of A is Noetherian.
(3) The embedding dimension of the local ring Â, denoted emb.dim(Â)

is finite.
Furthermore, if one of this equivalent conditions is verified, then
emb.dim(A) = emb.dim(Â) and the ring Â is complete for the M̂A pre-
adic topology.

Note that the equivalence (1) ⇐⇒ (2) can already be found in [4,
Lemma 10.12]. The rest is, up to my knowledge, new. Moreover, even if
it is well known that for A a Noetherian ring the topology on Â is the
M̂A pre-adic topology, this statement is, in general, false when A is not
Noetherian (see for example [6] or [12]).

In the 4th part, given F a differential polynomial and γ(T ) a solution of
F = 0 such that the separant of F does not vanish at γ(T ), we show that the
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4 Mercedes HAIECH

problem of deciding if the formal neighborhood of F at γ is Noetherian can
be reduced to a problem of linear algebra, and we state that the embedding
dimension of the formal neighborhood is smaller than the order of F .

Theorem 2. — Let K be a field of characteristic zero. Let F ∈ K{y}
be a non constant differential polynomial of order n. Let γ(T ) ∈ KJT K be
a solution of the ODE F = 0 such that the separant of F does not vanish
at γ(T ). Let X∂ = Spec(K{y}/[F ]).

So the formal neighborhood X̂∂
γ is Noetherian and its embedding dimen-

sion is less or equal to n.

This result gives a upper bound for the embedding dimension, but we can
have a more precise result when the embedding dimension is at most one.

Theorem 3. — Let K be a field of characteritic zero. Let F ∈ K{y} be
a non constant irreducible differential polynomial andX∂ := Spec(K{y}/[F])
the associated differential scheme. Let γ(T ) ∈ KJT K be a non constant
solution of the differential equation F = 0. Assume that the embedding
dimension of X∂ at γ is at most 1. Then the formal neighborhood X̂∂

γ

is isomorphic, as formal K-scheme, to the formal disk D = Spf(KJT K) of
dimension 1.

This statement applies for non constant F of any order, in particular it
allows us to recover the statement of Theorem 2.

Last section investigates the case of particular differentials equations
of order two. For equations F ∈ K{y} of the form ya

i − αyb
jy

c
k where

{i, j, k} = {0, 1, 2}, called binomial, the embedding dimension seems to be
linked to the existence of essential singular components (see Definition 1.4
for a definition). More precisely we have:

Theorem 4. — Let K be a field of characteristic zero. Let
F ∈ K[y0, y1, y2] an irreductible polynomial. Assume that the
ODE F (y, y′, y′′) = 0 is a binomial equation of order two with constant
coefficients. Let d ⩾ 2 be an integer such that γ(T ) = T d is a solution
of the F = 0 and X∂ = Spec(K{y}/[F ]). If the perfect differential ideal
{F}(1) has a essential singular component, then emb.dim(ÔX∂ ,γ) = 1.

However the converse is false, there exist binomial equations without
essential singular components such that the embedding dimension in the
neighborhood of a solution is 1.
(1) See beginning of Section 1 for the definition of perfect differential ideal. This termi-
nology is standard in differential algebra but can be confusing compared to the one used
in modern algebra and algebraic geometry. In the context of differential algebra, perfect
ideal has the same meaning as radical ideal.
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To conclude, we present, at the end of the last section, various examples
of equations and computations of embedding dimensions.

1. Recollection on the low power theorem

Let K be a field of characteristic 0. Recall that if (R,+, ·) is a ring, a
derivation ∆ on R is a linear map for + and which satisfies the Leibniz Rule
∆(ab) = a∆(b) + ∆(a)b. A ring endowed with one, or many derivations is
called a differential ring. An ideal of a differential ring is called differential
if it is stable under the action of the derivations. A differential ideal I of
a differential ring R is say to be perfect of for every a ∈ R, the fact that
an ∈ I implies a ∈ I.

The notation K{y} will stand for the differential ring (K[yi | i ∈ N],∆),
where the derivation ∆ sends an element of K to 0 and satisfies ∆(yi) =
yi+1. An element of this ring will be called a differential polynomial. If I
is an ideal of K{y}, then {I} will denote the intersection of all the perfect
differential ideals of K{y} containing I. If F is an element of K{y} of order
ℓ, the separant SF of F is ∂F

∂yℓ
.

Remark 1.1. — Let F ∈ K{y}. In what follows there will be three ideals
generated by F .

• The differential ideal [F ] generated, as ideal, by F and all its deriv-
ative. Its structure is compatible with the action of the derivation.

• The perfect (or radical) differential ideal {F}, defined before as the
intersection of all the perfect differential ideals of K{y} containing
F . Its structure is also compatible with the one induced by the
derivation.

• The ideal ⟨F ⟩ generated by F . Even if this ideal has no differential
structure, it becomes useful when F is seen as a standard polyno-
mial and not as a differential one.

To emphases the difference, let’s consider an example. Let (y′)2 − 4y = 0
be a differential equation. This equation can be seen as a differential poly-
nomial and as an element of the differential ring K{y}, where it is de-
noted by F = y2

1 − 4y0. The differential ideal [F ] is generated by F

and all its formal derivative, for example the first formal derivative is
∆(F ) = 2y1y2 − 4y1. However, F can also be seen as a polynomial of
K[yi | i ∈ N], where the differential structure is forgotten, and then ⟨F ⟩ is
the ideal generated by F in K[yi | i ∈ N]. Sometimes, it may be useful to
see F as a polynomial of the K-algebra K[y0, y1]. In this context, ⟨F ⟩ will
also denote the ideal generated by F but in K[y0, y1].
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6 Mercedes HAIECH

Definition 1.2. — Let F be a differential polynomial and κ a
K-algebra. A formal series γ(T ) ∈ κ[T ] is a solution of F , if

F (γ(T ), γ′(T ), . . .) = 0.

For simplicity, we will often denote F (γ(T )) = 0 when γ(T ) is a solution
of F .

If I in a differential ideal of K{y}, we denote by Solκ(I) the solution of I
with coefficients in κ. More precisely

Solκ(I) = {γ(T ) ∈ κJT K | ∀F ∈ I, F (γ(T )) = 0}.

If I = [F ], we sometimes denote Solκ(F ) instead of Solκ([F ]).

1.1. Decomposition of perfect differential ideals

Let F ∈ K{y} be a non-constant differential polynomial. We will study
the decomposition of the ideal {F} as intersection of prime differential
ideals.

We know that any perfect differential ideal I decomposes into a finite
intersection of prime differential ideals (see [10, Chapter 1, 16] or [7, Chap-
ter VII, Theorem 7.5 & Theorem 7.6]). Since {F, SF } is a perfect ideal
of K{y} there exists an irredundant family of differential prime ideals
P1, . . . ,Ps such that

{F, SF } =
s⋂

i=1
Pi.

Furthermore, the Pi are unique up to reordering.
We define ({F} : SF ) as the set of elements A in K{y} such that ASF ∈

{F}. A classical result of differential algebra can be stated as follows (see [7,
Theorem 7.10]):

Proposition 1.3. — Let K be a field of characteristic 0. Let F ∈ K{y}
be an irreducible differential polynomial. Then {F} has the following de-
composition as intersection of perfect ideals

{F} = ({F} : SF ) ∩ {F, SF }.

Moreover ({F} : SF ) is a prime differential ideal. If we denote {F, SF } =⋂s
i=1 Pi, there exists a subset J ⊂ {1, . . . , s} such that the irredundant

irreducible decomposition of the perfect differential ideal J ⊂ {1, . . . , s} is
given by

{F} = ({F} : SF ) ∩

⋂
j∈J

Pj

 .

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF ADE’S SOLUTIONS 7

Definition 1.4. — The prime differential ideal ({F} : SF ) is called
component of the general solution of F (2) ; the Pj intervening in the
formula, the components of the essential singular solutions of F (3) .

Remark 1.5. — Thanks to Proposition 1.3 we can deal with cases where
the polynomial F is not irreducible. The irreducible decomposition of the
differential ideal {F} will, indeed, be obtained from this proposition applied
to the irreducible factors of F .

Let’s illustrate Proposition 1.3 by an example from [7, Chapter VII, 31].

Example 1.6. — Let F = y2
1 − 4y0 ∈ K{y}. Thanks to Proposition 1.3,

we can decompose the perfect differential ideal {F} under the form

{F} = ({F} : SF ) ∩ {F, SF }.

But SF = 2y1, hence {F, SF } = {y0}. Since the ideal {y0} is prime, we
have the decomposition of {F, SF } as an intersection of prime differential
ideals. It remains to identify the ideal ({F} : SF ), but we already know
that it is prime.

The derivative of F factors: ∆(F ) = 2y1(y2 − 2). We will prove that
y1 /∈ ({F} : SF ). Assume that y1 ∈ ({F} : SF ). Since y1 ∈ {F, SF } and
that {F} is the intersection of these two ideals we should have y1 ∈ {F}.
In particular, this implies SolK(F ) ⊂ SolK(y1) = K. But the set

SolK(F ) = {x(t) ∈ KJtK | F (x(t)) = 0}

contains x(t) = t2 which is not an element of SolK(y1). Hence y1 /∈ ({F} :
SF ), but since this ideal is prime and contains ∆(F ), we deduce that (y2−
2) ∈ ({F} : SF ). We denote Q = {y2

1 − 4y0, y2 − 2}. This ideal is contained
in ({F} : SF ) and is prime because the morphism

K{y}/{F, y2 − 2} −→ K[y0, y1]/⟨F ⟩
y0 7−→ y0

y1 7−→ y1

y2 7−→ 2
yi 7−→ 0 for i ⩾ 3

is a ring isomorphism. But ⟨y2
1 − 4y0⟩ is a prime ideal of K[y0, y1], hence

the ideal Q is prime. Since {F} ⊂ Q, we have

{F} = ({F} : SF ) ∩ {F, SF } ∩Q.

(2) Sometimes we also say general component.
(3) We sometimes also say essential singular components.

TOME 0 (0), FASCICULE 0
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But Q ⊂ ({F} : SF ), then the decomposition of F as prime ideals is the
following:

{F} = {y2
1 − 4y0, y2 − 2} ∩ {y0}

and we deduce that {y2
1 − 4y0, y2 − 2} = ({F} : SF ).

1.2. Low power theorem

Ritt’s low power theorem is one of the great success of the Rittian ap-
proach to differential algebra. This theorem is a simple algorithmic state-
ment which fits into the problem of determining the irreducible decompo-
sition of a perfect ideal {F} of K{y}. Introduced in [10, II] in the case
of one-derivative differential fields, this theorem also finds a presentation
in [8, 13,15] in the case of arbitrary finite sets of derivations. In this section,
we will limit ourselves to the case of a differential field K, equipped with a
derivation ∆ possibly trivial as proposed by Ritt.

This theorem exploits an algorithmic preparation procedure, which can
be interpreted as a kind of pseudo-division. Here is how the algorithmic
preparation procedure is expressed (see [10, Chapter III, part II, 17]).

Proposition 1.7 (Preparation process). — Let A and F be two differ-
ential polynomials of K{y}. We note l the order of A and m the order of
F . Let’s denote by SA the separant of A. There exists two integers t ∈ N
and r ∈ \{0} such that St

AF is of the form

St
AF =

r∑
j=1

CjA
pi∆(A)i1,j ∆2(A)i2,j · · ·∆m−l(A)im−l,j

with
(1) the pj and ik,j are positive integers;
(2) the (m− l)-uplets (i1,j , . . . , im−l,j) are all distinct
(3) the order of the Cj is smaller than l and they are not divisible by A.

Examples 1.8.
(1) Let F = y2

1−4y0 and A = y0, then F is already in “prepared” form
with t = 0, r = 2, C1 = 1, p1 = 0, i1,1 = 2, C2 = −4, p2 = 1, and
all other integers are 0.

(2) Similarly, if F = y2
1 − 4y0 and A = y1, then F is already in “pre-

pared” form with t = 0, r = 2, C1 = 1, p1 = 2 and C2 = −4y0, and
all other integers are zero.

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF ADE’S SOLUTIONS 9

The low power theorem can then be stated as follows (see [10, Chap-
ter III, part II, 20]).

Theorem 1.9 (Low power theorem). — Let K be a field of character-
istic zero. Let A,F ∈ K{y} two irreducible differential polynomials.

Let

(1.1) St
AF =

r∑
j=1

CjA
pi∆(A)i1,j ∆2(A)i2,j · · ·∆m−l(A)im−l,j

be a preparation of F with respect to A. So the prime ideal differential
({A} : SA) is an irreducible component of {F} if and only if

(1) the right part of (1.1) contain a term CkA
pk free of proper deriva-

tions of A
(2) for every integer j ̸= k, we have pk < pj + i1,j + · · ·+ im−l,j .(4)

Examples 1.10. — Let’s go back to the previous Examples 1.8.
(1) Let F = y2

1 − 4y0 and A = y0, then there is a term of the form
−4y0, where the derivative of A does not appear. And p2 = 1 <

p1 + i1,1 = 2. So y0 is an irreducible component of {F}.
(2) If F = y2

1 − 4y0 and A = y1, then the first hypothesis of the lower
power theorem is verified, but not the second, so y1 isn’t an irre-
ducible component of {F}.

Let F ∈ K{y}. If we want to test if {y0} is an essential singular compo-
nent of {F}, the low power theorem takes the following simpler form: the
differential ideal {y0} is a component of {F} if and only if the expression
of F contains a term of the form αy0, with α ∈ K, of -total- degree strictly
inferior to the degree of any other (non-zero) monomial appearing in the
expression of F .

2. Deformations of a point

This section is a recollection about the space of deformations of a point.
Notations and definitions are introduced in order to recall the proof that
the functor that describes the space of deformation (Definition 2.10) is
representable.

(4) If m = l and (1.1) contains a single term of the form CkApk , the condition will also
be regarded as fulfilled.

TOME 0 (0), FASCICULE 0
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2.1. Notations

In the following K will refer to an arbitrary field. We will define three
categories:

(1) The category AlglocK whose objects are local K-algebras whose
residue field is K-isomorphic to K and whose morphisms are mor-
phisms of local rings.

(2) The category AlgLCK whose objects are topological and local K-
algebras which are the completion of an object of AlglocK and
whose morphisms are the continuous morphisms of K-algebras.

(3) The category QArtK , which is a full subcategory of AlgLCK ,
whose the objects are the objects of AlgLCK whose maximal ideal
is nilpotent.

Definition 2.1. — An object of the category QArtK will be called a
quasi-artinian ring.

Remark 2.2. — Let (A,mA) be an object of AlglocK which is Noether-
ian. Then it is known (see [9, 23.L, Corollary 4]) that the completion of A
with respect to its maximal ideal is complete for the mA (pre)adic topology.
However this turn out to be false if A is not Noetherian (see [6]).

Remark 2.3. — Let (A,MA) an object of AlglocK and B = lim←−n
A/Mn

A

its completion. In addition to the previous remark let us insist on the fact
that the maximal ideal of B is described by MB = M̂A. The natural topol-
ogy on B (resulting from its construction as projective limit) is described
by the family (M̂n

A)n∈N. In general, the family (M̂n
A)n∈N does not coincide

with the family of powers of the maximal ideal of B (unless A is Noether-
ian). If A is not Noetherian, usually M̂n

A ̸= M̂A

n
. So we’ll take special care

to distinguish these two topologies.

Remark 2.4. — The category of quasi-Artinian rings is referred to in
some references as test rings (see for example [2, 3]).

Proposition 2.5. — Let (A,MA), (B,MB) be two objects of AlglocK .
Let Â = lim←−n

A/Mn
A, and B̂ = lim←−n

B/Mn
B . By construction Â and B̂ are

objects of AlgLCK .
Let φ : Â→ B̂ be a ring morphism.
(1) If the morphism φ is continuous, then it’s local;
(2) If the morphism φ is local and if the family of ideals (M̂A

n
)n∈N

forms a base for the topology of Â then φ is continuous.

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF ADE’S SOLUTIONS 11

Proof.

(1). — Let’s assume that φ is continuous, and let’s show that φ−1(M̂B) =
M̂A. Since φ is continuous, then φ−1(M̂B) is an open subset of M̂A. In par-
ticular, since 0 ∈ φ−1(M̂B), there is an integer j such as

M̂A

j
⊂ M̂j

A ⊂ φ
−1(M̂B).

Now since φ−1(M̂B) is a prime ideal of Â, the previous inclusions imply
that M̂A ⊂ φ−1(M̂B). So φ is local.

(2). — Assume that φ is local. Let U be an open in B̂. Let x ∈ φ−1(U).
Since φ(x) ∈ U , there exists an integer j such that φ(x) + M̂j

B ⊂ U .
Furthermore M̂B

j
⊂ M̂j

B . So φ(x+ M̂A

j
) ⊂ φ(x) + M̂B

j
⊂ U . So φ−1(U)

is an open subset, thus φ is continuous. □

Proposition 2.6. — Let (A,MA), (B,MB) be two objects of AlglocK .
Let Â = lim←−n

A/Mn
A, and B̂ = lim←−n

B/Mn
B . By construction Â and B̂ are

objects of AlgLCK .
Let φ : A → B be a local ring morphism. Then the morphism induced

by φ̂ : Â→ B̂ is continuous.

Proof. — Since the morphism φ is local then, for any integer n ∈ N, the
morphism φ̂ satisfies φ̂(M̂n

A) ⊂ M̂n
B .

Let U be an open subset of B̂. Let x ∈ φ̂−1(U). Since φ̂(x) ∈ U , there
exists an integer j such that φ̂(x) + M̂j

B ⊂ U . Thus φ̂(x+ M̂j
A) ⊂ φ̂(x) +

M̂j
B ⊂ U . So φ̂−1(U) is an open subset, hence φ̂ is continuous. □

Proposition 2.7. — Let (A,MA), (B,MB) be two objets of AlglocK .
Let Â = lim←−n

A/Mn
A, and B̂ = lim←−n

B/Mn
B . Let φ : A→ B̂ be a morphism

of local rings. Then there exists an unique continuous morphism φ̂ of local
rings such that the following diagram is commutative.

A
φ //

��

B̂

Â

φ̂

@@

Proof. — Let j be an integer. Since the morphism φ is local and that
M̂B

j
⊂ M̂j

B , then φ induces a morphism of local rings.

φj : A/Mj
A −→ B̂/M̂j

B = B/Mj
B .

TOME 0 (0), FASCICULE 0



12 Mercedes HAIECH

Let â = (an)n∈N ∈ Â. We denote φ̂(â) = (φn(an))n∈N. Since the morphism
φ is local, then φ̂(â) ∈ B̂ is well defined. And since every φj is local, then
φ̂ is local.

By constructing of the morphism φ̂, we also have φ̂(M̂n
A) ⊂ M̂n

B , which
implies that the morphism φ̂ is continuous (see previous proof for details).

Uniqueness is verified because A is dense in Â and φ̂ is continuous. □

Remark 2.8. — In particular, the Proposition 2.7 proves that, if (A,MA),
(B,MB) are two objects of AlglocK , then

HomAlglocK
(A, B̂) = HomAlgLCK

(Â, B̂).

In particular, if B is a quasi-Artinian ring (an object of QArtK), then we
have

HomAlglocK
(A,B) = HomAlgLCK

(Â, B)
because, in this case, B = B̂.

2.2. Functor of points

According to the Yoneda’s lemma, we have a fully faithful functor defined
on the objects by :

α : AlgLCK −→ Func(AlgLCK ,Set)

B̂ 7−→ h
B̂

: AlgLCK −→ Set

Â 7−→ HomAlgLCK
(B̂, Â).

Let B̂ and Ĉ be two objects of AlgLCK . This fully faithful functor is
described by the existence of an isomorphism between HomAlgLCK

(Ĉ, B̂)
and Hom(h

Ĉ
, h

B̂
). In other words, a morphism φ ∈ HomAlgLCK

(Ĉ, B̂) is
the same as considering a collection of morphisms{

HomAlgLCK
(Ĉ, Â) −→ HomAlgLCK

(B̂, Â)
}

Â∈AlgLCK

functorial in Â.
This functor α can be restricted to the sub-category QArtK .

AlgLCK
α //

α′
((

Func(AlgLCK ,Set)

��
Func(QArtK ,Set)

where α′(B̂) = h
B̂

: Â ∈ QArtK 7→ HomAlgLCK
(B̂, Â).
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The following proposition was used in [3], but the reader can refer to [2,
Section 2.1] for more details.

Proposition 2.9. — The functor α′ : AlgLCK → Func(QArtK ,Set)
is fully faithful.

2.3. Infinitesimal deformations of a rational point

This section is a recollection of an important description of the deforma-
tion space of a rational point, which is the core of Proposition 2.12. The
same considerations can be found in [2, Section 2.2].

If X is a K-scheme and x be a K-point of X, we denote OX,x the stalk
of OX at x.

Definition 2.10. — Let X be a K-scheme and x be a K-point of X.
The space of deformations of X at x is the functor from the category
QArtK to Set

A 7−→ {xA ∈ X(A) | xA = x}
where xA is the reduction of xA via the map X(A)→ X(K).

Lemma 2.11. — Let K be a field and R a K-algebra. Given two mor-
phisms of K-algebras f, g : R→ K such that Ker(f) = Ker(g), then f = g.

Proof. — Since f and g are morphisms of K-algebras, note that f and g
are necessarily surjectives. Thus, the morphism deduced from the univer-
sal property of the quotient R/Ker(f) → K is bijective. Since Ker(f) =
Ker(g), we deduce the following commutative diagram by the universal
property of the quotient.

R
g // //

πf

��

K

R/Ker(f)
∃!̃g

Now the only morphism of K-algebra between K and K is the identity. So
g̃ = id, and g = πf . In the same way we show that f = πf , hence f = g. □

Proposition 2.12. — If X is a K-affine scheme, x ∈ X(k) a rational
point and A a quasi-Artinian ring, then

HomAlgLCK
(ÔX,x, A) = HomAlglocK

(OX,x, A) = {xA ∈ X(A) | xA = x}

where xA is the reduction of xA via the map X(A)→ X(k).

TOME 0 (0), FASCICULE 0
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Remark 2.13. — If X is a general scheme a proposition like the previous
is also true, up to working with an affine open neighborhood of x.

Proof. — Remark 2.8 already proves the equality

HomAlgLCK
(ÔX,x, A) = HomAlglocK

(OX,x, A).

We aim to define a bijective map from {xA ∈ X(A) | xA = x} to
HomAlglocK

(OX,x, A). Let’s consider xA ∈ X(A), which corresponds to
a morphism of K-algebras xA : OX → A such that xA = x. Let’s denote
Ker(x) = px.

By the universal property of the localization, xA factorizes by OX,x if
and only if for y /∈ px then xA(y) is invertible in A. Since y /∈ px, then
xA(y) = x(y) ̸= 0. So xA factorizes uniquely :

OX
xA //

��

A

OX,x

∃!φxA

==

This defines an injective morphism
α : {xA ∈ X(A) | xA = x} ↪−→ HomAlglocK

(OX,x, A)
xA 7−→ φxA

.

It remains to show that α is surjective. Let φ ∈ HomAlglocK
(OX,x, A)

be a morphism. We denote lx : OX → OX,x the canonical morphism of
localization. We denote again Ker(x) = px.

We set xA = φ ◦ lx. By definition of φ, if y /∈ px, then xA(y) is invertible
in A, in other words xA(y) ̸= 0 (in K). We deduce that y /∈ Ker(x) implies
that y /∈ Ker(xA). In other words Ker(xA) ⊂ Ker(x).

But, we also know that Ker(x) and Ker(xA) are maximal ideals of OX

since OX/Ker(x) and OX/Ker(xA) are K-isomorphic to K. Hence

Ker(xA) = Ker(x).

Thanks to Lemma 2.11, this implies that xA = x. This proves that α is
surjective and thus the equality

HomAlglocK
(OX,x, A) = {xA ∈ X(A) | xA = x}. □

3. Tangent space and embedding dimension

In this section, we will present and gather essentially known results on
the notion of tangent space and embedding dimension for general schemes.
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The material in this chapter constitutes the key ingredients of the results
we will obtain in the next chapters. Given the role that the statements will
play in the following, we have chosen to present the most important proofs
for the ease of reading. Even if most of the results presented in this chapter
are known however, to our knowledge, Corollary 3.9 and Proposition 3.10
are new.

3.1. Definition

Definition 3.1. — Let (A,MA) be a local ring. The embedding di-
mension of A is the dimension of the A/MA-vector space MA/M

2
A and is

denoted emb.dim(A).
The tangent space of A is the dual of the K-vector space MA/M

2
A that

is denoted (MA/M
2
A)∨.

Remark 3.2. — Let (A,MA) be a local ring and n ∈ N an integer. The
A-module Mn

A/M
n+1
A is endowed with a structure of A/MA-vector space.

If a ∈ A and b ∈Mn
A then (a+ MA)(b+ Mn+1

A ) = ab+ Mn+1
A .

Let (A,MA) be a local K-algebra which residual field is K-isomorphic
to K. We denote A/MA = K to mean that the structural morphism of
K-algebra K → A/MA is an isomorphism. Let π : A → A/MA = K be
the quotient morphism. Let a ∈ A. We denote a0 = π(a) ∈ K. Then
π(a − a0) = π(a) − a0 = 0. Thus a − a0 ∈ MA. In other words, for every
a ∈ A, there exists a0 ∈ K and a1 ∈ MA such that a = a0 + a1. We also
observe that this decomposition is unique.

Hence the set HomAlglocK
(A,K[ϵ]/(ϵ)2) can be endowed with a structure

of K-vector space defined by:

(1) If φ1 and φ2 are two elements of HomAlglocK
(A,K[ϵ]/(ϵ)2) and

λ ∈ K, we define

φ1 + λφ2 : A −→ K[ϵ]/(ϵ)2

a = a0 + a1 7−→ a0 + φ1(a1) + λφ2(a1).

(2) The identity element is given by

0Hom : A −→ K[ϵ]/(ϵ)2

a = a0 + a1 7−→ a0.

TOME 0 (0), FASCICULE 0
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Moreover, this structure of K-vector space is functorial in A, i.e. if
ψ : A→ B is a morphism of K-algebras, then the induced morphism

Hom(ψ) : HomAlglocK
(A,K[ϵ]/(ϵ)2) −→ HomAlglocK

(B,K[ϵ]/(ϵ)2)
φ 7−→ ψ ◦ φ

is a morphism of K-vector spaces.
Within this framework, we can therefore propose an equivalent definition

of the embedding dimension.

Proposition 3.3. — Let (A,MA) be a local K-algebra whose residual
field isK-isomorphic toK. Then the vector space HomAlglocK

(A,K[ϵ]/(ϵ)2)
is isomorphic, as K-vector space, to (MA/M

2
A)∨.

Proof. — Let φ ∈ HomAlglocK
(A,K[ϵ]/(ϵ)2) and a ∈ A. Then a can be

written in a unique way as a = a0 + a1 with a0 ∈ K and a1 ∈ MA. Then
φ(a) = a0 + φ(a1), where φ(a1) = ϵφ1(a1). The map φ1 : MA → K sends
M2

A to zero, so we can take quotients. We still denote φ1 : MA/M
2
A → K

the quotient map. This map is K-linear. So it is a morphism of K-vector
spaces.

Let’s define
ψ : HomAlglocK

(A,K[ϵ]/(ϵ)2) −→ (MA/M
2
A)∨

φ 7−→ φ1.

Let’s check that ψ is bijective.
Let ϕ, φ ∈ HomAlglocK

(A,K[ϵ]/(ϵ)2), verifying ψ(ϕ) = ψ(φ). Let a ∈ A.
We write, as before, a in the form a = a0 + a1. Then

ϕ(a) = a0 + ϵϕ1(a1) = a0 + ϵφ1(a1) = φ(a).

Hence ψ is injective.
Let θ ∈ (MA/M

2
A)∨ and a = a0 + a1 ∈ A. We define φ(a) = a0 + ϵθ(a1).

Let a, b ∈ A. Since θ is K-linear, we verify that φ(a + b) = φ(a) + φ(b).
Furthermore, with the notations a = a0 + a1 and b = b0 + b1, since θ sends
M2

A to zero, we have

φ(ab) = φ(a0b0+a0b1+b0a1+a1b1) = a0b0+ϵ(a0θ(b1)+b0θ(a1)) = φ(a)φ(b).

Hence ψ is surjective.
We also check that ψ is a K-linear map. □

Proposition 3.4. — Let (A,MA) be a local K-algebra which resid-
ual field K-isomorphic to K. Then emb.dim(A) the embedding dimen-
sion of A is finite if and only if the dimension of the K-vector space
HomAlglocK

(A,K[ϵ]/(ϵ)2) is finite. In this case, these two dimensions are
the same.
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Proof. — According to Proposition 3.3, there exists an isomorphism of
K-vector space between HomAlglocK

(A,K[ϵ]/(ϵ)2) and the dual of MA/M
2
A.

We conclude that MA/M
2
A is of finite dimension if and only if its dual is

of finite dimension. □

3.2. Properties and Characterizations

Lemma 3.5. — Let (A,MA) be a local ring and Â = lim←−n
A/Mn

A its
completion. Let n ∈ N∗ be an integer. Assume that there exists an integer
d such that dimA/MA

(Mn
A/M

n+1
A ) = d, then M̂n

A is an Â-module of finite
type generated by at most d elements.

In particular, with n = 1, if emb.dim(A) = d then M̂A is a Â-module of
finite type generated by at most d elements.

Proof. — Since dimA/MA
(Mn

A/M
n+1
A ) = d, there exists elements

a1, . . . , ad ∈Mn
A

which form a basis of the A/MA-vector space Mn
A/M

n+1
A . Let’s consider the

morphism of A-modules ψ : Ad →Mn
A, ei 7→ ai, where ei = (0, . . . , 1, . . . , 0)

with the unique 1 is at the i-th position.
According to [11, Tag 0315 (1)] if R is a ring, I ⊂ R an ideal and φ : M →

N a morphism of R-modules then, if M/IM → N/IN is surjective, then
M̂ → N̂ is also surjective.

By applying this Proposition with R = A, I = MA, M = Ad, N = Mn
A

and φ = ψ, we deduce that the morphism

ψ̂ : Âd −→ M̂n
A

is surjective (because lim←−m
Ad/Mn+m

A = lim←−m
Ad/Mm

A ). □

The following lemma is an adaptation of the Lemma [11, Tag 05GH],
which does not apply directly in our context because, in general, if the
local ring (A,MA) is not Noetherian, then, Â = lim←−n

A/Mn
A and ̂̂

A =
lim←−n

Â/M̂A

n
are not isomorphic (see Remark 2.2). However the proof of

the lemma can be adjusted for our statement by noticing that if a sequence
is Cauchy for the M̂A pre-adic topology on Â, then this sequence is also
Cauchy for the topology that makes Â complete.

Lemma 3.6. — Let (A,MA) be a local ring and Â = lim←−n
A/Mn

A its
completion. Assume that M̂A is an ideal of finite type. Then Â is Noether-
ian.
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Proof. — Let’s denote f1, . . . , ft ∈ M̂A a generating family of M̂A.
Consider the direct sum B =

⊕
n⩾0 M̂A

n
/M̂A

n+1
in the category of Â-

modules. This direct sum has an additional ring structure. Let’s consider
the morphism of rings

Â/M̂A[T1, . . . , Tt] −→ B

which send Tj on fj . This morphism is surjective, so B is a Noetherian
ring.

Let J be an ideal of Â. Consider the ideal JB =
⊕

n⩾0 J ∩ M̂A

n
/J ∩

M̂A

n+1
of B. Since B is Noetherian, there exists a finite family g1, . . . , gm

of elements of B generating JB . Up to increasing the family size, we can
assume that, for every j, we have gj ∈ J ∩ M̂A

dj

/J ∩ M̂A

dj+1
for some

integer dj . There exists gj ∈ J ∩ M̂A

dj which maps to gj in the quotient.
We will show that the family g1, . . . , gm generates J .

Let x ∈ J . There exists an integer n such that x ∈ J ∩ M̂A

n
and x /∈

J ∩ M̂A

n+1
. If we consider x the image of x in J ∩ M̂A

n
/J ∩ M̂A

n+1
,

we deduce that there exists a family aj ∈ M̂A

max(0,n−dj)
such that x =∑m

j=1 ajgj since the family of the gj generate JB . Thus x −
∑m

j=1 ajgj ∈

J ∩ M̂A

n+1
. By iterating this process, for every integer N , we can find a

family (a1,ℓ, . . . , am,ℓ)n⩽ℓ⩽N with aj,ℓ ∈ M̂A

max(0,ℓ−dj)
such that

x =
N∑

ℓ=0

m∑
j=1

aj,ℓgj mod M̂A

N
.

We set Aj =
∑

ℓ⩾0 aj,ℓ. The sequence (
∑N

ℓ=0 aj,ℓ)N∈N is a Cauchy sequence
(for the topology for which Â is complete) because, for every integer ℓ ∈ N,
we have M̂A

ℓ
⊂ M̂ℓ

A hence Aj is well defined in Â. Thus we can write x =∑m
j=0 Ajgj , since

⋂
N∈N M̂N

A = 0 (because Â is complete -and separate- for
the filtration (M̂N

A )N∈N ) which proves that J is of finite type. □

Lemma 3.7. — Let (A,MA) be a local ring. The following assertions
are equivalent:

(1) The embedding dimension of the local ring (A,MA) is finite.
(2) The completion Â of A, with respect to its maximal ideal, is Noe-

therian.

Proof. — Assume that dimA/MA
(MA/M

2
A) < ∞, the by applying

Lemma 3.5 we deduce that M̂A is an ideal of finite type, and then, by
appliying Lemma 3.6, we deduce that the ring Â is Noetherian.
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Conversely, if the ring Â is Noetherian, the inclusion M̂A

2
⊂ M̂2

A im-
plies that the morphism M̂A/M̂A

2
→ MA/M

2
A is surjective. Hence the

embedding dimension of A is finite and emb.dim(A) ⩽ emb.dim(Â). □

The previous lemma is a result that can be found in [4, Lemma 10.12] in
the following form.

Remark 3.8. — The previous statement can be reformulate as follows
from the point of view of schemes. Let K be a field. Let X be a K-scheme.
Let x ∈ X. The following assertions are equivalent:

(1) The embedding dimension of the local ring OX,x is finite.
(2) The completion ÔX,x of the local ring at x is Noetherian.

Corollary 3.9. — Let (A,MA) be a local ring. We denote Â =
lim←−n

A/Mn
A the completion of A. Then emb.dim(A) is finite if and only

if emb.dim(Â) is finite, and in this case emb.dim(A) = emb.dim(Â).

Proof. — The fact that emb.dim(A) is finite if and only if emb.dim(Â)
is finite, can be deduced from Lemma 3.7.

Let’s assume that these embedding dimensions are finite. Thanks to the
inclusion M̂A

2
⊂ M̂2

A, we have a surjective morphism of A/MA-vector
spaces

M̂A/M̂A

2
−→ M̂A/M̂2

A = MA/M
2
A.

Hence emb.dim(A) ⩽ emb.dim(Â).
Furthermore, we know thanks to Lemma 3.5 that M̂A is generated as Â-

module by at most d := emb.dim(A) elements. Denote by u1, . . . , ud ∈ M̂A

a generating family of M̂A. Let x ∈ M̂A, then there exists (a1, . . . , ad) ∈ Âd

such that x =
∑d

i=1 aiui. Let π : Â → Â/M̂A = A/MA the canonical
morphism of projection. Since M̂A/M̂A

2
is endowed with a structure of

A/MA-vector space, we can consider the element y =
∑d

i=0 π(ai)ui of
M̂A/M̂A

2
. Hence x − y = 0 in M̂A/M̂A

2
. Thus the A/MA-vector space

M̂A/M̂A

2
is of dimension at most d. Hence

emb.dim(Â) ⩽ emb.dim(A). □

The above propositions allow us to prove the following statement about
ring completion:

Proposition 3.10. — Let (A,MA) be a local ring. Let’s denote Â =
lim←−n

A/Mn
A the completion of A. If Â is a Noetherian ring then Â is com-

plete for the M̂A pre-adic topology.
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Proof. — We are going to show by induction, that for every n ∈ N, we
have M̂A

n
= M̂n

A.
For n = 1 there is nothing to prove.
Assume now that M̂A

n
= M̂n

A for some integer n. Thanks to the inclusion
M̂A

n+1
⊂ M̂n+1

A , we deduce a surjective morphism

φn : M̂A

n
/M̂A

n+1
−→ M̂n

A/M̂
n+1
A = Mn

A/M
n+1
A .

Since Â is Noetherian, then the A/MA-vector space M̂A

n
/M̂A

n+1
is of

finite dimension and so M̂n
A/M̂

n+1
A is also of finite dimension.

We set d = dimA/MA
(Mn

A/M
n+1
A ), then, thanks to Lemma 3.5, we de-

duce that M̂n
A is an Â-module generated by at most d elements. But, by

hypothesis M̂n
A = M̂A

n
. Denote u1, . . . , ud ∈ M̂A

n
a generating family

of M̂A

n
. Let x ∈ M̂A

n
, then there exists (a1, . . . , ad) ∈ Âd such that x =∑d

i=1 aiui. Let π : Â→ Â/M̂A = A/MA be the canonical morphism of pro-
jection. Since M̂A

n
/M̂A

n+1
is endowed with a structure of A/MA-vector

space, we consider the element y =
∑d

i=0 π(ai)ui of M̂A

n
/M̂A

n+1
. Hence

x− y = 0 in M̂A

n
/M̂A

n+1
. Thus the A/MA-vector space M̂A

n
/M̂A

n+1
is

of dimension at most d.
We deduce that φn is a surjective morphism between two A/MA-vector

spaces of same dimension, so it is bijective. Hence M̂A

n+1
= M̂n+1

A . This
concludes the induction. □

Remark 3.11. — Proposition 3.10 is false in general if the ring Â is not
Noetherian as underlined in Remark 2.2.

Proposition 3.12. — Let (A,MA) be a local K-algebra which residue
field isK-isomorphic toK such that emb.dim(A), the embedding dimension
of A, is finite and equal to d. Then there exists a surjective morphism of
local K-algebras KJx1, . . . , xdK→ Â.

Proof. — According to Corollary 3.9, we know that emb.dim(Â) = d.
Let’s consider (u1, . . . , ud) ∈ M̂A a basis of the K-vector space M̂A/M̂A

2
.

Let u ∈ Â, we will show by induction that, for every i ∈ N, there exists an
homogeneous polynomial Pu,i ∈ K[x1, . . . , xd] of total degree i such that,
for every n ∈ N, we have

u−
n∑

i=1
Pu,i(u1, . . . , ud) ∈ M̂A

n+1
.
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For n = 0, we note that Â/M̂A = K, then if Pu,0 ∈ K denotes the image
of u through the morphism Â→ Â/M̂A, we have u− Pu,0 ∈MA.

If u ∈ M̂A, then, since the K-vector space M̂A/M̂A

2
is generated by

(u1, . . . , ud), there exists Pu,1 an homogeneous polynomial of total degree
1 such that u− Pu,1(u1, . . . , ud) ∈ M̂A

2
.

Now, let u ∈ M̂A

n+1
. We will prove that there exists an homogeneous

polynomial Pu,n+1 ∈ K[x1, . . . , xd] of total degree n + 1 such that u −
Pu,n+1 ∈ M̂A

n+2
. Since u ∈ M̂A

n+1
, there exists a finite set J , a family

αj ∈ Â and (bj,i)j∈J,1⩽i⩽n+1 a family of elements of M̂A such that

u =
∑
j∈J

αj

n+1∏
i=1

bj,i.

Without loss of generality, we can assume that, for every j ∈ J , we have
αj ̸∈ M̂A. Then there exists Pαj ,0 an homogeneous polynomial of degree
0 (i.e. an element of K) such that αj − Pαj ,0 ∈ M̂A. Furthermore, there
exists Pbj,i,1 ∈ K[x1, . . . , xd] homogeneous polynomials of total degree 1
such that, for every j ∈ J and 1 ⩽ i ⩽ n+ 1, we have

bj,i − Pbj,i,1(u1, . . . , ud) ∈ M̂A

2
.

We check that u and

Pu,n+1(u1, . . . , ud) :=
∑
j∈J

Pαj ,0

n+1∏
i=1

Pbj,i,1(u1, . . . , ud)

have the same image in M̂A

n+1
/M̂A

n+2
. To do so, it is sufficient to note

that ∑
j∈J

(αj − Pαj ,0)
n+1∏
i=1

(bj,i − Pbj,i,1(u1, . . . , ud)) = 0 mod M̂A

n+2

and that by developing the left member, we obtain

0 = u− Pu,n+1(u1, . . . , ud) mod M̂A

n+2
.

If u ∈ Â, this shows the existence, for every i ∈ N, of an homogeneous
polynomial Pu,i ∈ K[x1, . . . , xd] of total degree i such that, for every integer
n ∈ N, we have

u−
n∑

i=1
Pu,i(u1, . . . , ud) ∈ M̂A

n+1
.
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If we set P :=
∑

i⩾0 Pu,i, then P ∈ KJx1, . . . , xdK because all of the poly-
nomials Pu,i are homogeneous of total degree i. Furthermore

u− P (u1, . . . , ud) ∈
⋂

N∈N

M̂A

N
,

and the intersection
⋂

N∈N M̂A

N
is zero because⋂

N∈N

M̂A

N
⊂
⋂

N∈N

M̂N
A = {0}.

Finally this shows that there is a sujection of KJx1, . . . , xdK→ Â, defined
by xi 7→ ui. □

4. A property of noetherianity of the formal
neighborhoods of the differential arc scheme.

Let K be a field of characteristic zero. Let F ∈ K{y} be a differential
polynomial and X∂ = Spec(K{y}/[F ]) be the associated differential arc
scheme.

When we consider Spec(K{y}/[F ]) we forget the differential structure
on the K-algebra K{y}/[F ]. Moreover, a K-point of X∂ is the data of a
morphism of K-algebras γ : K{y}/[F ]→ K. This data also corresponds to
an unique morphism of differential K-algebras,

γ : K{y}/[F ] −→ KJT K

G 7−→
∑
i⩾0

γ(∆i(G))
i! T i

where KJT K is considered as a differential K-algebra endowed with the
derivation ∂T .

More generally, if A is a K-algebra, we have a bijection

HomAlgK
(K{y}/[F ], A) = HomAlgdiffK

(K{y}/[F ], AJT K)

functorial in A. In the following, when we are going to consider a solution
γ(T ) ∈ KJT K of the differential polynomial F . Note that it will be the same
as considering a K-point γ of Spec(K{y}/[F ]).

Remark 4.1. — If F ∈ K{y} is a differential polynomial and γ(T ) =∑
i⩾0

ai

i! T
i ∈ KJT K a solution of F , then the morphism of K-algebras

γ : K{y}/[F ]→ K associated to γ(T ) is defined by
γ : K{y}/[F ] −→ K

yi 7−→ ai.
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Note that Ker(γ) is, in general, not a differential ideal of K{y}/[F ]. In
particular the stalk of X∂ at γ, denoted by OX∂ ,γ , will refer to the local
ring (K{y}/[F ])Ker(γ). However, if p refers to the ideal γ(T )−1(⟨T ⟩), the
stalk of X∂ at γ this is the same as considering the ring (K{y}/[F ])p.

We denote by X̂∂
γ the formal neighborhood of γ, which is defined as

Spf(ÔX∂ ,γ).

Definition 4.2. — Let K be a field of characteristic zero. Let F ∈
K{y} a differential polynomial of order n. Let γ(T ) ∈ KJT K be a solution
of the ODE F = 0. The solution γ(T ) is said to be a non-degenerated arc
if the separant of F does not vanish at γ(T ), i.e if SF (γ(T )) ̸= 0.

We recall that SF is the differential polynomial defined as ∂F/∂yn, where
n is the order of F (i.e the highest derivative appearing in the writing of F ).

The main point of this chapter is to prove the following result:

Theorem 4.3. — Let K be a field of characteristic zero. Let F ∈ K{y}
a differential polynomial of order n. Let γ(T ) ∈ KJT K be a solution of the
ODE F = 0 which is a non-degenerated arc. Then the formal neighborhood
X̂∂

γ is Noetherian and its embedding dimension is less or equal to n.

Remark 4.4. — If γ(T ) is a solution of F = 0. The condition “is a non-
degenerated arc” can be easily replaced by “there exists i ∈ [0, n], such that
∂yiF (γ(T )) ̸= 0”.

If, for every integer i ∈ [0, n], we have ∂yi
F (γ(T )) = 0, then the em-

bedding dimension is infinite since the linearization (see Definition 4.14) is
zero.

The proof will follow the strategy of [5, Theorem 1] and [3], by using
the functor of point of theses objects. Our differential problem has the
particularity that it can be “linearized” (see Section 4.2), which will reduce
the noetherianity problem to a question of linear algebra.

The property of noetherianity can be compared to the statement in [5]
and [3]. Even if in the algebraic framework the formal neighborhood is, in
general, non Noetherian, in the differential case the objects can be under-
stood as generalization of arc spaces L∞(X) where X is 0-dimensional.
And when X is 0-dimensional, formal neighborhood are Noetherian.

4.1. Deformation functor

In the Section 2 we have developed the notion of deformation in the alge-
braic framework. In this section, we are going to introduce the differential
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deformation functor on the model of the construction of the Section 2. We
will also establish similar properties.

Let K be a field of characteristic zero. Recall that a local K-algebra
(A,MA) is called quasi-Artinian if its residue field is K-isomorphic to K

and if its maximal ideal is nilpotent. Let F ∈ K{y}. We denote X∂ =
Spec(K{y}/[F ]). Let γ ∈ X∂(K).

Definition 4.5. — The functor of differential deformations of X∂ at γ
is the functor

A 7−→ Defγ(X∂ , A) :=
{
γA ∈ X∂(A) | γA(T )− γ(T ) ∈MAJT K

}
for every quasi-Artinian K-algebra A. Every element γA ∈ Defγ(X∂ , A) is
called differential deformation of γ.

Notation 4.6. — If X∂ = Spec(K{y}/[F ]), we will denote sometimes
Defγ(X∂ , A) = Defγ([F ], A). And to study the deformations of X∂

red =
Spec(K{y}/{F}), we will denote

Defγ({F}, A) :=
{
γA ∈ X∂

red(A) | γA(T )− γ(T ) ∈MAJT K
}
.

As in the algebraic framework, we have the following result:

Proposition 4.7. — Let K be a field of characteristic zero. Let F ∈
K{y} a non zero polynomial and γ ∈ X∂(K) a solution of the associated
ODE. For every quasi-Artinian K-algebra A we have a natural bijection

HomAlgLCk
(ÔX∂ ,γ , A) ∼= Defγ(X∂ , A).

In other words, the completion of the local ring of X∂ at γ represent the
functor of the differential deformations of γ.

Proof. — This proposition follows from Proposition 2.12. □

Remark 4.8. — By combining this proposition with Proposition 3.3 and
Remark 2.8, note that the study of the deformations for A = K[ϵ]/(ϵ2) is
equivalent to the study of the tangent space of X∂ .

Example 4.9. — Let X∂ = Spec(K{y}/[y1 − y0]). In other words X∂ is
defined by the differential equation y′ = y. A solution of this equation is
of the form γ(T ) = CeT with C ∈ K. Such a solution corresponds to a K-
point of X∂ . Let C ∈ K and γ(T ) = CeT be a solution. We will compute
Defγ([y1 − y0], A).

Defγ([y1 − y0], A) :=
{
γA ∈ X∂(A) | γA(T )− γ(T ) ∈MAJT K

}
.
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Let’s denote γA(T ) = γ(T ) +
∑

i⩾0 aiT
i. By definition, γA(T ) must verify

the equation γA(T )′ − γA(T ) = 0. We deduce that

∀i ⩾ 0, (i+ 1)ai+1 − ai = 0.

In particular, the data of a0 ∈ MA sets all the ai. We deduce that there
is a bijection between Defγ([y1 − y0], A) and MA which is functional in
A, furthermore there is also a functorial bijection in A between MA and
HomAlgLCk

(KJT K, A), and hence, by Yoneda’s Lemma, we have that ÔX∂ ,γ

is isomorphic to KJT K in the category of AlgLCk.
Note however that this is a toy example since K{y}/[y1 − y0] is K-

isomorphic to K[y0]. In particular X∂ = Spec(K[y0]) is a line, which gives
an example of easily computed differential arc scheme of finite dimension.

Let F ∈ K{y} be an irreducible polynomial. We have seen (Proposi-
tion 1.3) that {F} = ({F} : SF ) ∩ {F, SF }.

Lemma 4.10. — Let F ∈ K{y} be an irreducible polynomial, then

{F} ⊂ ([F ] : S∞
F ) ⊂ ({F} : SF ).

In particular, we deduce that ([F ] : S∞
F ) = ({F} : SF ).

Proof. — The inclusion ([F ] : S∞
F ) ⊂ ({F} : SF ) is clear.

For the inclusion {F} ⊂ ([F ] : S∞
F ) we have that, for every element

G ∈ K{y}, there exists an element G1 ∈ K{y} of order less or equal that
the order of F and m ∈ N such that Sm

F G = G1 mod [F ] (for this result
see [10, Chapter I, Section 6 Reduction]).

If G ∈ {F}, then the element G1 is also in {F}. Hence there exists n ∈ N
such that Gn

1 ∈ [F ] (since Q ⊂ K, see [7, Lemma 1.8]). Since the order
of G1 is less than or equal to the order of F , then F divides Gn

1 (see [7,
Lemma 7.8]). Finally, since F is assumed to be irreducible, then F divides
G1 and hence G1 ∈ [F ]. Thus Sm

F G ∈ [F ]. □

Proposition 4.11. — Let F ∈ K{y} be a irreducible differential poly-
nomial. Let γ ∈ X∂(K) be a solution of the associated ODE, which is a
non-degenerated arc. Then γ(T ) is a solution of ([F ] : S∞

F ). Furthermore,
if A is a quasi-Artinian ring, then

Defγ([F ], A) = Defγ(([F ] : S∞
F ), A) = Defγ({F}, A).

Proof. — The following inclusion are clear (thanks to Lemma 4.10):

Defγ(([F ] : S∞
F ), A) ⊂ Defγ({F}, A) ⊂ Defγ([F ], A).

Let’s consider γA ∈ Defγ([F ], A). Let G ∈ ([F ] : S∞
F ), we will prove that

G(γ(T ) + γA(T )) = 0. There exists m ∈ N such that Sm
F G ∈ [F ]. In
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particular Sm
F (γ(T ) + γA(T ))G(γ(T ) + γA(T )) = 0. Since Sm

F (γ(T )) ̸= 0
then Sm

F (γ(T ) + γA(T )) is not a zero divisor in A (since it is non zero
modulo MA), hence G(γ(T ) + γA(T )) = 0.

We obtain the equalities

Defγ([F ], A) = Defγ(([F ] : S∞
F ), A). □

Example 4.12. — Let K be a field of characteristic zero. Let F = (y2 −
y1)2 − (y1 − y0) ∈ K{y} be a differential polynomial. Its separant is SF =
∂F/∂y2 = 2(y2−y1). In particular {F, SF } = {y1−y0}. Thanks to the low
power theorem, it can be checked that A = y1 − y0 is a singular essential
component of F . Since ∆(F ) = (y2−y1)(2(y3−y2)−1), then 2(y3−y2)−1 ∈
([F ] : S∞

F ). However γ(T ) = eT is a solution of [F ] but not a solution of
([F ] : S∞

F ), so Proposition 4.11 does not apply if the solution canceals the
separant.

Note that in general, similarly to the algebraic framework, the differential
deformations of a differential polynomial do not correspond to those of the
associated reduced differential polynomial: the functors Defγ([F ], A) and
Defγ({F}, A) do not usually coincide. If we consider, for example, F = xm

2
and A a quasi-Artinian K-algebra which nilpotency index of its maximal
ideal is m, then, for every a ∈MA, the deformation γA(T ) = T + aT 2 is in
DefT ([xm

2 ], A) but not in DefT ({xm
2 }, A) since x2 does not vanish at γA(T ).

Next proposition will prove that in the neighborhood of a solution that
makes the separant invertible, the deformation space is described as a for-
mal disk. Thus, in this case, the formal neighborhood in well described.

Proposition 4.13. — Let K be a field of characteristic zero. Let F ∈
K{y} be a differential polynomial of order n. Let γ(T ) ∈ KJT K a solution of
F such that SF (γ(T )) is a unit in KJT K (or equivalently that SF (γ) ̸= 0).
Let X∂ = Spec(K{y}/[F ]) Then the neighborhood OX∂ ,γ is a Noetherian
ring and the formal neighborhood ÔX∂ ,γ is a formal disk of dimension n.

Proof. — Let’s denote γ(T ) =
∑

i⩾0 ai/i! T i. We consider the associated
morphism

γ : K{y}/[F ] −→ K

yi 7−→ ai.

Since SF (γ(T )) is invertible, then γ(SF ) is non zero. In particular, SF /∈
Ker(γ).
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The Leibiz’s formula applied to F in the differential K-algebra (K{y},∆)
produces the following formula:

∆(F ) =
n∑

i=0
∂yi

(F )yi+1.

Consequently, since ∂ynF = SF , the differential ideal [F ] seen in the local-
ization K{y}Ker(γ) contains the element

yn+1 =
n−1∑
i=0

∂yi
(F )
SF

yi+1

and all of its derivatives. Let’s denote

γ̃ : K[y0, . . . , yn]/⟨F (y0, . . . , yn)⟩ −→ K

yi 7−→ ai.

The result is an isomorphism of K-algebras

OX∂ ,γ
∼= (K[y0, . . . , yn]/⟨F ⟩)Ker(γ̃).

Now since (a0, . . . , an) ∈ Kn is a smooth point of the variety
K[y0, . . . , yn]/⟨F ⟩ (since ∂yn(F )(γ(T )) ̸= 0), then ÔX∂ ,γ = KJT1, . . . , TnK.

□

4.2. The linearized differential equation

Let F ∈ K{y} be a differential polynomial of order n ⩾ 1, γ(T ) ∈ KJT K
a solution of F and X∂ = Spec(K{y}/[F ]). Let K[ϵ] = K[X]/(X2), where
the symbol ϵ refer to the class of the element X in the quotient. Note that
there is an obvious isomorphism of K-algebras K[ϵ]JT K ∼= KJT K[ϵ]. As a
result, any deformation of γ in K[ϵ], i.e. every solution γ(T ) + γϵ(T ) ∈
K[ϵ]JT K of F , can uniquely be rewriten as an element of KJT K[ϵ]. More
precisely

Defγ(X∂ ,K[ϵ])) := {γϵ(T ) ∈ (ϵ)JT K | F (γ(T ) + γϵ(T )) = 0}
= {η(T ) ∈ KJT K | F (γ(T ) + ϵη(T )) = 0} .

Let γ(T ) + ϵη(T ) ∈ Defγ(X,K[ϵ])). In the sequel we will denote by η(i)

the i-th derivative of η with respect to T , which can be also denoted ∂i
T η.
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By the Taylor’s formula and the property ϵ2 = 0 in the ring K[ϵ], we deduce

(4.1)

F (γ(T ) + ϵη(T )) = F (γ(T )) + ϵ

(
n∑

i=0
η(i)(T )(∂yi

F )(γ(T ))
)

= ϵ

(
n∑

i=0
η(i)(T )(∂yi

F )(γ(T ))
)
.

Thanks to the formula (4.1), we deduce that F (γ(T )+ ϵη(T )) = 0 is equiv-
alent to the condition

(4.2)
n∑

i=0
η(i)(T )(∂yi

F )(γ(T )) = 0.

Definition 4.14. — Let K be a field of characteristic zero. Let F ∈
K{y} be a differential polynomial of order n ⩾ 1, γ(T ) ∈ KJT K a solution of
F . We call linearized differential equation of F at γ(T ) the linear differential
polynomial

∑n
i=0(∂yi

F (γ(T )))yi ∈ K{y}. We will denote it L(F, γ).

Note that the linearized differential equation will not have constant co-
efficients in general.

Proposition 4.15. — The embedding dimension of the completion of
the local ring of X∂ at γ is finite if and only if the dimension of the K-vector
space

Sol(L(F, γ))(KJT K) = {η ∈ KJT K | L(F, γ)(η) = 0}
is finite. In this case, these two dimension coincide.

Proof. — According to the above considerations, this proposition is a
consequence of Proposition 3.4 applied to A = ̂K{y}/[F ]γ . □

4.3. Proof of Theorem 4.3

The key argument of the proof of Theorem 4.3 lies in the computation
of this embedding dimension. By using Proposition 4.15 and the following
lemma due to Ritt, we will be able to provide an upper bound of this
dimension, which will be sufficient for our purpose.

Definition 4.16. — An set of elements η1, . . . , ηs ∈ KJT K is said lin-
early dependent if there exists elements c1, . . . , cs ∈ K, not all zero, such
that

s∑
i=1

ciηi = 0.
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Lemma 4.17. — An set of elements η1, . . . , ηs ∈ KJT K is linearly de-
pendent if and only if the Wronskian∣∣∣∣∣∣∣∣∣

η1 · · · ηs

η′
1 · · · η′

s

. . . · · · . . .

η
(s−1)
1 · · · η

(s−1)
s

∣∣∣∣∣∣∣∣∣ = 0.

Proof. — See [10, Chapter 2, The resolvant, p. 34]. □

Corollary 4.18. — Let K be a field of characteristic zero. Let F ∈
K{y} be a differential polynomial of order n ⩾ 1, γ(T ) ∈ KJT K a solution
of F , which is a non-degenerated arc, and X∂ = Spec(K{y}/[F ]). Then,
we have

emb.dim(ÔX∂ ,γ) ⩽ n.

For the definition of the embedding dimension and its properties see
Section 3.

Proof. — For simplicity, we will denote (∂yif)(γ(T )) = ai(T ) and

(4.3)
n∑

i=0
ai(T )yi = 0

the linearized equation L(f, γ). Let η1(T ), . . . , ηs(T ) be an independent
family of solutions in Defγ(X∂ ,K[ϵ]/(ϵ2)), i.e. a independent familly of
solutions in KJT K of the differential polynomial (4.3). In particular the
ηi(T ) are linearly independent. Thanks to Lemma 4.17, we deduce that the
Wronskian ∣∣∣∣∣∣∣∣∣

η1 · · · ηs

η′
1 · · · η′

s

. . . · · · . . .

η
(s−1)
1 · · · η

(s−1)
s

∣∣∣∣∣∣∣∣∣
must not be equal to zero. Assume that s > n, then the n-th row of the
Wronskian is equal to (η(n)

1 · · · η(n)
s ). We can multiply the Wronskian by

an(T ) which is non zero (since it is the separant of F evaluated γ(T )),
and thus the row an(T )y(n)

1 · · · an(T )y(n)
s is a linear combination of the

other’s. Thus the Wronskian is zero, which is the desired contradiction. So
s ⩽ n. □

The statement of Theorem 4.3 is then directly deduced from Corol-
lary 4.18 and Lemma 3.7.
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5. Differential arc scheme which embedding dimension is
at most 1

Let K be a field of characteritic zero. In this chapter we will clarify Theo-
rem 4.3 in the particular case of a differential polynomial which embedding
dimension at most 1. In particular, this covers the case of differential poly-
nomials of order 1.

In this particular case, we will show the following result:

Theorem 5.1. — Let K be a field of characteritic zero. Let F :=
F (y, . . . , y(n)) ∈ K{y} be an irreducible differential polynomial and X∂ :=
Spec(K{y}/[F ]). Let γ(T ) ∈ KJT K be a non constant solution of the equa-
tion F = 0. Assume that the embedding dimension of X∂ at γ is at most 1.
Then the formal neighborhood X̂∂

γ is isomorphic, as formal K-scheme, to
a formal disk DK = Spf(KJT K) of dimension 1.

According to Theorem 4.3, if F is a differential equation of order 1 and
γ(T ) a non-constant solution of F = 0, then the embedding dimension of
X∂ at γ is exactly 1. We deduce the following corollary:

Corollary 5.2. — Let K be a field of characteritic zero. Let F :=
F (y0, y1) ∈ K{y} be an irreducible differential polynomial and X∂ :=
Spec(K{y}/[F ]). Let γ(T ) ∈ KJT K be a non constant solution of the equa-
tion F = 0. Then the formal neighborhood X̂∂

γ is isomorphic, as formal
K-scheme, to a formal disk D = Spf(KJT K) of dimension 1.

Remark 5.3. — This corollary is also a result of Bourqui & Sebag in [1,
Theorem 1.2].

5.1. Preliminary propositions

Proposition 5.4. — Let K be a field of characteritic zero. Let F ∈
K{y} be an irreducible polynomial of order n and X∂ := Spec(K{y}/[F ]).
Let γ(T ) ∈ KJT K be a non constant solution of the equation F = 0. Let
A be an object of the category AlgLCK of the local K-algebras which are
completion of local K-algebras. Then there is a map

ιA : HomAlgLCK
(KJT K, A) ↪−→ HomAlgLCK

(ÔX∂ ,γ , A)

injective and functorial in A.
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Proof. — We know from Proposition 2.12 that

HomAlgLCK
(ÔX∂ ,γ , A) = {γA(T ) ∈MAJT K | F (γ(T ) + γA(T )) = 0}.

But, for every a ∈ MA, we have that γ(T + a) is solution of F , since F
is autonomous, i.e has no dependency in T . In particular, if γ(T ) is not
constant, we get a map

MA −→ {γA(T ) ∈MAJT ] | f(γ(T ) + γA(T )) = 0}
a 7−→ γ(T + a)− γ(T )

injective and functorial inA. Yet we have a functorial bijection in A between
MA and HomAlgLCK

(KJT K, A). This gives the required result. □

Remark 5.5. — In particular, the statement also shows that the embed-
ding dimension of X∂ at a non-constant γ cannot be 0 (by considering
A = K[ϵ]/(ϵ)2).

Lemma 5.6. — Let C be a category and B and C be objects of this
category. Assume that, for every object A of the category C, we have a
map

ιA : HomC(B,A) ↪−→ HomC(C,A)

injective and functorial in A. Then, there exists an epimorphism φ : C → B.

Proof. — Let’s take A = B, and denote φ = ιB(id). We have to check
that φ : C → B is an epimorphism.

Let D a object of the category C and g1, g2 ∈ HomC(B,D) such that
g1 ◦φ = g2 ◦φ. The functoriality of the inclusion in A gives us the following
commutative diagram (for g1):

HomC(B,B) ιB //

g1◦−
��

HomC(C,B)

g1◦−
��

HomC(B,D) ιD // HomC(C,D)

We consider the image of id ∈ HomC(B,B) in the above diagram and we
deduce that g1 ◦ ιB(id) = ιD(g1), or, in other words, that g1 ◦ φ = ιD(g1).
But g1 ◦ φ = g2 ◦ φ, so ιD(g1) = ιD(g2). Since ιD is injective, we deduce
that g1 = g2, so φ is an epimorphism. □

Proposition 5.7. — Let A be an object of the category AlgLCK . Let
d be a non negative integer. Assume that there exists an epimorphism φ of
the category AlgLCK from A to KJT1, . . . , TdK. Then φ is surjective.
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Proof. — Assume that the morphism φ : A → KJT1, . . . , TdK is not sur-
jective. Then, there exists an integer i0 ∈ {1, . . . , d} such that, for every
a ∈ A, we have φ(a) ̸= Ti0 . We denote I the ideal generated by φ(MA)
in KJT1, . . . , TdK and m the maximal ideal of KJT1, . . . , TdK. Then I ⊊ m

because Ti0 ̸∈ I and I ⊂ m.
We consider the K-algebra B = KJT1, . . . , TdK/I. It’s a local K-algebra

which is complete ( in particular B is the completion of B for the pre-adic
topology defined by its maximal ideal). We consider π : KJT1, . . . , TdK →
KJT1, . . . , TdK/I the quotient morphism. This morphism is local and con-
tinuous. We also consider

evT =0 : KJT1, . . . , TdK −→ KJT1, . . . , TdK/I

where evT =0 is the morphism of K-algebra which sends Ti to 0, for every
integer i ∈ {1, . . . , d}. It is also a local and continuous morphism of K-
algebras.

Let a ∈ A, then φ(a) = P (T1, . . . , Td) for a certain polynomial P . We de-
note a0 = P (0, . . . , 0) ∈ K. Then φ(a−a0) = P (T1, . . . , Td)−P (0, . . . , 0) ∈
m. Since φ is a local morphism, this implies that a − a0 ∈ MA and hence
that φ(a− a0) ∈ I. Hence π ◦ φ(a− a0) = 0 et evT =0 ◦ φ(a− a0) = 0. We
can see that π ◦ φ = evT =0 ◦ φ.

Since φ is an epimorphism, we should have π = evT =0, which is not the
case because I ⊊ m. So φ is surjective. □

The following proposition is an immediate consequence of the proposi-
tions and Lemmas 5.4, 5.6 and 5.7.

Proposition 5.8. — Let K be a field of characteristic zero. Let F ∈
K{y} be an irreducible polynomial of order n and X∂ := Spec(K{y}/[F ]).
Let γ(T ) ∈ KJT K be a non-constant solution of the equation F = 0. Hence,
there exists a surjective morphism of K-algebras OX∂ ,γ → KJT K. In other
words, there exists a closed immersion DK → Spf(ÔX,γ).

Lemma 5.9. — Let R be a Noetherian ring and ϕ : R→ R be a surjec-
tive morphism. Then ϕ is bijective.

Remark 5.10. — Let d > 0 be a non negative integer. We will use the
previous lemma only in the case where R = KJT1, . . . , TdK. In particular if
there exists a surjective morphism of local K-algebras ϕ : KJT1, . . . , TdK→
KJT1, . . . , TdK. Then ϕ is a bijection.

Proof. — The statement of this lemma is well-known, we remind here
the proof.
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The kernels of the iterates of ϕ form an accending chain of ideals of R

Ker(ϕ) ⊂ Ker(ϕ2) ⊂ · · · ⊂ Ker(ϕn) ⊂ · · ·

which becomes stable since R is Noetherian. In particular, there exists
m ∈ N such that Ker(ϕm) = Ker(ϕm+1). Let x ∈ Ker(ϕ). Since ϕ is
surjective, then so is ϕm, there exists y ∈ R such that x = ϕm(y). Hence
0 = ϕ(x) = ϕm+1(y). In particular y ∈ Ker(ϕm+1) = Ker(ϕm). So x =
ϕ(y) = 0. □

5.2. Proof of Theorem 5.1

We now have the elements to prove Theorem 5.1, we only need the fol-
lowing result:

Theorem 5.11. — Let K be a field of characteristic zero. Let F ∈
K{y} be an irreducible differential polynomial of order n and X∂ :=
Spec(K{y}/[F ]). Let γ(T ) ∈ KJT K be a non-constant solution of the equa-
tion F = 0. Let A be an object of the category AlgLCK . Assume that the
embedding dimension of X∂ at γ is at most d and that there exists a map

ιA : HomAlgLCK
(KJT1, . . . , TdK, A) ↪−→ HomAlgLCK

(ÔX∂ ,γ , A)

injective and functorial in A.
Then the formal neighborhood X̂∂

γ is isomorphic, as a formal K-scheme,
to a formal disk D = Spf(KJT1, . . . , TdK) of dimension d.

Proof. — From ιA, we deduce from Lemma 5.6 and Proposition 5.7 that
there exists a surjective morphism of local K-algebras

φ : ÔX∂ ,γ −→ KJT1, . . . , TdK.

Furthermore, as an upper bound of the embedding dimension is d, there ex-
ists a surjective morphsim π : KJT1, . . . , TdK→ ÔX∂ ,γ (according to Propo-
sition 3.12). In particular, thanks to Lemma 5.9, we deduce that φ ◦ π is
bijective. We deduce that π et φ are bijective, and hence that the formal
neighborhood of X̂∂

γ is isomorphic, as formal K-scheme, to a formal disk
Dd

K = Spf(KJT1, . . . , TdK) of dimension d. □

Thanks to Theorem 5.11 we deduce Theorem 5.1, using Proposition 5.4.
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5.3. Remark

Let F ∈ K{y} a differential polynomial of order 2. Assume that there
is no term in y0 in F . Then F ∈ K{y} is a differential polynomial of
order 2 but without term in y0. Let’s define G := F (0, y0, y1). Let γ(T ) be
a solution of F which is a non-degenerated arc, then γ′(T ) is a solution of
G such that SG(γ(T )) ̸= 0. Let A be an object of AlgLCK .

Def([F ], A) = {γA(T ) ∈MAJT K | f(γ(T ) + γA(T )) = 0}
= {γA(T ) ∈MAJT K | G(γ′(T ) + γ′

A(T )) = 0}
= MA × {γA(T ) ∈MAJT K | G(γ′(T ) + γA(T )) = 0}.

SinceG is of order 1, we have seen in Theorem 5.1 that the ring ̂(K{y}/[G])γ′

is isomorphic to KJT K in the category of AlgLCK . Hence

{γA(T ) ∈MAJT K | G(γ′(T ) + γA(T )) = 0}

is naturally in bijection with MA, and so the ring ̂(K{y}/[F ])γ is isomor-
phic to KJT1, T2K in the category AlgLCK .

We can generalize the previous considerations and make the following
remark:

Remark 5.12. — Let F ∈ K{y} be a differential polynomial of order n
where the only terms that appears effectively in it are yn−1 and yn. Let
γ(T ) be a solution of F which is a non-degenerated arc. Hence the ring

̂(K{y}/[F ])γ is isomorphic to KJT1, T2, . . . , TnK in the category AlgLCK .

6. Differential arc scheme of differential equations of
order 2

In this chapter, we will link Theorem 4.3 and the notion of essential
singularity introduced in Section 1.1 for specific differential polynomials of
order 2.

Definition 6.1. — Let F ∈ K{y} of order n. We say that F = 0 is a
binomial equation if there exists two monomials M,N ∈ K{y} of order n
such that F = M −N .

Specifically, in the case of binomial differential polynomials of order 2,
we will prove the following theorem:

ANNALES DE L’INSTITUT FOURIER



DEFORMATIONS OF ADE’S SOLUTIONS 35

Theorem 6.2. — Let K be a field of characteristic zero. Let F ∈ K{y}
be an irreducible binomial differential polynomial of order 2. Let d ⩾ 2 be
an integer such that γ(T ) = T d is a solution of the differential polynomial
F and X∂ = Spec(K{y}/[F ]). If the perfect differential ideal {F} has a
essential singular component, then emb.dim(ÔX∂ ,γ) = 1.

6.1. Singular solutions of binomial ordinary differential
polynomials of order 2 and tangent space

Assume that F ∈ K{y} is an irreducible binomial differential polynomial
of order 2. Such binomial equations are of one of the three following forms:

ya
0 − αyb

1y
c
2

yb
1 − αya

0y
c
2

yc
2 − αya

0y
b
2

with a, b ∈ N, c ∈ N× and α ∈ K×. Note that γ(T ) = T d is a non-
degenerated arc. Moreover, since γ(T ) = T d is a solution of F = 0 the
coefficient α is forced to be in Q+.

Assume that there exists γ(T ) = T d a solution of the differential equation
F (y0, y1, y2) = 0. The general idea is to show that, in this particular case,
we can calculate independently, and then link, the fact that the perfect
differential ideal {F} has a essential singular solution and the embedding
dimension of the completion of the local ring of the differential arc scheme
at γ.

Following the strategy of Section 4, we consider the linear equation as-
sociated with F given by :

(6.1) L(F, γ) :=
2∑

j=0
∂yj (F )(γ(T ))yj = 0.

Proposition 4.15 allows us to conclude that the embedding dimension of F
at γ is given by the dimension of the solution space of the linearization.

The relation ∂T (F (γ(T ), γ′(T ), γ′′(T )) = 0 implies that γ′(T )/(d− 1) =
T d−1 is a solution L(F, γ).

We want to find a criterion to understand when the dimension of the
K-vector space Sol(L(F, γ))(KJT K) is 1 or 2.

Let us make some preliminary observations. For every j ∈ {0, 1, 2}, there
exists mj ∈ N and βj ∈ K such that ∂yj

(F )(γ(T )) = βjT
mj . Thus, since

T d−1 is a solution of L(F, γ) = 0 we know that

(6.2) β0T
m0T d−1 + (d− 1)β1T

m1T d−2 + β2(d− 1)(d− 2)Tm2T d−3 = 0.
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For equality (6.2) to be true, it is necessary that

m0 + d− 1 = m1 + d− 2 = m2 + d− 3,

which is equivalent to have m0 + 2 = m1 + 1 = m2. Thus, if F = 0 is
binomial, to compute the dimension of the solutions’ space in KJT K of the
equation (6.1) is the same as to compute the dimension of the solutions’
space in KJT K of the equation

(6.3) a2T
2y2 + a1Ty1 + a0y0 = 0

(with ai ∈ K and a2 ̸= 0). We recognize here Euler’s equation (or Cauchy–
Euler’s equation), whose resolution is well-known. The solutions are pa-
rameterized by the associated characteristic equation which is, here, equal
to:

(6.4) a2x(x− 1) + a1x+ a0 = a2

(
x2 +

(
a1

a2
− 1
)
x+ a0

a2

)
= 0.

Since γ(T ) = T d is assumed to be a solution of F , then γ′(T ) is a solution
of the differential polynomial (6.1). Then x = d− 1 is solution of (6.4) and
we want to find the second solution, that we denote by s and which can a
priori be in C. Note that

(6.5)
1− a1

a2
= d− 1 + s

a0

a2
= (d− 1)s.

Remark 6.3. — If d = 2 we have to be a little bit more careful with the
previous arguments, but with small adjustments everything works, and we
actually get an Euler equation with a0 = 0.

The next step in the strategy is to study each of the three cases.

The case yc
2 = αyb

1y
a
0

Given a, b ∈ N and c ∈ N×, we consider the differential polynomial
yc

2 − αyb
1y

a
0 ∈ K{y}, with α ∈ Q+. Assume γ(T ) = T d, with d ⩾ 3, is a

solution. In particular this implies

(6.6) (d− 2)c = b(d− 1) + ad.

Since T d is a solution of yc
2 = αyb

1y
a
0 , we have:

∂y2(F )(γ(T )) = c(d(d− 1))c−1T (d−2)(c−1)

∂y1(F )(γ(T )) = −αbdb−1T (d−1)(b−1)+da

∂y0(F )(γ(T )) = −αadbT (d−1)b+d(a−1).
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Thus a2 = c(d(d − 1))c−1, a1 = −αbdb−1 et a0 = −αadb hence, we know
that

α = (d(d− 1))c

db
.

So α ⩾ 0. Furthermore

(d− 1)s = −αadb

c(d(d− 1))c−1 .

In particular
s = −ad

c
.

If a = 0, the equation can be written yc
2 = αyb

1, so s = 0. In this case,
we note thanks to Theorem 1.9 that the differential polynomial has an
essential singular solution if and only if b ⩾ c, but the condition (6.6), here
(d − 2)c = b(d − 1), is incompatible. Hence the embedding dimension is
equal to 2, and there is no essential singular solution.

If a ̸= 0, we deduce that s < 0 and the embedding dimension is equal
to 1. In this case, the only possible essential singular component is {y1}
and it is a component if and only if b < c. But, if b ⩾ c, the equality
(d− 2)c = b(d− 1) + ad is not possible, so the {F} always has an essential
singular component, and Theorem 6.2 is true in this case.

The case ya
0 − αyb

1y
c
2

Given a, b ∈ N and c ∈ N×, we consider the differential polynomial
ya

0 − αyb
1y

c
2 ∈ K{y}, with α ∈ Q+. Assume that γ(T ) = T d, with d ⩾ 3, is

a solution. In particular this implies:

da = b(d− 1) + c(d− 2)

∂y2(F )(γ(T )) = −αc(d(d− 1))c−1dbT (d−2)(c−1)+(d−1)b

∂y1(F )(γ(T )) = −αbdb−1T (d−1)(b−1)+(d−2)c

∂y0(F )(γ(T )) = aT d(a−1).

Thus a2 = −αc(d(d − 1))c−1db, a1 = −αbdb−1 and a0 = a. Since T d is a
solution of ya

0 = αyb
1y

c
2, we know that

α = 1
db(d(d− 1))c

.

Hence α ⩾ 0. Furthermore

(d− 1)s = a

−αc(d(d− 1))c−1db
.

In particular
s = −ad

c
.
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If a = 0, the equation becomes 1 = αyb
1y

c
2 and s = 0. Hence, the low

power theorem ensures that the perfect differential ideal {F} has no essen-
tial singular component. In this case the embedding dimension is equal to
2 ans {F} has no essential singular solution.

If a ̸= 0, we have s < 0 and the embedding dimension of the equation is
1. The only component possible for the singular solution is {y0}, and that’s
the case if and only if a < b + c. If we assume that a ⩾ b + c, we deduce,
thanks to the equation da = b(d− 1) + c(d− 2), that −b− 2c ⩾ 0 which is
absurd. Hence {y0} is always an irreducible component.

The case yb
1 − αya

0y
c
2

This case is the most diverse. Given a, b ∈ N and c ∈ N×, we consider
the differential polynomial yb

1−αya
0y

c
2 ∈ K{y}, with α ∈ Q+. Assume that

γ(T ) = T d, with d ⩾ 3, is a solution. In particular, this implies:

(d− 1)b = ad+ (d− 2)c

∂y2(F )(γ(T )) = −αc(d(d− 1))c−1T (d−2)(c−1)+ad

∂y1(F )(γ(T )) = bdb−1T (d−1)(b−1)

∂y0(F )(γ(T )) = −αa(d(d− 1))cT (d−2)c+d(a−1).

Hence a2 = −αc(d(d− 1))c−1, a1 = bdb−1 and a0 = −αa(d(d− 1))c. Since
T d is a solution of yb

1 = αya
0y

c
2, we know that

α = db

(d(d− 1))c
.

Thus α ⩾ 0. Furthermomre (d− 1)s ⩾ 0 and

(d− 1)s = αa(d(d− 1))c

αc(d(d− 1))c−1 = ad(d− 1)
c

.

Hence
s = ad

c
.

We will show that Theorem 4.3 is still true in this case.

Lemma 6.4. — Let (a, b, c, d) ∈ N2 be integers. Assume that d ⩾ 2 and
that b < c. Assume, furthermore, that the equality (d− 1)b = ad+ (d− 2)c
holds. Then ad/c is not an integer.

Proof. — The integer d verifies the equality (d − 1)b = ad + (d − 2)c,
which can be written as

(d− 1)(b− c) = ad− c.
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If we assume that b < c then ad− c < 0 because d− 1 ⩾ 1. Thus ad/c < 1,
so ad/c is not an integer. □

If the perfect differential ideal {F} has an essential singular component,
then it is {y1}. And {y1} is an essential singular component of {F} if and
only if b < c according to Theorem 1.9.

Proposition 6.5. — Let F = yb
1 − αya

0y
c
2 and let d ⩾ 2 verifying the

equation (d − 1)b = ad + (d − 2)c. Assume that γ(T ) = T d is a solution
of F . If {y1} is a component of F then the embedding dimension of the
completion of the local ring of the differential arc scheme associated to F
to γ(T ) = T d is 1.

Proof. — If {y1} is an irreducible component of {F} then, according to
the low power theorem (see Theorem 1.9), we have that b < c and thanks
to Lemma 6.4 we have that ad/c is not an integer. Hence the embedding
dimension is equal to 1. □

Remark 6.6. — In general, the converse of Theorem 6.2 is false. In other
words, there exists binomial differential polynomials whose embedding di-
mension is 1, but that have no essential singular component. The following
examples highlight this observation:

(1) F = y5
1 − 3/16y2

0y
4
2 and γ(T ) = T 3, then ad/c = 3/2,

(2) F = y7
1 − 32/25y3

0y
5
2 and γ(T ) = T 3 then ad/c = 9/5,

(3) F = y8
1 − 25y4

0y
3
2 and γ(T ) = T 2 then ad/c = 8/3,

(4) F = y10
1 − 26y5

0y
4
2 and γ(T ) = T 2 then ad/c = 5/2.

Remark 6.7. — The following code can be used to compute examples of
equations for which the embedding dimension is 1 but such that F has no
essential singular component.
#Compute the l i s t o f [ a , b , c , d , ad/c ] and return i t i f the

embedding dimension i s 1 but f has no components .
de f L i s t e (n) :

L=[ ]
f o r a in range (1 , n ) :

f o r b in range (1 , n ) :
f o r c in range (1 , n) :

i f a+c−b !=0:
d=(2∗c−b) /( a+c−b)
i f i n t (d)==d and d>1 and mod( a∗d , c ) !=0 and

b>=c :
f=a∗d/c
L=L+[ [ a , b , c , d , f ] ]

r e turn L
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Remark 6.8. — An interesting sub-case of the case yb
1 − αya

0y
c
2 is this

where the equation is homogeneous, that is if it is of the form y2a
1 −αya

0y
a
2 .

In this case, the deformations can be fully described.
Let d ⩾ 2 be an integer. Then γ(T ) = T d is solution of the equation F =

y2a
1 − d

(d(d−1))a y
a
0y

a
2 . Let A be a ring in the category AlgLCk. Let β1, β2 ∈

MA. Then γβ1,β2 = (1+β1)(T +β2)d is a deformation of Defγ([F ], A). This
implies the existence of a map

ιA : HomAlgLCk
(KJT1, T2K, A) ↪−→ HomAlgLCk

( ̂K{y}/[F ]γ , A)

injective and functorial in A. Furthermore, thanks to Theorem 4.3, we know
that the embedding dimension of the ring ̂K{y}/[F ]γ is at most 2.

Hence thanks to Theorem 5.11, we deduce that the ring ̂K{y}/[F ]γ is
isomorphic, in the category AlgLCk, to KJT1, T2K.

6.2. Examples

Examples 6.9. — Examples in the case yc
2 = αyb

1y
a
0 .

(1) Let F = y3
2 − 63y0. According to the low power Theorem 1.9, This

equation has an essential singular component {y0}. According to
Theorem 6.2, we deduce that in the neighborhood of γ(T ) = T 3,
we have ÔX∂ ,γ ≃ KJT K.

(2) Let F = 3y5
2 − 65y0y1. This equation has an essential singular com-

ponent {y1}. According to Theorem 6.2, we deduce that in the
neighborhood of γ(T ) = T 3, we have ÔX∂ ,γ ≃ KJT K.

(3) Let F = 25y2
0 − y4

1y2. This equation has an essential singular com-
ponent {y0}. According to Theorem 6.2, we deduce that in the
neighborhood of γ(T ) = T 2, we have ÔX∂ ,γ ≃ KJT K.

(4) Let F = 1600y0y1 − y3
2 . This equation has an essential singular

component {y1}. According to Theorem 6.2, we deduce that in the
neighborhood of γ(T ) = T 5, we have ÔX∂ ,γ ≃ KJT K.

(5) F = 35 × 26y0y
2
1 − y5

2 . This equation has an essential singular com-
ponent {y1}. According to Theorem 6.2, we deduce that in the
neighborhood of γ(T ) = T 4, we have ÔX∂ ,γ ≃ KJT K.

Examples 6.10. — Examples in the case ya
0 = αyb

1y
c
2.

(1) Let F = 18y0 − y1y2. En vertu du low power Theorem 1.9, This
equation has an essential singular component {y0}. According to
Theorem 6.2, we deduce that in the neighborhood of γ(T ) = T 3,
we have ÔX∂ ,γ ≃ KJT K.
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(2) Let F = y2y
2
1 − 43 × 3y2

0 . This equation has an essential singular
component {y0}. According to Theorem 6.2, we deduce that in the
neighborhood of γ(T ) = T 4, we have ÔX∂ ,γ ≃ KJT K.

(3) Let F = 8y0 − y2
1y2. This equation has an essential singular com-

ponent {y0}. According to Theorem 6.2, we deduce that in the
neighborhood of γ(T ) = T 2, we have ÔX∂ ,γ ≃ KJT K.

Examples 6.11. — Examples in the case yb
1 − αya

0y
c
2.

(1) Let F = 2y2
1 − 3y0y2. Thanks to the low power Theorem 1.9, we

know that this equation has no essential singular component. We
want to study the deformation of F at neighborhood of γ(T ) = T 3.

∂y0(F ) = −3y2 = −18T

∂y1(F ) = 4y1 = 12T 2

∂y2(F ) = −3y0 = −3T 3.

The linearization of F is given by

−3T 2y2 + 12Ty1 − 18y0.

The associated characteristic equation is

−3x2 + 15x− 18 = 0.

This equation has two solutions which are 2 et 3. Furthermore, it
can be seen that, given an object A of the category AlgLCk then,
for every β1, β2 ∈MA, the deformation γβ1,β2 = (1 + β1)(T + β2)d

is in Defγ([F ], A). We deduce, thanks to the Theorems 4.3 and 5.11
that ÔX∂ ,γ is isomorphic to KJT1, T2K in the category AlgLCk.

(2) Let F = y4
1 − 23y2

0y2. This equation has no essential singular com-
ponent. We want to study the deformation of F at neighborhood
of γ(T ) = T 2.

∂y0(F ) = −24y0y2 = −25T 2

∂y1(F ) = 22y3
1 = 25T 3

∂y2(F ) = −23y2
0 = −23T 4.

The linearization of F is given by

T 2y2 − 4Ty1 + 4y0.

The associated characteristic equation is

x2 − 5x+ 4 = 0.
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This equation has two solutions which are 1 et 4. We deduce that the
embedding dimension of the ring ÔX∂ ,γ is equal to 2. Furthermore,
the ring ÔX∂ ,γ is isomorphic to KJT1, T2K/I, for a certain ideal I, in
the category AlgLCk. Furthermore, a computation can show that
I ̸= 0 since, if we study the solutions of the linearization in K[ϵ](ϵ8),
we can show that T 4

1 T
3
2 ∈ I/I8.

(3) Let F = 2y5
1 − 34y3

0y2. This equation has no essential singular com-
ponent. We want to study the deformation of F at neighborhood
ofe γ(T ) = T 3.

∂y0(F ) = −35y2
0y2 = −36 × 2T 7

∂y1(F ) = 2× 5y4
1 = 2× 34 × 5T 8

∂y2(F ) = −34y3
0 = −34T 9.

The linearization of F is given by

T 2y2 − 10Ty1 + 18y0.

The associated characteristic equation is

x2 − 11x+ 18 = 0.

This equation has two solutions which are 2 et 9. We deduce that the
embedding dimension of the ring ÔX∂ ,γ is equal to 2. Furthermore,
the ring ÔX∂ ,γ is isomorphic to KJT1, T2K/I, for a certain ideal I, in
the category AlgLCk. Furthermore, a computation can show that
I ̸= 0 since, if we study the solutions of the linearization K[ϵ](ϵ9),
we can show that T 6

1 T
2
2 ∈ I/I9.

(4) Let F = 23ay3a
1 − ya

0y
3a
2 . This equation has an essential singular

component {y1}. According to Theorem 6.2, we deduce that in the
neighborhood of γ(T ) = T 3, on a ÔX∂ ,γ ≃ KJT K.
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