[Sur les invariants et d’Iwasawa associés aux produits de formes primitives]
On fixe un nombre premier impair , et soit une famille de représentations galoisiennes ordinaires à deux dimensions définies sur un corps fini . On suppose données des formes modulaires primitives dont les représentations -adiques
satisfont , et quelques autres hypothèses supplémentaires. On détermine l’invariant cyclotomique pour le groupe de Selmer associé au produit sous l’hypothèse que l’invariant est nul. Si (c’est-à-dire dans le cas du double produit), cela nous permet de déduire la conjecture principale d’Iwasawa pour si elle est déjà connue pour une paire congruente , tout comme Greenberg et Vatsal l’ont fait pour (i.e. pour les formes modulaires paraboliques).
Fix an odd prime number , and let be a collection of two-dimensional ordinary Galois representations defined over a finite field . Suppose that we are given newforms whose -adic representations
satisfy , and some other extra hypotheses. We shall determine the cyclotomic -invariant for the Selmer group attached to the product under the assumption that the -invariant is zero. If (i.e. the double product case) this allows us to deduce the Iwasawa Main Conjecture for if it is already known for a congruent pair , much as Greenberg and Vatsal did for (i.e. for elliptic cusp forms).
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Galois representations, Iwasawa theory, $p$-adic $L$-functions.
Mot clés : Représentations galoisiennes, théorie d’Iwasawa, fonctions $L$ $p$-adiques.
Delbourgo, Daniel 1
@article{AIF_2024__74_2_451_0, author = {Delbourgo, Daniel}, title = {On the {Iwasawa} $\mu $-invariant and $\lambda $-invariant associated to tensor products of newforms}, journal = {Annales de l'Institut Fourier}, pages = {451--502}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {2}, year = {2024}, doi = {10.5802/aif.3593}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3593/} }
TY - JOUR AU - Delbourgo, Daniel TI - On the Iwasawa $\mu $-invariant and $\lambda $-invariant associated to tensor products of newforms JO - Annales de l'Institut Fourier PY - 2024 SP - 451 EP - 502 VL - 74 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3593/ DO - 10.5802/aif.3593 LA - en ID - AIF_2024__74_2_451_0 ER -
%0 Journal Article %A Delbourgo, Daniel %T On the Iwasawa $\mu $-invariant and $\lambda $-invariant associated to tensor products of newforms %J Annales de l'Institut Fourier %D 2024 %P 451-502 %V 74 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3593/ %R 10.5802/aif.3593 %G en %F AIF_2024__74_2_451_0
Delbourgo, Daniel. On the Iwasawa $\mu $-invariant and $\lambda $-invariant associated to tensor products of newforms. Annales de l'Institut Fourier, Tome 74 (2024) no. 2, pp. 451-502. doi : 10.5802/aif.3593. https://aif.centre-mersenne.org/articles/10.5802/aif.3593/
[1] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progr. Math.), Volume 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400 | MR | Zbl
[2] On the modularity of elliptic curves over : wild 3-adic exercises, J. Amer. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | DOI | MR | Zbl
[3] On descent theory and main conjectures in non-commutative Iwasawa theory, J. Inst. Math. Jussieu, Volume 10 (2011) no. 1, pp. 59-118 | DOI | MR | Zbl
[4] Variation of anticyclotomic Iwasawa invariants in Hida families, Algebra Number Theory, Volume 11 (2017) no. 10, pp. 2339-2368 | DOI | MR | Zbl
[5] Fine Selmer groups of elliptic curves over -adic Lie extensions, Math. Ann., Volume 331 (2005) no. 4, pp. 809-839 | DOI | MR | Zbl
[6] Diagonal cycles and Euler systems II: The Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin -functions, J. Amer. Math. Soc., Volume 30 (2017) no. 3, pp. 601-672 | DOI | MR | Zbl
[7] On the Iwasawa Main Conjecture for the tensor product of two elliptic modular forms and (in preparation)
[8] Variation of the analytic -invariant over a solvable extension, Proc. Lond. Math. Soc. (3), Volume 120 (2020) no. 6, pp. 918-960 | DOI | MR | Zbl
[9] Variation of the algebraic -invariant over a solvable extension, Math. Proc. Cambridge Philos. Soc., Volume 170 (2021) no. 3, pp. 499-521 | DOI | MR | Zbl
[10] Controlling -invariants for the double and triple product -adic -functions, J. Théor. Nombres Bordeaux, Volume 33 (2021) no. 3.1, pp. 733-778 | DOI | MR | Zbl
[11] Congruences modulo between -twisted Hasse-Weil -values, Trans. Amer. Math. Soc., Volume 370 (2018) no. 11, pp. 8047-8080 | DOI | MR | Zbl
[12] Formes modulaires et représentations -adiques, Séminaire Bourbaki : vol. 1968/69, exposés 347-363 (Séminaire Bourbaki), Springer-Verlag, 1971 no. 11 (talk:355) | Zbl
[13] Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006) no. 3, pp. 523-580 | DOI | MR | Zbl
[14] Périodes -adiques, Exposé III, Séminaire du Bures-sur-Yvette, France, 1988 (Astérisque), Volume 223, Société Mathématique de France, 1994, pp. 113-184 | Zbl
[15] -adic periods and -adic étale cohomology, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) (Contemp. Math.), Volume 67, Amer. Math. Soc., Providence, RI, 1987, pp. 179-207 | DOI | MR | Zbl
[16] Analytic pro- groups of small dimensions, J. Group Theory, Volume 12 (2009) no. 5, pp. 711-734 | DOI | MR | Zbl
[17] Iwasawa theory for -adic representations, Algebraic number theory (Adv. Stud. Pure Math.), Volume 17, Academic Press, Boston, MA, 1989, pp. 97-137 | DOI | MR | Zbl
[18] Iwasawa theory, projective modules, and modular representations, Mem. Amer. Math. Soc., Volume 211 (2011) no. 992, p. vi+185 | DOI | MR | Zbl
[19] On the Iwasawa invariants of elliptic curves, Invent. Math., Volume 142 (2000) no. 1, pp. 17-63 | DOI | MR | Zbl
[20] Galois representations into attached to ordinary cusp forms, Invent. Math., Volume 85 (1986) no. 3, pp. 545-613 | DOI | MR | Zbl
[21] On -adic -functions of over totally real fields, Ann. Inst. Fourier (Grenoble), Volume 41 (1991) no. 2, pp. 311-391 | DOI | Numdam | MR | Zbl
[22] Hida families and -adic triple product -functions (https://arxiv.org/abs/1705.02717, to appear in Amer. J. Math.)
[23] Four variable -adic triple product -functions and the trivial zero conjecture (2019) (https://arxiv.org/abs/1906.10474)
[24] -adic Hodge theory and values of zeta functions of modular forms, Cohomologies -adiques et applications arithmétiques. III (Astérisque), Société Mathématique de France, 2004 no. 295, pp. ix, 117-290 | Numdam | MR | Zbl
[25] Serre’s modularity conjecture. I, Invent. Math., Volume 178 (2009) no. 3, pp. 485-504 | DOI | MR | Zbl
[26] -extensions of CM-fields and cyclotomic invariants, J. Number Theory, Volume 12 (1980) no. 4, pp. 519-528 | DOI | MR | Zbl
[27] Rankin–Eisenstein classes and explicit reciprocity laws, Camb. J. Math., Volume 5 (2017) no. 1, pp. 1-122 | DOI | MR | Zbl
[28] Comparing the -primary submodules of the dual Selmer groups, Asian J. Math., Volume 21 (2017) no. 6, pp. 1153-1181 | DOI | MR | Zbl
[29] -property and congruence of Galois representations, J. Ramanujan Math. Soc., Volume 33 (2018) no. 1, pp. 37-74 | MR | Zbl
[30] On the conductors of mod Galois representations coming from modular forms, J. Number Theory, Volume 31 (1989) no. 2, pp. 133-141 | DOI | MR | Zbl
[31] On -adic analogues of the conjectures of Birch and Swinnerton–Dyer, Invent. Math., Volume 84 (1986) no. 1, pp. 1-48 | DOI | MR | Zbl
[32] On -adic height pairings, Séminaire de Théorie des Nombres, Paris, 1990–91 (Progr. Math.), Volume 108, Birkhäuser Boston, Boston, MA, 1993, pp. 127-202 | DOI | MR | Zbl
[33] Non-Archimedean -functions of Siegel and Hilbert modular forms, Lecture Notes in Mathematics, 1471, Springer-Verlag, Berlin, 1991, vi+157 pages | DOI | MR | Zbl
[34] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 259-331 | DOI | MR | Zbl
[35] Sur les représentations modulaires de degré de , Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230 | DOI | MR | Zbl
[36] On certain -functions, Amer. J. Math., Volume 103 (1981) no. 2, pp. 297-355 | DOI | MR | Zbl
[37] The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., Volume 29 (1976) no. 6, pp. 783-804 | DOI | MR | Zbl
[38] The Iwasawa main conjectures for , Invent. Math., Volume 195 (2014) no. 1, pp. 1-277 | DOI | MR | Zbl
[39] Iwasawa invariants of Galois deformations, Manuscripta Math., Volume 118 (2005) no. 2, pp. 161-180 | DOI | MR | Zbl
Cité par Sources :