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ON THE IWASAWA µ-INVARIANT AND λ-INVARIANT
ASSOCIATED TO TENSOR PRODUCTS OF

NEWFORMS

by Daniel DELBOURGO

Abstract. — Fix an odd prime number p, and let ρ1, . . . , ρt be a collection
of two-dimensional ordinary Galois representations defined over a finite field Fpe .
Suppose that we are given newforms f1, . . . , ft whose p-adic representations

ρf1 : GQ → GL2(K), . . . , ρft : GQ → GL2(K) with OK/πK ∼= Fpe

satisfy ρf1 ⊗ · · · ⊗ ρft mod πK ∼= ρ1 ⊗ · · · ⊗ ρt, and some other extra hypotheses.
We shall determine the cyclotomic λ-invariant for the Selmer group attached to
the product f1 ⊗ · · · ⊗ ft under the assumption that the µ-invariant is zero. If
t = 2 (i.e. the double product case) this allows us to deduce the Iwasawa Main
Conjecture for f1 ⊗ f2 if it is already known for a congruent pair f ′

1 ⊗ f ′
2, much as

Greenberg and Vatsal [19] did for t = 1 (i.e. for elliptic cusp forms).
Résumé. — On fixe un nombre premier impair p, et soit ρ1, . . . , ρt une famille

de représentations galoisiennes ordinaires à deux dimensions définies sur un corps
fini Fpe . On suppose données des formes modulaires primitives f1, . . . , ft dont les
représentations p-adiques

ρf1 : GQ → GL2(K), . . . , ρft : GQ → GL2(K) avec OK/πK ∼= Fpe

satisfont ρf1 ⊗ · · · ⊗ ρft mod πK ∼= ρ1 ⊗ · · · ⊗ ρt, et quelques autres hypothèses
supplémentaires. On détermine l’invariant λ cyclotomique pour le groupe de Selmer
associé au produit f1 ⊗ · · · ⊗ ft sous l’hypothèse que l’invariant µ est nul. Si t =
2 (c’est-à-dire dans le cas du double produit), cela nous permet de déduire la
conjecture principale d’Iwasawa pour f1 ⊗ f2 si elle est déjà connue pour une paire
congruente f ′

1 ⊗ f ′
2, tout comme Greenberg et Vatsal [19] l’ont fait pour t = 1

(i.e. pour les formes modulaires paraboliques).

1. History and motivation

Let E be an elliptic curve defined over Q, and p a prime of good ordinary
reduction. For an algebraic extension M/Q, we write E(M) for its group

Keywords: Galois representations, Iwasawa theory, p-adic L-functions.
2020 Mathematics Subject Classification: 11F33, 11F80, 11G40, 11R23.



2 Daniel DELBOURGO

of M -rational points. The Selmer group of E over M sits inside the short
exact sequence

0→ E(M)⊗Q/Z→ Sel(E/M)→X(E/M)→ 0

where X(E/M) denotes the Tate–Shafarevich group for E over the ex-
tension M . In the case where M is a number field, it is conjectured that
X(E/M) is finite.

Let Qcyc be the cyclotomic Zp-extension of Q, with Γcyc := Gal(Qcyc/Q)∼=
Zp. Then the p-primary part of Sel

(
E/Qcyc) has the structure of a discrete

Λ-module where Λ = Λcyc := ZpJΓcycK denotes the completed group algebra
for Γcyc over Zp. In the 1990s, Kato [24] proved the deep result that the
Pontragin dual module

XE := Homcont

(
Sel(E/Qcyc)[p∞],Qp/Zp

)
has rank zero over the Iwasawa algebra Λ. By the structure theory of com-
pact finitely-generated torsion Λ-modules, there exists a pseudo-isomor-
phism

XE
pseudo∼=

n⊕
i=1

Λ
Fλii · Λ

⊕
m⊕
j=1

Λ
pµj · Λ

and the Fi(X)’s are distinguished polynomials under the isomorphism
Λ ∼−→ ZpJXK sending a topological generator γ0 ∈ Γcyc to the element
1 +X. The two integers

µalg(E) = µ1 + · · ·+ µm and λalg(E) = λ1 · deg(F1) + · · ·+ λn · deg(Fn)

are called the algebraic µ-invariant and algebraic λ-invariant of E, respec-
tively.

Fix a pair of embeddings ι∞ : Q ↪→ C and ιp : Q ↪→ Q̂p. On the ana-
lytic side Mazur, Tate and Teitelbaum [31] constructed a p-adic L-function
Lan
p (E) ∈ Λ[1/p], interpolating at finite order characters χ : Γcyc → C× of

conductor pnχ the data

χ
(
Lan
p (E)

)
= ιp ◦ ι−1

∞

((
1− χ(p)

αp

)2
·
Gχ

α
nχ
p
× L(E,χ, 1)

Ω+
∞(E)

)
.

Here Ω+
∞(E) equals the real Néron period attached to the curve, αp is the

unit root of X2 − ap(E)X + p, and Gχ =
∑pnχ

j=1 χ(n) e2π i j/pnχ denotes a
Gauss sum for χ. The analytic µ-invariant µan(E) ∈ Z is defined to be the
largest power of p dividing all the coefficients of Lan

p (E), while the analytic
λ-invariant λan(E) ⩾ 0 counts the number of zeros (with multiplicity) of
the p-adic L-function on the open unit disk.

ANNALES DE L’INSTITUT FOURIER



IWASAWA INVARIANTS FOR TENSOR PRODUCTS 3

Conjecture. — The Iwasawa Main Conjecture for E then predicts an
equality

Lan
p (E) = uE · charΛ

(
XE
)

for some element uE ∈ Λ×, where one defines charΛ
(
XE
)

:= pµ
alg(E) ×∏n

i=1 F
λi
i .

A simple consequence of this statement is that one must have µalg(E) =
µan(E) and likewise λalg(E) = λan(E), although these equalities by them-
selves are not enough to prove the conjecture. The same time as Kato’s
work, Greenberg and Vatsal considered how this conjecture varies within a
family of p-congruent curves.

Theorem ([19, Theorem 1.4]). — Suppose that E and E′ are two mod-
ular elliptic curves defined over Q, and each elliptic curve has good ordinary
reduction at p. If their mod p Galois representations are both absolutely
irreducible and satisfy E[p] ∼= E′[p] as GQ-modules, then the following
implication holds:

µalg(E) = µan(E) = 0 =⇒ µalg(E′) = µan(E′) = 0

and λalg(E) = λan(E) and λalg(E′) = λan(E′).

If one combines the above result with the divisibility of the algebraic p-
adic L-function into the analytic version, due again to Kato [24], it is clear
that the Iwasawa Main Conjecture only really depends on the mod p Galois
representation. Of course, the full conjecture has now been proven via the
work of Skinner and Urban [38], who established the reverse divisibility
for the two p-adic L-functions. However in the early 2000s this reverse
divisibility was certainly not available!

Now an elliptic curve E over Q is modular by the results of Breuil
et al [2], which means that there exists a weight two newform fE =∑∞
n=1 an(fE) e2π inz with a trivial character and the same conductor as

E, satisfying L(E, s) = L(fE , s). Therefore one may interpret the Iwasawa
Main Conjecture for E as a statement about weight two newforms, link-
ing their arithmetic and p-adic analytic properties. Strongly motivated by
Greenberg and Vatsal’s work, in 2005 Emerton, Pollack and Weston stud-
ied both the µ-invariant and λ-invariant attached to p-ordinary families
of Hecke eigenforms. In fact they proved the following quite remarkable
result.

Theorem ([13, Theorems 1 and 2]). — If the µ-invariant vanishes for
at least one form f in the Hida family with residual Galois representation

TOME 0 (0), FASCICULE 0



4 Daniel DELBOURGO

ρ : GQ → GL2(Fpe) then it vanishes for every eigenform f ′ with residual
representation ρ, and further

λalg(f)− λalg(f ′) = λan(f)− λan(f ′).

In other words, the µ-invariant and λ-invariant for a p-ordinary Hecke
eigenform f only really “sees” the residual Galois representation ρ, and the
eigenform f can move around the deformation space (from one irreducible
component to the next) and yet both the quantities µ⋆(f) and λ⋆(f) are
still kept tightly in check.

In this article, we extend Greenberg and Vatsal’s ideas in a different
direction. Suppose that we are given primitive Hecke eigenforms f1, . . . , ft
each of weight ⩾ 2. Then by the work of Deligne [12], one can associate a
p-adic Galois representation

ρfi : Gal
(
Q/Q

)
→ AutOK

(
Tfi

)
with rkOK

(
Tfi

)
= 2 for i ∈ {1, . . . , t},

which is unramified at primes l ∤ pNfi and in addition satisfies
Tr ρfi(Frobl) = al(fi). Here K is a finite extension of Qp containing all
the Fourier coefficients of the fi’s, and an(fi) denotes the n-th Fourier co-
efficient of fi, i.e. fi =

∑∞
n=1 an(fi) e2π inz. Tensoring together these ρfi

over K yields a 2t-dimensional Galois representation

ρf1 ⊗ · · · ⊗ ρft : Gal
(
Q/Q

)
→ GL2t(OK)

which is unramified outside the primes dividing p·
∏t
i=1 Nfi and the infinite

place.
Let κp : GQ ↠ Z×

p be the p-th cyclotomic character, so that σ(ζpn) =
ζ
κp(σ)
pn . We also write ω : GQ ↠ F×

p for the Teichmüller character mod p,
which associates to each σ ∈ Gal

(
Q/Q

)
the (p−1)-st root of unit congruent

to κp(σ) modulo p.

Question 1.1. — Can one attach a Selmer group to ρf1⊗· · ·⊗ρft⊗κjp
over Qcyc which is Λ-cotorsion, and thereby study its associated µ-invariant
and λ-invariant?

Thanks to the work of several people [1, 17, 18, 39], most notably Green-
berg, if the underlying representations are p-ordinary then (conjecturally)
the answer is in the affirmative. However there is one important caveat:
one needs to restrict the values of j so the points lie within the criti-
cal strip for the automorphic L-series. Henceforth a sequence of modular
forms f1, . . . , ft shall be labelled as unbalanced (or more accurately, f1-
unbalanced) if the weight inequality

wt(f1) ⩾ 3− t+ wt(f2) + · · ·+ wt(ft) holds true.

ANNALES DE L’INSTITUT FOURIER



IWASAWA INVARIANTS FOR TENSOR PRODUCTS 5

For such an unbalanced sequence, the values of j should be restricted to
the strip

2− wt(f1) ⩽ j ⩽ t− 1− wt(f2) + · · · − wt(ft)
otherwise the local Gal

(
Qp/Qp

)
-representation Vρf1

⊗ · · · ⊗ Vρft ⊗ κ
j
p fails

to satisfy a strong Panchishkin condition, and the rest of our arguments
will collapse.

Question 1.2. — Does there exist an analytic p-adic L-function
Lan
p

(
f1 ⊗ · · · ⊗ ft

)
whose values at characters of the form χκjp interpolate

the automorphic L-series?

If one assumes t ⩽ 3 then such p-adic analytic objects have been con-
structed. For example, t = 1 corresponds to the Mazur, Tate and Teitel-
baum L-function [31], for t = 2 one has the construction [21, 33] of Hida
and Panchishkin, whilst for t = 3 one uses Hsieh and Yamana’s triple prod-
uct L-function given in [22, 23]. If t ⩾ 4 there is nothing currently available,
and the existence is an open problem.

Question 1.3. — Is Lan
p

(
f1⊗· · ·⊗ft

)
a generator for the characteristic

ideal of the (Pontrjagin dual of the) Selmer group associated to ρf1⊗· · ·⊗ρft
over Qcyc?

This is precisely the Iwasawa Main Conjecture for the tensor product
motive, and unsurprisingly, this is widely considered to be a difficult prob-
lem in the area. For t = 1 there is the famous decade-old work of Kato and
Skinner–Urban [24, 38], but for t = 2 and t = 3 the most that has been
obtained is a divisibility [6, 27].

Let us examine a less difficult but closely related question. Suppose that
we are given another collection of newforms f ′

1, . . . , f
′
t (again of weight ⩾ 2)

such that
ρ′
f1
⊗ · · · ⊗ ρ′

ft
∼= ρf1 ⊗ · · · ⊗ ρft mod πK

where ρ′
fi

: GQ → GL2(OK) means the Deligne representation attached to
each f ′

i , and πK is a chosen uniformizer for the discrete valuation field K.

Question 1.4. — How do the µ- and λ-invariants (both algebraic and
analytic) vary as we pass from ρf1⊗· · ·⊗ρft to the congruent representation
ρ′
f1
⊗ · · · ⊗ ρ′

ft
?

For t = 1 (i.e. for GL2), the results of Emerton, Pollack and Weston [13]
provide a definitive answer in the case where one of the µ-invariants equals
zero. For t = 2, on the analytic side the author in tandem with Lei and
Gilmore [10, 11] derived a transition formula for the λ-invariant, provided
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6 Daniel DELBOURGO

that the weight of the modular forms does not change as we switch between
the pairs (f1, f2) and (f ′

1, f
′
2). For t ⩾ 3 very little is known at present, to

the best of the author’s knowledge.
One can also ask what happens if the ground field varies in a uniform

manner. Let D∞ =
⋃
n⩾1Dn be a p-adic Lie extension of Q, containing

Q(µp∞) as a subfield.

Question 1.5. — Is there a Kida-type formula [26] allowing us to com-
pute the µ- and λ-invariant over Dcyc

n for f1 ⊗ · · · ⊗ ft in terms of the
invariants over Qcyc?

The main goal of this article is to provide a satisfactory answer to both
Question 1.4 and Question 1.5, albeit purely on the algebraic side. If t = 2
(the double product case), one can combine these formulae with certain
divisibility results of Kings, Loeffler and Zerbes [27], and thereby deduce
non-trivial information on Question 1.3 for congruent representations ρf1⊗
ρf2 and ρ′

f1
⊗ ρ′

f2
.
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2. Statement of the main results

Fix an odd prime p, and consider the finite field F = Fpe containing pe

elements. Suppose we are given as data a collection two-dimensional Ga-
lois representations ρ1 : GQ → GL2(F), . . . , ρt : GQ → GL2(F), and let us
assume that F ∼= OK/πK. Without loss of generality, throughout we will
suppose that each ρi has a minimal conductor amongst it twists by char-
acters ψ : GQ → F× of conductor coprime to p (if not then replace ρi with
a “smaller” twist ρi ⊗ ψi, which only changes ρ1 ⊗ · · · ⊗ ρt by at most a
ψ-twist). Finally, we impose the following four additional conditions:

ANNALES DE L’INSTITUT FOURIER



IWASAWA INVARIANTS FOR TENSOR PRODUCTS 7

Hypotheses.
(H1) The GQ-representations ρi are all absolutely irreducible.
(H2) For every i ∈ {1, . . . , t} the representation ρi is p-ordinary, namely

the restriction ρi
∣∣
GQp

has an unramified quotient of dimension one
over F.

(H3) Each of the Galois representations ρi is p-distinguished, so that
ρi
∣∣
GQp

is reducible with a non-scalar semi-simplification for i ∈
{1, . . . , t}.
One of the following two (inequivalent) conditions holds:

(H4a) at each prime l ̸= p, if l2 | cond(ρi′) for some i′ then l2 ∤ cond(ρi) if
i ̸= i′;

(H4b) the prime p > 3, and for all i one has Im(ρi) ⊂ GL2(Fp) with
det(ρi) = ω.

For instance, the conditions (H1)–(H3) are necessary in order to con-
struct a multi-variable universal Hecke algebra associated to ρ1 ⊗ · · · ⊗ ρt
in the spirit of [13]. Hypothesis (H4a) is satisfied whenever the intersec-
tion of the two ramification sets for any pair of ρi’s equals {p,∞}. Hy-
pothesis (H4b) holds when ρ1, . . . , ρt are the mod p Galois representations
arising from a tuple of elliptic curves E1/Q, . . . , Et/Q. Indeed if f1, . . . , ft
are newforms with trivial character and residual representations ρ1, . . . , ρt,
then (H4b) is true whenever wt(f1) ≡ · · · ≡ wt(ft) ≡ 2 (mod p− 1).

For each ρi as above, we write H
(
ρi
)

for the set of all p-stabilised
newforms fi of weight ⩾ 2 whose residual representation is equivalent to
ρi, i.e. ρfi mod πK ∼= ρi. One then defines the Hida family attached to
ρ1 ⊗ · · · ⊗ ρt to be the set-product

H
(
ρ1 ⊗ · · · ⊗ ρt

)
= H

(
ρ1
)
× · · · × H

(
ρt
)

consisting of t-tuples of Hecke eigenforms f = (f1, . . . , ft) with associated
weights k = (k1, . . . , kt) ⩾ (2, . . . , 2) and Nebentypes ε = (ε1, . . . , εt). In
Section 3 we will construct a multi-variable Hecke algebra, TΣ

(
ρ1⊗· · ·⊗ρt

)
,

that is of finite-type over the power series ring OJX1, . . . , XtK, and which
controls the Hida family above. In particular, TΣ

(
ρ1⊗· · ·⊗ρt

)
has finitely

many “multi-branches” a =
(
a1, . . . , at

)
where each ai is a minimal prime

of the corresponding one-variable Hecke algebra.

2.1. Behaviour of the λ-invariant over Qcyc

Let us start by taking the ground field to be the rational numbers. For
a tuple f ∈ H

(
ρ1 ⊗ · · · ⊗ ρt

)
and j ∈ Z, its associated Selmer group over

TOME 0 (0), FASCICULE 0



8 Daniel DELBOURGO

the cyclotomic Zp-extension Qcyc is the subset

SelQcyc
(
f, ωj

)
⊂ H1

(
Gal

(
Q/Qcyc),Q/Z⊗ (Tf1 ⊗OK · · · ⊗OK Tft

)
⊗ ωj

)
comprised of one-cocycles unramified at the primes of Qcyc not lying above
p, whilst at primes p

∣∣p they belong to the Bloch and Kato [1] local condition
“H1

g (Qcyc
p ,−)”. In the case where

SelQcyc
(
f, ωj

)∧ := Homcont
(

SelQcyc
(
f, ωj

)
,K/OK

)
is Λ-torsion, the µ- and λ-invariants will then be denoted by µ(f, ωj) and
λ(f, ωj), respectively.

Theorem 2.1. — Suppose that Hypotheses (H1)–(H3) hold, at least
one of (H4a) or (H4b) holds, and that ω−j is not a sub-GQ-representation
inside ρ1 ⊗ · · · ⊗ ρt.

(i) If SelQcyc
(
f, ωj

)∧ is Λ-torsion and µ(f, ωj)= 0 at some unbalanced
tuple f ∈ H

(
ρ1⊗· · ·⊗ρt

)
, then in fact SelQcyc

(
f ′, ωj

)∧ is Λ-torsion
and µ(f ′, ωj) = 0 for every unbalanced tuple f ′ ∈ H

(
ρ1 ⊗ · · · ⊗ ρt

)
of p-stabilised newforms.

(ii) Under the same situation as in (i), if the tuples f (1), f (2) ∈ H
(
ρ1⊗

· · · ⊗ ρt
)

are both unbalanced, then

λ
(
f (1), ωj

)
= λ

(
f (2), ωj

)
+

∑
q|c(f(1))c(f(2)), q ̸=p

eq
(
a(2), ωj

)
− eq

(
a(1), ωj

)
where c

(
f (⋆)) denotes the conductor of ρ

f
(⋆)
1
⊗ · · · ⊗ ρ

f
(⋆)
t

at either
choice ⋆ ∈ {1, 2}, and eq

(
a(⋆), ωj

)
∈ Z⩾0 depends only on the multi-

branch a(⋆) which contains f (⋆).

The integer eq
(
a, ωj

)
is the generic λ-invariant of the function interpo-

lating the Euler factor attached to ρf1 ⊗· · ·⊗ρft ⊗ωj at the prime q (Defi-
nition 5.5). These error terms measure the discrete jumps in the cyclotomic
λ-invariant as the eigenforms (f1, . . . , ft) switch from one multi-branch of
the Hida family to the next. In fact for t = 1, the above is an immediate
consequence of [13, Theorems 1 and 2]. If t = 2 then the Λ-cotorsion of
the Selmer group is already known in many cases because of the finiteness
results in [27], as we shall now discuss in greater detail.

2.2. The double product Main Conjecture

We will study the case t = 2. Consider a pair (f1, f2) ∈ H
(
ρ1 ⊗ ρ2

)
of

eigenforms of weight (k1, k2) with k1 > k2. For a chosen branch ωj , the

ANNALES DE L’INSTITUT FOURIER
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constructions in [21, 33] imply that there is an element Lan
p

(
f1 ⊗ f2, ω

j
)
∈

OKJΓcycK[1/πK], interpolating the double product L-values

χκrp

(
Lan
p

(
f1 ⊗ f2, ω

j
))

= ιp ◦ ι−1
∞

(
Mp

(
f1 ⊗ f2, χω

−j , r
)
·
L
(
f1 ⊗f2, χω

j , k2+r
)

(2πi)1−k2 ·
〈
f̃1, f̃1

〉
Pet

)
at critical twists r ∈ {0, . . . , k1 − k2 − 1} and finite-order characters χ :
Γcyc → Q×

p . The p-adic multiplier Mp

(
f1 ⊗ f2,−,−

)
is described in Sec-

tion 5.4, and
〈
f̃1, f̃1

〉
Pet =

∣∣∣∣f̃1
∣∣∣∣2 is the square of the Petersson norm of the

newform, f̃1, whose p-stabilisation is f1.

Conjecture. — The Iwasawa Main Conjecture for f1⊗f2 with weights
k1 > k2 and at a fixed ωj-branch, predicts that SelQcyc

(
f, ωj

)
is a Λcyc-

cotorsion module, and secondly that there exists an element uj ∈OKJΓcycK×

satisfying the equality

hf1 · Lan
p

(
f1 ⊗ f2, ω

j
)

= uj × charΛcyc

(
SelQcyc

(
f, ωj

)∧⊗ κ−1
p

)
where hf1 generates the congruence ideal [21] attached to

λf1 : hk1

(
Γ1(Nf1)

)
→ C.

Notation. — For such a pair (f1, f2) we abbreviate this conjecture by
IMC(f1 ⊗ f2, j).

Since we want to use the work in [27] one now assumes that the prime
p > 3. To apply this Euler system machinery, we also cut down the pairs
being considered.

Definition. — We say that a pair (f1, f2) ∈ H
(
ρ1 ⊗ ρ2

)
of weight

(k1, k2) ⩾ (2, 2) is admissible if the following list of conditions holds:
• the pair of eigenforms (f1, f2) is unbalanced, i.e. k1 > k2;
• if the non-dominant weight k2 = 2, then f2 is not Steinberg at p;
• both f1 and f2 are non-Eisenstein modulo the uniformiser πK;
• there exists τ ∈ Gal

(
Q/Q(µp∞)

)
so that Tf1 ⊗Tf2

(τ−1)·Tf1 ⊗Tf2
is free of

rank one;
• there exists σ ∈ Gal

(
Q/Q(µp∞)

)
which acts on Tf1 ⊗Tf2 through

− id4.

Henceforth assume Lan
p

(
f1 ⊗ f2, ω

j
)
̸= 0, which is certainly true if k1 >

k2+1 by the non-vanishing results of Shahidi [36, Theorem 5.2] (see also [27,
Proposition 2.7.6]). For any given branch ωj , we shall denote by µan(f1 ⊗

TOME 0 (0), FASCICULE 0



10 Daniel DELBOURGO

f2, ω
j) and λan(f1 ⊗ f2, ω

j) the cyclotomic µ- and λ-invariant attached to
hf1 · Lan

p

(
f1 ⊗ f2, ω

j
)
, respectively.

Theorem 2.2. — Suppose that t = 2, each of (H1)–(H3) hold, at least
one of (H4a) or (H4b) holds, and that ω−j is not a sub-GQ-representation
inside ρ1⊗ ρ2. If the pair f = (f1, f2) ∈ H

(
ρ1⊗ ρ2

)
is admissible, then one

has the implication
IMC(f1 ⊗ f2, j) is true =⇒ IMC(f1 ⊗ f ′

2, j) is true for any newform f ′
2

and µan(f1 ⊗ f2, ω
j) = 0 with wt(f ′

2) = wt(f2) and ρf ′
2

modπK ∼= ρ2.

The demonstration of this theorem has three main components. The
first of these are the aforementioned Euler system results, in particular the
divisibility of the algebraic p-adic L-function into its analytic counterpart
from [27, Theorem 11.6.4]. The second ingredient is Theorem 2.1, with
the specific choice of t = 2 naturally. The final component is a (weaker)
analytic version of this same theorem, proved by the author and Gilmore
in [10, Theorem 1.2]. The restrictions that f ′

1 = f1 and wt(f ′
2) = wt(f2)

are caused unfortunately by technical issues on the analytic side (see the
remark at the end of Section 5.4 for a more detailed discussion).

Conjecture. — Under the same conditions as Theorem 2.2, and if the
analytic µ-invariant µan(f1 ⊗ f2, ω

j
)

= 0 for some unbalanced (f1, f2) ∈
H
(
ρ1 ⊗ ρ2

)
, then

µan(f ′
1 ⊗ f ′

2, ω
j
)

= 0 for every unbalanced (f ′
1, f

′
2) ∈ H

(
ρ1 ⊗ ρ2

)
.

Further, if f = (f1, f2) and f ′ = (f ′
1, f

′
2) lie in H

(
ρ1 ⊗ ρ2

)
and are unbal-

anced, then

λan(f1 ⊗ f2, ω
j
)

= λan(f ′
1 ⊗ f ′

2, ω
j
)

+
∑

q|c(f)c(f ′), q ̸=p

eq
(
a′, ωj

)
− eq

(
a, ωj

)
where the pair f (resp. f ′) lies on the multi-branch a (resp. the multi-
branch a′).

In fact, the very same argument that enables us to prove Theorem 2.2
actually allows us to deduce the stronger implication

IMC(f1 ⊗ f2, j) is true =⇒ IMC(f ′
1 ⊗ f ′

2, j) is true for every

and µan(f1 ⊗ f2, ω
j) = 0 admissible (f ′

1, f
′
2) ∈ H

(
ρ1 ⊗ ρ2

)
,

of course, provided that the above conjecture on the analytic λ-invariant
holds. This analytic conjecture is proven in many cases, and forms a work
in progress [7].
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2.3. Non-commutative Iwasawa theory

Let D∞/Q denote a p-adic Lie extension of the rational numbers, which
satisfies the following three conditions:

• the infinite algebraic extension D∞ contains Q(µp∞) as a subfield;
• the set of rational primes, Sram

D∞
, that ramify inside D∞/Q is finite;

• Gal(D∞/Q(µp)) is a non-abelian pro-p-group without any p-torsion.
If G∞ := Gal

(
D∞/Q(µp)

)
and n > 0, then we will write Dn for the fixed

field of D∞ under the action of the group Gpn−1

∞ . In particular, D1 = Q(µp)
and D∞ =

⋃
n>0Dn. For a tuple f ∈ H

(
ρ1⊗· · ·⊗ρt

)
, its associated Selmer

group over Dcyc
n is the subset

SelDcyc
n

(
f
)
⊂ H1

(
Gal

(
Q/Dcyc

n

)
,Q/Z⊗

(
Tf1 ⊗OK · · · ⊗OK Tft

))
comprised of one-cocycles unramified at the primes of Dcyc

n not lying above
Sram

D∞
, whilst at the primes p

∣∣p they belong to the Bloch–Kato local condi-
tion H1

g (Dcyc
n,p,−). The µ- and λ-invariants will then be denoted by µDn(f)

and λDn(f), respectively.

Theorem 2.3. — Suppose that Hypotheses (H1)–(H3) hold, at least
one of (H4a) or (H4b) holds, and that the cohomology group
H0(GQ(µp), Vρ1⊗···⊗ρt

)
is trivial. Furthermore, we shall assume that either

(a) D∞ = Q
(
µp∞ ,m

1/p∞

1 , . . . ,m
1/p∞

d

)
, or that (b) dim(G∞) < 4 and G∞ is

not an open subgroup of SL2(Zp) nor of SL1(Dp).
(i) If SelQcyc(f, ωj)∧ is Λ-torsion and µ(f, ωj) = 0 at each j ∈{0, . . . , p−

2} for some unbalanced tuple f ∈ H
(
ρ1⊗· · ·⊗ρt

)
, then SelDcyc

n

(
f ′)∧

is Λ-torsion and µDn(f ′) = 0 for every unbalanced tuple f ′ ∈
H
(
ρ1 ⊗ · · · ⊗ ρt

)
and integer n > 0.

(ii) Under the same situation as in (i), at each unbalanced f ′ ∈ H
(
ρ1⊗

· · · ⊗ ρt
)

and integer n > 0, the λ-invariant over Dcyc
n satisfies the

growth formula

λDn
(
f ′) =

[
Dn : Q(µp)

]
·

(
p−2∑
j=0

λ
(
f ′, ωj

)
+

∑
q|c(f ′),q ̸=p

or q∈Sram
D∞ −{p}

eq
(
a′, ωj

))

−
∑

q|c(f ′),
q ̸∈Sram

D∞

eDn,q(a′)

where eDn,q
(
a′) ∈ Z⩾0 depends only on Dn and the multi-branch

a′ containing f ′.
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12 Daniel DELBOURGO

(iii) Under the same situation as in (i), if the tuples f (1), f (2) ∈ H
(
ρ1⊗

· · · ⊗ ρt
)

are both unbalanced then for each integer n > 0, one has
the transition formula

λDn
(
f (1)) = λDn

(
f (2))+

∑
q|c(f(1))c(f(2)), q ̸=p

eDn,q
(
a(2))− eDn,q

(
a(1))

where the eigenform f (1) (resp. f (2)) belongs to the multi-branch
a(1) (resp. a(2)).

Over the n-th layer Dn in the Lie extension D∞, the non-negative integer
eDn,q

(
a
)

is the generic λ-invariant of the function interpolating the Euler
factor associated to ρf1 ⊗ · · · ⊗ ρft ⊗ regDn/Q at the prime q (again, see
Definition 5.5). The vanishing of H0(GQ(µp), Vρ1⊗···⊗ρt

)
occurs when ρ1 ⊗

· · · ⊗ ρt
∣∣
GQ(µp)

is irreducible. However this can fail: if t > 1 and σ = ρf1
∼=

· · · ∼= ρft then σ⊗t ∼= ρf1 ⊗ · · · ⊗ ρft contains both Symt(σ) and
∧t(σ),

yet the latter may often have trivial reduction as a GQ(µp)-representation,
so the vanishing of H0(GQ(µp), σ

⊗t) is not guaranteed (this case is avoided
anyway by the inequality wt(f1) ⩾ 3− t+ wt(f2) + · · ·+ wt(ft)).

The growth formula in (ii) is actually predicted by certain congruence re-
lations arising from K-theory, provided the Selmer group attached to f over
D∞ satisfies the MH

(
G∞
)
-condition in [5]; the vanishing of the µ-invariant

is then equivalent to SelD∞(f)∧ having trivial image inside K0
(
FJG∞K

)
– for details, see [3, Proposition 3.4]. There are also results of Lim [28,
Theorem 4.2.1] and [29, Theorem 4.1.2], which compare the elementary
composition for the π-primary parts of the Selmer group over D∞.

2.4. A brief outline of the strategy

The foundation of almost all the work on this topic [4, 8, 9, 13, 19, 39]
exploits a very delicate relationship between the λ-invariant for the dual of
the Selmer group (cyclotomic or anti-cyclotomic), and the F-dimension of
the “minimal Selmer group” attached to the residual representation. The
key insight of Emerton, Pollack and Weston [13] was to revisit the con-
struction of the p-adic L-function for GL2, but to construct it over the
universal deformation space which parameterises nearly-ordinary deforma-
tions of each representation ρi. Since we are working here with a t-fold
product GL2× · · · ×GL2, in Sections 3.1–3.2 we glue together their Hecke
algebras into a multi-variable version “TΣ(ρ1 ⊗ · · · ⊗ ρt)”.
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In Section 3.3 we address the existence (or otherwise) of a minimal tuple(
f†

1 , . . . , f
†
t

)
whose coprime-to-p conductor is equal to the geometric con-

ductor of ρ1 ⊗ · · · ⊗ ρt. For t = 1 this is not an issue, as the work of Khare
and Wintenberger [25] guarantees the existence of these minimal newforms.
However if t > 1 we have failed to find a general proof of the existence of
such a minimal tuple, which is the main reason why we assume at least one
of Hypotheses (H4a) or (H4b) holds to make progress.

In Section 4 we associate Ω-imprimitive Selmer groups to these tensor
products where Ω denotes a finite set of rational primes. The characteris-
tic zero Selmer groups have the structure of discrete cofinitely-generated
Λ-modules, which are also easily seen to be π-divisible groups. This helps
greatly when trying to calculate their λ-invariants as it is enough to com-
pute the dimension of the π-torsion subgroup. We point out that it is only
for a small subset of Tate twists that our Selmer groups coincide with their
Bloch–Kato cousins, and we undertake this comparison in Section 4.2.

Finally in Section 5, we combine these disparate strands together and give
proofs for the three main theorems. Central to our arguments is the nice
behaviour of the minimal tuples

(
f†

1 , . . . , f
†
t

)
under the reduction modulo π

mapping, thereby providing a link between the arithmetic of ρf†
1
⊗· · ·⊗ρf†

t

and its residual counterpart ρ1 ⊗ · · · ⊗ ρt. Without this minimal tuple one
can still establish the vanishing of the µ-invariants, but we cannot obtain
explicit formulae for the λ-invariants.

It is important to mention that the proof of our Kida-type formula we
found in the non-commutative setting utilises Greenberg’s notion of Selmer
atoms [18], which is essentially an Iwasawa-theoretic analogue of explicit
Brauer induction. Whilst we limited our treatment to p-adic Lie groups
with an underlying metabelian structure for this paper, in principle there is
nothing preventing us from extending Theorem 2.3 to GL2(Zp)-extensions,
or to even more exotic insolvable Lie groups.

3. The control theory for ρ1 ⊗ · · · ⊗ ρt

Our principal goal in this section is to associate a multi-variable Hecke
algebra “TΣ(ρ1,...,t)” to the residual representation ρ1,...,t := ρ1 ⊗ · · · ⊗ ρt :
GQ → GL2t(F) and to finite subsets Σ =

(
Σ1, . . . ,Σt

)
⊂ Spec(Z)t. However

we must first recall the key properties of the reduced Hecke algebra which
controls each individual ρi, and the background reference is [13] where the
original construction was made.
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14 Daniel DELBOURGO

Let O = W(F) be the ring of Witt vectors for F, and define Λwt :=
OJ1 + pZpK to be the weight algebra. If N ⩾ 1 with p ∤ N , then one writes
TN for the image of h(Np∞;O) = lim←−r h(Npr;O) inside the endomorphism
ring of the p-ordinary cusp forms of tame level N , and with O-coefficients.
From [20, Theorems 1.1-1.2], the commutative algebra TN is free of finite
rank over Λwt. In terms of specialisations, if ℘ ∈ Spec(TN ) is arithmetic
of weight k then TN/℘TN can be naturally identified with the quotient
of hord(Np∞;O) that acts faithfully on Sord

k (Np∞;TN/℘)[ε℘], where ε℘
denotes the character on 1 + pZp induced by ℘.

We shall write Tnew
N for the quotient of TN acting on the subpace of

newforms. Let T′
N denote the Λwt-subalgebra of TN generated by the Hecke

operators Tl for l ∤ Np, together with the operator Up. There is a canonical
map [13, Proposition 2.3.2]

T′
N −→

∏
M |N

Tnew
M

which then becomes an isomorphism after tensoring over the fraction field
of Λwt. Gluing the product of the ρnew

M ’s over the divisors M of N yields
a representation ρ′

N : GQ → GL2
(
T′
N ⊗Λwt Frac(Λwt)

)
. At each maximal

ideal m of T′
N , taking the localisation of ρ′

N at m produces another (T′
N )m-

valued Galois representation

ρm : GQ → GL2
(
(T′
N )m ⊗Λwt Frac(Λwt)

)
.

If its residual representation ρm is irreducible then ρm has a Λwt-integral
model, hence ρm : GQ → GL2

(
(T′
N )m

)
will be uniquely determined (up to

isomorphism).

3.1. Reduced Hecke algebras associated to ρi

Choose any i ∈ {1, . . . , t}. As detailed in Section 2, suppose (H1)–(H3)
hold so that ρi : GQ → AutF

(
Vρi
)

is an absolutely irreducible representa-
tion which is p-ordinary and p-distinguished. We shall also select a finite
set of primes Σi = ΣQ,i ⊂ Spec(Z) such that p ̸∈ Σi.

Definition 3.1. — If we set Ni(Σi) := cond(ρi)·
∏
l∈Σi l

dimF(Vρ̄i )Il , then

TΣi = TΣi(ρi) :=
(
T′
Ni(Σi)

)
mi

where mi is the unique maximal ideal of T′
Ni(Σi) at which the residual

representation ρmi : GQ → GL2(Fp), with its canonical p-stabilisation, is
isomorphic to ρi.
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One calls Spec
(
TΣi(ρi)

)
the universal p-ordinary Hida family attached to

ρi, minimally ramified outside of Σi. The irreducible components (branches)
of this Hida family, H(ρi), are indexed by the subset of minimal primes in
Spec

(
TΣi(ρi)

)
. If ai is a minimal prime of TΣi , one can take the quotient

algebra T(ai) = TΣi/ai. In particular, for each branch ai there exists a
unique divisor Ni(ai) of Ni(Σi) and a unique minimal prime a′

i ◁ Tnew
Ni(ai)

which lies over ai, such that the diagram

TΣi(ρi) −→ T′
Ni(Σi) −→

∏
M |Ni(Σi) T

new
My y

TΣi(ρi)
/
ai

=−→ T(ai) −−−−−−−−→ Tnew
Ni(ai)

/
a′
i

is commutative [13, Proposition 2.5.2].

Definition 3.2. — At a minimal prime ai of TΣi(ρi), we call the divisor
Ni(ai) above the “tame conductor attached to ai”, we then define T(ai)0 :=
Tnew
Ni(ai)/a

′
i and write ρT(ai)0 : GQ → GL2

(
Tnew
Ni(ai)/a

′
i ⊗Λwt Frac(Λwt)

)
for

its Galois representation.

Let us fix a branch ai of H(ρi). For an integer n ⩾ 1, denote by a(i)
n ∈

T(ai)0 the image of Tn under the natural projection map

hord(Ni(Σi)p∞;Zp
)
↠ T(ai)0.

One can then associate the formal q-expansion f(ai) :=
∑∞
n=1 a(i)

n · qn ∈
T(ai)0JqK. If ℘i is an arithmetic height one prime of TΣi(ρi) of weight ki ⩾ 2,
by the control theory in [20, Theorem 1.2] and [13, Proposition 2.5.6(2)],
there exists ℘′

i ∈ Spec
(
T(ai)0) which pulls back to ℘i under the mapping

T(ai)→ T(ai)0; each ℘i-specialisation

f℘i(ai) =
∞∑
n=1

(a(i)
n mod℘′

i) · qn ∈ Sord
ki

(
Ni(ai)p∞; T(ai)0/℘′

i

)
yields a classical p-ordinary Hecke eigenform of weight ki and tame level
Ni(ai).

3.2. A generalisation to several variables

We now explain how to extend these ideas to deal with the 2t-dimensional
representation ρ1,...,t = ρ1⊗· · ·⊗ρt. An obvious strategy is to construct the
deformation ring directly from the residual representation, but we prefer to
use the in-built tensor product structure on ρ1,...,t. At each i ∈ {1, . . . , t},
let Bi(ρi; Σi) ⊂ Spec

(
TΣi(ρi)

)
denote the branches of H(ρi).
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Definition 3.3. — For a finite subset Σ =
(
Σ1, . . . ,Σt

)
⊂ Spec(Z)t,

one defines:
(a) the multi-variable Hecke algebra to be the t-fold completed tensor

product

TΣ(ρ1,...,t) :=
(
T′
N1(Σ1)

)
m1
⊗̂O · · · ⊗̂O

(
T′
Nt(Σt)

)
mt

which is of finite-type over
(
Λwt)⊗̂t= Λwt⊗̂O · · · ⊗̂OΛwt;

(b) the Hida family attached to ρ1⊗· · ·⊗ ρt is then by definition equal
to

H
(
ρ1,...,t

)
:= H(ρ1)× · · · × H(ρt)

and consists of t-tuples of p-stabilised newforms f = (f1, . . . , ft) of
weight ⩾ 2;

(c) the set of multi-branches forH
(
ρ1,...,t

)
is given by the t-fold product

B(ρ1,...,t; Σ) := B1(ρ1; Σ1)× · · · × Bt(ρt; Σt).

Because each i-th component has only finitely many minimal associated
primes i.e. #Bi(ρi; Σi) < ∞ for all i ∈ {1, . . . , t}, in fact B(ρ1,...,t; Σ) is
always a finite set. We will show stability of the cyclotomic λ-invariant
over this set of multi-branches.

Definition 3.4. — Fix a choice of multi-branch a = (a1, . . . , at) ∈
B(ρ1,...,t; Σ). Then one defines the big Galois representation

ρT(a)0 : GQ → GL2t
(
T(a)0 ⊗Λwt Frac(Λwt)

)
as the completed tensor product of the Λwt-adic representations ρT(a1)0 ,
. . . , ρT(at)0 where T(a)0 := Tnew

N1(a1)
/
a′

1⊗̂O · · · ⊗̂OTnew
Nt(at)

/
a′
t is of finite-type

over
(
Λwt)⊗̂t.

For instance, if one considers the tuple ℘ = (℘1, . . . , ℘t) where each
℘i ◁ T(ai) is an arithmetic prime of height one and weight ki ⩾ 2, and
if ℘′ = (℘′

1, . . . , ℘
′
t) is the element of the fiber product

∏t
i=1 Spec

(
T(ai)0)

which pulls back to ℘, then

ρT(a)0,℘ := ℘′ ◦ ρT(a)0 : GQ → GL2t(Qp)

takes values in a totally ramified extension K℘ of Frac W(F), and is equiv-
alent to the p-adic representation attached to f℘1(a1) ⊗ · · · ⊗ f℘t(at) with(
f℘i(ai)

)
i
∈ H

(
ρ1,...,t

)
. Furthermore, if π℘ is a uniformiser for K℘ then

ρT(a)0,℘ mod π℘ ∼= ρ1 ⊗ · · · ⊗ ρt. (This representation ρT(a)0 is used later
to define the error terms from Section 2.)
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Let D/Q be a finite normal extension of fields, and write regD/Q to
denote the regular representation attached to Gal(D/Q). Pick a topological
generator γ0 of Γcyc = Gal(Qcyc/Q) ∼= Zp, so that sending [1 + p] 7→ γ0
induces a (non-canonical) isomorphism ϑ : OJ1 + pZpK

∼−→ OJ[ΓcycK of
Iwasawa algebras. If x ∈ Z×

p then we write [x] = xω(x)−1 for its projection
to 1 + pZp, so that ϑ

(
[x]
)

= γ
logp(x)/ logp(1+p)
0 .

Lemma 3.5. — Choosing a prime q ̸= p and j ∈ Z, the cyclotomic
λ-invariant of

det
(
1− Frobq ·X

∣∣∣(ρf1 ⊗ · · · ⊗ ρft ⊗ regD/Q⊗ωj
)
Iq

) ∣∣∣
X=ϑ([q]−1)

for f = (f1, . . . , ft) ∈ H
(
ρ1,...,t

)
depends only on the multi-branch on which

f lies.

Proof. — Assume that f lies on the multi-branch a = (a1, . . . , at) ∈
B(ρ1,...,t; Σ) in which case each fi = f℘i(ai) for some arithmetic prime
℘i ∈ Spec

(
TΣi(ρi)/ai)

)
. If we view the eigenforms fi as belonging to a

common ring of q-expansions Kf JqK, then an important observation is that
the OKf JXK-ideal generated by

Eq,f,D,j(X) = det
(
1− Frobq ·X

∣∣∣(ρf1 ⊗ · · · ⊗ ρft ⊗ regD/Q⊗ωj
)
Iq

)
has unit content, and therefore has a trivial µ-invariant. As a direct conse-
quence,

λ
(
Eq,f,D,j

(
ϑ([q]−1)

))
= rankOKf /πKf JΓcycK

(
OKf JΓcycK〈

πKf , Eq,f,D,j(ϑ([q]−1))
〉)

= rankOK℘/π℘JΓcycK

(
OK℘J[ΓcycK〈

π℘, ℘′ ◦ Eq,a,D,j(ϑ([q]−1))
〉)

where Eq,a,D,j(X) := det(1−Frobq ·X | (ρT(a)0⊗regD/Q⊗ωj)Iq )∈T(a)0JXK.
However ℘′ ◦ Eq,a,D,j(X) mod π℘ ∈ FJXK is independent of the choice of
height one primes (℘1, . . . , ℘t), hence λ(Eq,f,D,j(ϑ([q]−1))) depends on a

but not ℘. □

3.3. Existence of minimally ramified t-tuples

Subsequent calculations will require us to compare the cyclotomic Selmer
group attached to f1⊗· · ·⊗ft with the residual version arising from ρ1⊗· · ·⊗
ρt. It is therefore natural to ask: does there exist a tuple f = (f1, · · · , ft) ∈
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H
(
ρ1,...,t

)
of p-stabilised newforms such that the (tame) conductor of f1 ⊗

· · · ⊗ ft coincides with the conductor of ρ1,...,t? Note that if t = 1, this is
closely connected Serre’s modularity conjecture [25, 35].

Definition 3.6. — A representation σ : GQ → GLd(F) is called “twist-
minimal” if cond(σ) ⩽ cond(σ ⊗ ψ) at all finite characters ψ : GQ → F×

satisfying p ∤ cond(ψ).

The following technical result will prove to be a useful tool once we
compare the π-torsion part of the cyclotomic Selmer group with the residual
Selmer group.

Theorem 3.7. — Suppose that ρi is twist-minimal for each index i ∈
{1, . . . , t}, and assume at least one of the following conditions (see (H4a)
and (H4b)) holds:

(i) at each prime l ̸= p, if l2 | cond(ρi′) for some i′ then l2 ∤ cond(ρi) if
i ̸= i′;

(ii) the prime p ⩾ 5, and for all i one has Im(ρi) ⊂ GL2(Fp) with
det(ρi) = ω.

Then there is a minimally ramified tuple f† =
(
f†

1 , . . . , f
†
t

)
∈ H

(
ρ1,...,t

)
such that

cond
(
ρf†

1
⊗ · · · ⊗ ρf†

t

)
(p) = cond

(
ρ1 ⊗ · · · ⊗ ρt

)
.

Proof. — Let us first recall that for a residual representation σ : GQ →
GLd(F), the Artin conductor is defined as a product

cond
(
σ
)

=
∏

primes l ̸=p
ln(σ,l)

where

n(σ, l) = dimF
(
Vσ
)
− dimF

(
V Ilσ
)

+
∞∑
m=1

[Υ : Υm]−1 · dimF

(
Vσ
/
V Υm
σ

)
with Υ = σ(Il), and Υm denotes its higher inertia subgroups for inte-
gers m ⩾ 1. Similarly, if σ : GQ → GLd(K) is some characteristic zero
representation whose reduction is σ, the non-p-part of its conductor is
cond(σ)(p) =

∏
primes l ̸=p l

n(σ,l) where the exponent at l is given by

n(σ, l) = dimK
(
Vσ
)
−dimK

(
V Ilσ
)
+

∞∑
m=1

[Ξ : Ξm]−1 ·dimK
(
GrVσ

/
GrV Ξm

σ

)
.

Note that σss : GQ → GL
(

GrVσ
)

is the semi-simplification of σ with
respect to Grothendieck’s nilpotent operator, while Ξ = σss(Il), and Ξm ⊂
Ξ are its higher inertia subgroups for m ⩾ 1.
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It is well known that the Swan conductors of σss and σ at l ̸= p are equal
to each other (e.g. see [30, Section 1]), implying that

n(σ, l)− n(σ, l) = d− dimK
(
V Ilσ
)
−
(
d− dimF

(
V Ilσ
))

= dimF
(
V Ilσ
)
− dimK

(
V Ilσ
)

must be a non-negative integer; hence cond
(
σ
)

will always divide into
cond(σ)(p). In particular if σ = ρ1 ⊗ · · · ⊗ ρt, the proof of our theorem
reduces to showing that:

“There exists f† =
(
f†

1 , . . . , f
†
t

)
∈ H

(
ρ1,...,t

)
such that if either (i) or (ii)

holds, then

(3.1) dimF
(
H0(Il, Vρ1,...,t)

)
= dimK†

(
H0(Il, Vρ

f
†
1

⊗···⊗ρ
f

†
t

))
at each prime l ̸= p.”

To establish this assertion, we analyse each constituent in the tensor
product. For i ∈ {1, . . . , t} there exists a p-stabilised newform f†

i ∈ K
†
i JqK

of weight ⩾ 2 whose tame level N tame
f†
i

coincides with cond(ρi), and such
that ρf†

i
mod πK†

i

∼= ρi. Indeed if one allows p to divide its level where
necessary, then one can even assume that this eigenform f†

i has weight 2.
NoteK†

i is a totally ramified extension of FracW(F), so we defineK† to be
the compositum of these K†

i ’s, which is again a totally ramified extension
of FracW(F). Without loss of generality, we will assume that each ρf†

i

takes values in GL2(K†). Choosing a uniformiser π† of OK† , it follows that
ρf†

1
⊗· · ·⊗ρf†

t
mod π† ∼= ρ1,...,t as GQ-representations, and let us therefore

set σ := ρf†
1
⊗ · · · ⊗ ρf†

t
.

At each prime l ̸= p, the decomposition group GQl = Gal(Ql/Ql) con-
tains the filtration GQl ⊃ Il ⊃ Ql ⊃ Pl, whose respective quotients satisfy

GQl/Il
∼= Gal

(
Fl/Fl

) ∼= Ẑ, Il/Pl ∼=
∏
q ̸=l

Zq(1) and Ql/Pl ∼=
∏
q ̸=l,p

Zq(1).

Here Pl denotes the wild inertia subgroup (which is the pro-l-Sylow sub-
group of Il). We make the following claim: if l divides cond(ρi) then ρi(Ql)
is non-trivial.

Suppose the claim were false, i.e. there exists an l
∣∣cond(ρi) with ρi(Ql) =

{1}. By the minimality conditions on f†
i and ρi, clearly n

(
ρf†
i
, l
)
⩽ n

(
ρf†
i
⊗

ψ, l
)

at all twists by characters ψ : Gal
(
Ql(µl)/Ql

)
→ O×

K† having trivial
reduction mod π†. Since ρf†

i
is also ramified at l the conditions (a,b,c)

of [30, Proposition 2.3] are satisfied, which means that ρf†
i

belongs (under
the local Langlands correspondence for GL2) to one of the following:
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• l ≡ 1 (mod p), f†
i is principal series at l with n(ρf†

i
, l) = 1 > 0 =

n(ρi, l);
• f†

i is special series at the prime l with again n(ρf†
i
, l) = 1 > 0 =

n(ρi, l);
• l ≡ −1 (mod p), f†

i is supercuspidal at l with n(ρf†
i
, l) = 2 >

n(ρi, l).
In all three cases n(ρf†

i
, l) > n(ρi, l) implying that N tame

f†
i

̸= cond(ρi),
contradiction!

Now suppose l
∣∣cond(ρi) so that ρi(Ql) ̸= {1}. As Ker

(
GL2(OK†) →

GL2(F)
)

is a pro-l-group, and the dimension of the invariant spaces for the
corresponding inertia subgroups Υm ⊂ ρi(Il) and Ξm ⊂ ρss

f†
i

(Il) agree for
m ⩾ 1, it follows that ρf†

i
(Ql) is isomorphic to ρi(Ql). Consequently, there

are two possible scenarios:
(a) H0(Ql, Vρi) and H0(Ql, Vf†

i

)
are both zero, and n(ρi, l) ⩾ 2; or

(b) dimF
(
H0(Ql, Vρi)) = dimK†(H0(Ql, Vf†

i
)) = 1,

and ρf†
i

∣∣∣
GQl

∼ ( ψ1,i 0
0 ψ2,i

) where ψ1,i, ψ2,i : GQl → O×
K† satisfy

ψ1,i(Ql) = {1} and ψ2,i(Ql) ̸= {1}.

In case (b) we must have ψ1,i(Il) = {1} otherwise the level of f†
i can be

further reduced via twisting, i.e. for some ψ′ factoring through
Gal

(
Ql(µl)/Ql

)
with trivial reduction we would then find n

(
ρf†
i
⊗ψ′, l

)
<

n
(
ρf†
i
, l
)

= n(ρi, l), which is nonsense.
We proceed by verifying that at each individual prime l dividing∏t
i=1 N

tame
f†
i

, the desired equality

(3.1) dimF
(
H0(Il, Vρ1,...,t)

)
= dimK†

(
H0(Il, Vρ

f
†
1

⊗···⊗ρ
f

†
t

))
holds under either of the hypotheses (i) or (ii) from the statement of the
theorem. Suppose that Sl ⊂ {1, . . . , t} denotes the subset of indices satis-
fying n(ρi, l) > 0 if and only if i ∈ Sl. Let us begin by assuming that the
first condition is in place.

(i). — At each prime l ̸= p, if l2 | cond(ρi′) for some i′ then l2 ∤ cond(ρi)
if i ̸= i′. Clearly either n(ρi, l) = 1 for all i ∈ Sl, or instead n(ρi′ , l) ⩾ 2
for some i′ ∈ Sl with n(ρi, l) = 1 at each i ∈ Sl − {i′}.

If we are in the former scenario then upon choosing suitable bases, our
previous discussion for (b) implies both ρf†

i

∣∣
GQl

and ρi
∣∣
GQl

are equivalent to

( ψ1,i 0
0 ψ2,i

) where ψ1,i is unramified and ψ2,i(Ql) ̸= {1}. A straightforward
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calculation shows

dimF
(
H0(Il, Vρ1,...,t)

)
= dimK†

(
H0(Il, Vρ

f
†
1

⊗···⊗ρ
f

†
t

))
= 2t−#Sl ×ml

where the positive integer

ml := #
{

(δi)i ∈ F#Sl
2

∣∣∣∣∣ ∏
i∈Sl

ψδi2,i is unramified at l
}
.

Alternatively, suppose instead we are in the latter situation, so that
n(ρi′ , l) ⩾ 2 while n(ρi, l) ⩽ 1 at each i ̸= i′. The action of inertia on
Vf†

i′
cannot factor through Iab

l
∼= Il

[Il,Il] otherwise we could find a twist

f†
i′ ⊗ ψ′′ with n(ρf†

i′
⊗ ψ′′, l) < n(ρf†

i′
, l), which contradicts the equality

n(ρf†
i′
, l) = n(ρi′ , l) and the twist-minimality of ρi′ . Consequently Il acts

on both Vf†
i′

and Vρi′ through a finite non-abelian group, whilst its action
on each Vf†

i
and Vρi for i ̸= i′ is through Iab

l . One concludes that

• H0(Il, Vρ1,...,t) = H0
(
Iab
l , V

[Il,Il]
ρi′ ⊗F

⊗
i ̸=i′ Vρi

)
= {0}

• H0(Il, Vρ
f

†
1

⊗···⊗ρ
f

†
t

)
= H0

(
Iab
l , V

[Il,Il]
f†
i′

⊗K†
⊗

i ̸=i′ Vf†
i

)
= {0}.

(ii). — The prime p ⩾ 5, and for all i one has Im(ρi) ⊂ GL2(Fp) with
det(ρi) = ω. Under these circumstances, for each i ∈ {1, . . . , t} there exists
an elliptic curve Ei defined over Q such that f†

i is the p-stabilisation of
the weight two newform associated to Ei by modularity (note that each
Ei has either good ordinary or bad multiplicative reduction at p). Let
ρEi,p∞ : GQ → AutZp

(
Tp(Ei)

)
denote the Galois representation arising

from the action on its Tate module Tp(Ei) := lim←−mEi[p
m].

Choose a prime l ̸= p with l dividing
∏t
i=1 cond(Ei). Let Jl consist

of the indices i with ordl(jEi) ⩾ 0, where jEi is the j-invariant of the
elliptic curve Ei. If i ∈ {1, . . . , t} − Jl so that ordl(jEi) < 0, then Ei
does not have bad additive reduction over Ql, otherwise twisting Ei over
Q
(√

(−1)(l−1)/2 · l
)/

Q would imply

n

(
ρEi,p∞ ⊗

(
(−1)(l−1)/2 · l

−

)
, l

)
= 1 < n (ρEi,p∞ , l) = n(ρi, l)

violating the equality |cond(Ei)|−1
l = |cond(ρi)|−1

l and the twist-minimality
of ρi.

Alternately if i ∈ Jl so that ordl(jEi) ⩾ 0, then by the fundamental
work of Serre [34, Section 5.6] it is known that the action of Il on Tp(Ei)
factors through a finite group, Φ(i)

l , which has one of the following possible
structures listed below:
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• if l ∤ cond(Ei) then Φ(i)
l is the trivial group;

• if l | cond(Ei) and l ⩾ 5, then Φ(i)
l is cyclic with #Φ(i)

l ∈ {2, 3, 4, 6};
• if l | cond(Ei) and l = 3, then either Φ(i)

l is cyclic with #Φ(i)
l ∈

{2, 3, 4, 6}, or instead Φ(i)
l
∼= C4 ⋊ C3;

• if l | cond(Ei) and l = 2, then either Φ(i)
l is cyclic with #Φ(i)

l ∈
{2, 3, 4, 6}, or Φ(i)

l
∼= SL2(F3), or lastly Φ(i)

l is the quaternion group
of order 8.

We write Φ(i)
l =

(
Φ(i)
l

)
p
⋉ρEi,p∞(Ql) where

(
Φ(i)
l

)
p

is a quotient of Il/Ql ∼=
Zp(1); since p ⩾ 5 clearly gcd(#Φ(i)

l , p) = 1, and so
(
Φ(i)
l

)
p

acts trivially
on ρEi,p∞(Ql). Exploiting the isomorphisms ρEi,p∞(Ql) ∼= ρi(Ql) from ear-
lier and using induction,

⊗
i∈Jl ρEi,p∞(Il) ∼=

⊗
i∈Jl ρi(Il). Passing to the

algebraic closures of Fp and K†, one obtains a decomposition of Il-modules

F⊗Fp

(⊗
i∈Jl

Vρi

)[Il,Il]

∼=
⊕
c∈C

F·ηc and Qp⊗K†

(⊗
i∈Jl

Vf†
i

)[Il,Il]

∼=
⊕
c∈C

Qp ·ηc

where the inertial characters ηc : Il ↠ Iab
l → Q×

p are indexed by the finite
set C.

For those indices i ∈ {1, . . . , t} − Jl we have already seen that Ei must
have bad multiplicative reduction at l with l

∣∣∣∣cond(Ei), and as discussed
in (b) earlier

• dimFp
(
H0(Il, Vρi)) = dimK†

(
H0(Il, Vf†

i

))
= 1, and

ρf†
i

∣∣∣
GQl

∼
(
ψ1,i 0

0 ψ2,i

)
where ψ1,i, ψ2,i :GQl→O

×
K† satisfy ψ1,i(Il) = {1} and ψ2,i(Ql) ̸= {1}.

Combining these strands together, one first deduces that

dimK†

(
H0(Il, Vf†

1
⊗ · · · ⊗ Vf†

t

))
= dimK† H0

Iab
l ,
⊗
i∈Jl

V
[Il,Il]
f†
i

⊗K†

⊗
i∈{1,...,t}−Jl

Vf†
i


and secondly,

dimFp

(
H0(Il, Vρ1 ⊗ · · · ⊗ Vρt

))
= dimFp H

0

Iab
l ,
⊗
i∈Jl

V
[Il,Il]
ρi

⊗Fp
⊗

i∈{1,...,t}−Jl

Vρi

 .
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A basic counting argument then reveals that both of these dimensions are
equal to the non-negative integer

m′
l :=

∑
c∈C

#

(δi)i ∈ Ft−#Jl
2

∣∣∣∣∣∣
∏

i∈{1,...,t}−Jl

ψδi2,i · ηc is unramified at l


thereby completing the demonstration of the theorem. □

Remark. — One strongly suspects the existence of a minimally-ramified
tuple f† =

(
f†

1 , . . . , f
†
t

)
∈ H

(
ρ1,...,t

)
satisfying cond

(
ρf†

1
⊗ · · · ⊗ ρf†

t

)
(p) =

cond
(
ρ1,...,t

)
without needing to assume either of the conditions (i) or (ii)

in Theorem 3.7 hold, in other words that Equation (3.1) should be true un-
conditionally for some f†. Unfortunately an argument that could establish
this claim has so far proved elusive.

4. The Λcyc-structure of Selmer groups

We now outline how to choose an appropriate set of local conditions (at
finite places) which allow us to associate a Selmer group to a tuple of
eigenforms f ∈ H

(
ρ1,...,t

)
. For t = 2 these local conditions cut out the

double product Selmer group in [27], whilst for t = 3 they cut out the
“unbalanced” triple product version from [23].

4.1. Local conditions and the f1-filtration

Given a tuple f =
(
f1, . . . , ft

)
lying in H

(
ρ1,...,t

)
of level Nf =(

Nf1 , . . . , Nft
)

and character εf =
(
εf1 , . . . , εft

)
, one again considers

Deligne’s p-adic Galois representations constructed in [12]:

ρf1 : GQ → GL2(K1), . . . , ρft : GQ → GL2(Kt).

For each i, these are unramified at primes l ∤ pNfi and satisfy

Tr ρfi(Frobl) = al(fi).

By taking the compositum of the local fields Ki we may assume every ρfi
takes values in a common GL2(K), where K is a totally ramified extension
of Frac W(F).

As mentioned before, for i ∈ {1, . . . , t} let us denote by Vfi the K-vector
space afforded by ρfi . Henceforth we will fix a rank two GQ-stable lattice
Tfi ⊂ Vfi , and the cofree OK-modules Afi := Vfi/Tfi naturally inherit
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their GQ-action from ρfi . If π = πf,K denotes a uniformiser for OK then as
local GQp -modules, there exists a short exact sequence of π-divisible groups

0→ K
/
OK ⊗ κk−1

p εfiφ
−1
i → Afi → K

/
OK ⊗ φi → 0

where the unramified character φi : GQp ↠ GQp/Ip → O×
K sends Frobp 7→

ap(fi). We label the left-hand module as A′
fi

, and A′′
fi

= Afi/A
′
fi

denotes
the étale quotient. Similarly, for each of the lattices we have the exact
sequence of OK[GQp ]-modules

(4.1) 0→ Fil+ Tfi → Tfi → Tét
fi → 0

where Fil+ Tfi
∼= OK

(
κk−1
p εfiφ

−1
i

)
and Tét

fi
= Tfi

/
Fil+ Tfi

∼= OK(φi).

Definition 4.1. — Let f =
(
f1, . . . , ft

)
∈ H

(
ρ1,...,t

)
be a t-tuple of

eigenforms.
(i) We define Tf := Tf1 ⊗OK · · · ⊗OK Tft which is OK-free of rank 2t,

and set

Af := Tf ⊗Q
/
Z ∼=

(
Vf1 ⊗K · · · ⊗K Vft

)/
Tf1 ⊗OK · · · ⊗OK Tft

which is the associated π-divisible group.
(ii) We shall construct a pair of rank 2t−1 local GQp -modules F±Tf by

taking

F+Tf :=
(

Fil+ Tf1

)
⊗OK Tf2 ⊗OK · · · ⊗OK Tft and F−Tf := Tf

/
F+Tf

with the π-divisible versions, A+
f := F+Tf ⊗ Q

/
Z and A−

f :=(
Tf

/
F+Tf

)
⊗Q

/
Z. Both F±Tf and A±

f depend on making a dis-
tinguished choice of the eigenform f1 (or more precisely, Fil+ Tf1

and Tét
f1

) over the other forms f2, . . . , ft in this tuple.

For any profinite group G and topological G-module M , one writes
Hi(G,M) for its i-th continuous cohomology group. If L/K is an alge-
braic extension of fields and G = Gal(L/K), then we abbreviate this group
by Hi(L/K,M). In particular for L = K a fixed algebraic closure of K, we
shall set Hi(K,M) := Hi

(
K/K,M

)
.

Let F be a number field, and suppose χ : GF → µp∞ is a finite order
character. Adjoining the image of χ to K yields yet another (possibly larger)
totally ramified extension of Frac W(F), so without loss of generality we
assume that Im(χ) ⊂ K. For every j ∈ Z and χ as above, one constructs
χκjp-twisted OK[GF ]-modules by

Tf [χ, j] := Tf ⊗ χκjp and Af [χ, j] := Af ⊗ χκjp,
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and makes an analogous definition for the local modules F±Tf [χ, j] and
A±
f [χ, j]. If G is a closed normal subgroup of GF = Gal(F/F ) then the

short exact sequence 0 → Vρ1,...,t⊗ ωj → Af [χ, j] ×π→ Af [χ, j] → 0 induces
a truncated exact sequence(1)

(4.2)
0→

Hi
(
G,Af [χ, j]

)
π

∂i→ Hi+1(G,Vρ1,...,t⊗ ωj
)

βi+1→ Hi+1(G,Af [χ, j]
)
[π]→ 0

in G-cohomology, for all indices i ⩾ 0.

Definition 4.2. — If Ω ⊂ Spec(Z) is a finite set of primes with p ̸∈ Ω,
we define the “Ω-imprimitive χκjp-twisted Selmer group of f over F cyc” to
be the kernel of the global-to-local restriction maps

H1(F cyc, Af [χ, j]
)∏

resν
−→

∏
ν∤p,ν ̸∈Ωcyc

H1(F cyc
ν , Af [χ, j]

)
×
∏
p|p

H1
ord
(
F cyc
p , Af [χ, j]

)
where the first product is over the places ν of F cyc not lying above Ω∪{p},
and

H1
ord
(
F cyc
p , Af [χ, j]

)
:= Im

(
H1(F cyc

p , Af [χ, j]
)
→ H1(IF cyc

p
, A−

f [χ, j]
))
.

Notation. — We shall label this cyclotomic Selmer group as
Sel[χ,j]F cyc,Ω(Af ).

Proposition 4.3. — SupposeH0(F, Vρ1,...,t⊗ωj
)

= {0} for some j ∈ Z.
Then

(a) Sel[χ,j]F cyc,Ω
(
Af
)

is cofinitely-generated over the algebra

Λcyc
F := OKJΓcyc

F K;

(b) Sel[χ,j]F cyc,Ω
(
Af
)

has finite π-torsion if and only if its Pontrjagin dual

Sel[χ,j]F cyc,Ω
(
Af
)∧ := Homcont

(
Sel[χ,j]F cyc,Ω

(
Af
)
,K/OK

)
is a Λcyc

F -torsion module with a trivial µ-invariant;
(c) if Sel[χ,j]F cyc,Ω

(
Af
)
[π] is finite then Sel[χ,j]F cyc,Ω

(
Af
)

is π-divisible, in
which case

λ
(

charΛcyc
F

(
Sel[χ,j]F cyc,Ω

(
Af
)∧
))

= dimF

(
Sel[χ,j]F cyc,Ω

(
Af
)
[π]
)
.

(1) Whenever µp ⊂ F , writing the ωj-twist in Hi+1
(

G, Vρ1,...,t ⊗ ωj
)

is completely
redundant.
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The proof of this result is identical to [9, Propositon 2.2] therefore we
omit it. We should point out that the triviality of the H0(F, Vρ1,...,t ⊗ ωj

)
is needed in (c) to establish the vanishing of both H0(F cyc, Af ⊗χκsp

)
and

H0(F cyc, (Af ⊗ χκsp)∗) for all s ∈ Z. Indeed it is straightforward to show
that as a discrete Λcyc

F -module,

Sel[χ,j]F cyc,Ω
(
Af
) ∼= Sel[χ,j

′]
F cyc,Ω

(
Af
)
⊗ [κp]j−j

′

if j ≡ j′ mod p−1, so Sel[χ,j]F cyc,Ω
(
Af
)

only depends on the class of j modulo
p− 1.

4.2. Comparison with the Bloch–Kato version

Throughout this section our goal is to compare Sel[χ,j]F cyc,Ω
(
Af
)

to the ob-
jects Bloch and Kato defined in [1]. We begin by recalling some background
material in [15] on p-adic representations. Fontaine has defined topological
rings Bcris ⊂ BdR with a continuous GQp -action. The discrete valuation
field BdR has the ring of integers B+

dR, the residue field Cp, and a filtration
Fili BdR = ti ·B+

dR given by powers of the uniformiser t for B+
dR. Its sub-

ring Bcris is equipped with a Frobenius operator φ, and a filtration induced
from that on BdR, i.e. Fili Bcris = ti ·B+

dR ∩Bcris.
Let K be a finite extension of Qp. If we are given a vector space V

with a continuous GK-action, Bloch and Kato construct three subgroups
of H1(K,V ) via

H1
e (K,V ) := Ker

(
H1(K,V )→ H1(K,V ⊗Bφ=1

cris
))
,

H1
f (K,V ) := Ker

(
H1(K,V )→ H1(K,V ⊗Bcris

))
and

H1
g (K,V ) := Ker

(
H1(K,V )→ H1(K,V ⊗BdR

))
.

For a GK-stable Zp-lattice T ↪→ V and ⋆ ∈ {e, f, g}, one defines H1
⋆ (K,T)

to be the preimage of each H1
⋆ (K,V ), and secondly

H1
⋆ (K,V/T) = H1

⋆ (K,V )⊗Qp Qp/Zp.

Finally for infinite extensions L/Qp, one simply takes the direct limit of
the relevant subgroupsH1

⋆ (L′,−) over the finite extensions L′/Qp contained
inside L.

Now fix a number field F , and a Hecke character χ : GF → µp∞ of finite
order.
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Definition 4.4. — For Ω ⊂ Spec(Z) a finite set such that p ̸∈ Ω and
⋆ ∈ {e, f, g}, the Bloch–Kato Selmer group is the kernel of the global-to-
local restriction maps

H1(F cyc, Af [χ, j]
)

∏
resν
−→

∏
ν∤p,ν ̸∈Ωcyc

H1(IF cyc
ν
, Af [χ, j]

)
×
∏
p|p

H1(F cyc
p , Af [χ, j]

)
H1
⋆

(
F cyc
p , Af [χ, j]

)
where the first product is over the places ν of F cyc not lying above Ω∪{p},
and

H1
⋆

(
F cyc
p , Af [χ, j]

)
= lim−→

n

H1
⋆

(
Fn,pn , Af [χ, j]

)
at each choice of ⋆ ∈ {e, f, g}

with Fn/F denoting the finite layer of degree pn in the cyclotomic Zp-
extension.

Notation. — These Ω-imprimitive versions will be written as
H1
⋆,Ω
(
F cyc, Af ⊗ χκjp

)
.

Proposition 4.5. — Suppose that the eigenforms f =
(
f1, . . . , ft

)
∈

H
(
ρ1,...,t

)
have weight k = (k1, . . . , kt) ⩾ 2, and assume that χ = 1F is the

trivial character. If the inequalities k1 ⩾ 3− t+
∑t
i=2 ki and 2− k1 ⩽ j ⩽

t− 1−
∑t
i=2 ki both hold, and for j = 0 if H0(FP(µp),F−Tf

)
vanishes at

primes P of F dividing p, then

Sel[1F ,j]F cyc,Ω
(
Af
)

= H1
g,Ω
(
F cyc, Af ⊗ κjp

)
.

Furthermore, if the twisted representation ρf1⊗· · ·⊗ρft⊗κjp does not satisfy
an exceptional p-adic zero condition(2) at those primes P of F dividing p,
then

Sel[1F ,j]F cyc,Ω
(
Af
)

= H1
g,Ω
(
F cyc, Af ⊗ κjp

)
= H1

f,Ω
(
F cyc, Af ⊗ κjp

)
.

The first inequality cuts out a subset of Zt in which the weight of
f1 dominates the other weights of f2, . . . , ft, therefore we call this the
f1-unbalanced region. Note outside of this unbalanced region the Selmer
groups above might not be equal.

Proof. — If ν is a place of F cyc lying above a prime ϖ ∤ p of F then be-
cause ϖ does not split completely in the cyclotomic Zp-extension, the quo-
tient group GF cyc

ν

/
IF cyc

ν
has profinite degree prime to the residue character-

istic of the field Fϖ. Consequently, the restriction mapping H1(F cyc
ν , Af ⊗

(2) A p-adic representation V is said to satisfy an “exceptional p-adic zero condition” if
either of 1 or p−1 occurs an eigenvalue of the Frobenius φ acting on a suitable subquotient
of Dcris(V ).
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κjp
)
→ H1(IF cyc

ν
, Af ⊗ κjp

)
is injective, hence the local conditions at ν

∣∣ϖ
agree for all of these Selmer groups. We thus focus attention on the local
conditions at primes p of F cyc dividing p.

Let P be a place of F above p and below p, and consider the fieldK = FP.
Recalling the sequence in (4.1), one knows the Hodge–Tate weights for each
Vfi are 0 and 1−ki, in which case Vf := Vf1⊗K · · ·⊗K Vft has Hodge–Tate
weights in

HT
(
Vf

)
=
{

t∑
i=1

δi · (1− ki)

∣∣∣∣∣δi ∈ {0, 1}
}
.

Setting F±Vf = F±Tf ⊗Zp Qp, it is then easy to determine that for all
j ∈ Z:

• HT
(
F+Vf (j)

)
=
{

1− k1 − j +
∑t
i=2 δi · (1− ki)

∣∣∣ δi ∈ {0, 1}}
• HT

(
F−Vf (j)

)
=
{
−j +

∑t
i=2 δi · (1− ki)

∣∣∣ δi ∈ {0, 1}}.

As an immediate corollary, one has HT
(
F+Vf (j)

)
⊂
[
1− k1 − j − rf , 1−

k1 − j
]

and HT
(
F−Vf (j)

)
⊂
[
− j − rf ,−j

]
where the integer rf =

1− t+
∑t
i=2 ki ⩾ 0.

Now the assumption 2−k1 ⩽ j ⩽ t−1−
∑t
i=2 ki implies j ∈

[
2−k1,−rf

]
∩

Z, hence F+Vf (j) has strictly negative HT-weights, whilst F−Vf (j) has
only positive or zero HT-weights. One thereby obtains the following two
equalities:

Fil0 DdR,K
(
F+Vf (j)

)
= {0}

and

Fil0 DdR,K
(
F−Vf (j)

)
= DdR,K

(
F−Vf (j)

)
where, as usual, DdR,K(V ) :=

(
V ⊗ BdR

)GK and Fil0 DdR,K(V ) :=
(
V ⊗

B+
dR
)GK . In other words, if the integer j ∈

[
2 − k1,−rf

]
then the repre-

sentation Vf (j) satisfies a “strong Panchishkin condition” as a local GK-
module, at each K = FP. Thus for every index n ⩾ 0, the GKn -cohomology
sequence

(4.3) H1(Kn,F+Vf (j)
)
→ H1

g

(
Kn,Vf (j)

)
→ H1

g

(
Kn,F−Vf (j)

)
must be exact, upon applying the same reasoning as Nekovár̃ in [32, §6.7].

For simplicity, let us first assume that µp ⊂ F so that Kcyc = K(µp∞).
As a local GK-module, each Vfi sits inside the short exact sequence

0→ Fil+ Vfi → Vfi → V ét
fi → 0
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where Fil+ Vfi ∼= K
(
κk−1
p εfiφ

−1
i

)
and V ét

fi
∼= K(φi), with εfi , φi described

in (4.1). Now choosing any integer n ⩾ max{ordp(cond
(
εi)) | i = 1, . . . , t},

the restriction

ρfi
∣∣
GK(µpn )

∈ Ext1
K[GK(µpn )]

(
K(φi),K

(
κk−1
p

(
εfi
)
(p)φ

−1
i

))
corresponds to an extension class of two semistable Gal

(
K/K(µpn)

)
-repre-

sentations, and Vfi is therefore a semistable representation over this larger
extension K(µpn). Applying [14, Théorème 5.1.7(i)], the tensor product
Vf of the individual Vfi ’s is semistable too, and then Théorème 5.1.7(iii)
of op. cit. implies both the quotient F−Vf and subrepresentation F+Vf ⊂
Vf are semistable K[GK(µpn )]-modules. Twisting the above by κjp, one de-
duces the semistability of F+Vf (j) and F−Vf (j) over these larger field
extensions K(µpn). As a consequence, we may establish that

H1
g

(
K(µpn),F−Vf (j)

)
= H1

f

(
K(µpn),F−Vf (j)

)
∼=

Dcris,K(µpn )
(
F−Vf (j)

)
(φ− 1) ·Dcris,K(µpn )

(
F−Vf (j)

)
by utilising weak admissibility and Bloch–Kato [1, Corollary 3.8.4].

Let us write K̃ = K ∩ Qunr
p to denote the maximal unramified subfield

in K. A straightforward calculation shows that

dim
K̃

(
Dcris,K(µpn )

(
F−Vf (j)

)
(φ− 1)

)
= dim

K̃

(
Dcris,K(µpn )

(
F−Vf (j)

)φ=1
)

= dim
K̃

(
Dcris,K(µpn )

(
F−Vf (j)

)
∩ Fil0 DdR,K(µpn )

(
F−Vf (j)

))
which coincides with the dimension of H0(K(µpn),F−Vf (j)

)
. One con-

cludes that:
• if j < 0 then this latter group vanishes by HT-weight considerations
• if j = 0 then H0(K(µp),F−Vf

)
= {0} =⇒ H0(K(µpn),F−Vf

)
=

{0}.
In summary, we have shown that H1

⋆

(
K(µpn),F−Vf (j)

)
is zero for ⋆ ∈

{f, g}. From the exactness of (4.3) and noting Kn = K(µpn+n0 ) for some
n0 ∈ N if µp ⊂ F ,

H1
g

(
Kn,Vf (j)

)
= Im

(
H1(Kn,F+Vf (j)

)
→ H1(Kn,Vf (j)

))
.

Taking the direct limit over n, the first assertion in our proposition will
follow.
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Alternatively, let us now assume µp ̸⊂ F so that
[
K(µp∞) : Kcyc] = p−1.

Repeating the above argument once more identifies H1
g

(
K(µpn),Vf (j)

)
with the image of H1(K(µpn),F+Vf (j)

)
inside H1(K(µpn),Vf (j)

)
pro-

vided that n ≫ 0. One can then decompose these H1-cohomology groups
into their ωi-eigenspaces, i.e.H1(K(µpn),−) ∼=

⊕p−2
i=0 H

1(K(µpn),−)(ωi) ∼=⊕p−2
i=0 H

1(Kn−1,−⊗ ω−i), whence

H1
g

(
Kn−1,Vf (j)

)
= Im

(
H1(Kn−1,F+Vf (j)

)
→ H1(Kn−1,Vf (j)

))
.

As we already saw, the first assertion follows from taking the direct limit
over n.

It remains to establish the second assertion which was stated in our
proposition. In fact, one can exploit the perfect duality (for de Rham rep-
resentations) between

H1
g

(
Kn,Vf (j)

)
H1
f

(
Kn,Vf (j)

) and
Dcris,Kn

(
V∗
f (1− j)

)
(φ− 1) ·Dcris,Kn

(
V∗
f (1− j)

) .
The latter space has the same dimension (as a K̃-vector space) as the φ-
invariant subspace inside Dcris,Kn

(
V∗
f (1− j)

)
, and Dcris,K

(
V∗
f (1− j)

)φ=1

clearly vanishes whenever Vf (j) does not satisfy an exceptional zero con-
dition at the prime p. □

4.3. Residual f1-induced Selmer structures

The next problem we face is to construct a residual avatar of the cyclo-
tomic Selmer group defined in Section 4.1. The local conditions away from
p are easy, but we need to tread carefully at primes dividing p, as working
with the maximal étale quotient of Vρ1,...,t is the wrong choice. For each
index i ∈ {1, . . . , t}, there exists an exact sequence of local GQp -modules

0→ V ′
ρi → Vρi → V ′′

ρi → 0

where dimF
(
V ′
ρi

)
= dimF

(
V ′′
ρi

)
= 1, and the quotient V ′′

ρi
= Vρi/V

′
ρi

is
unramified. We define GQp -modules V ′

ρ1,...,t
and V ′′

ρ1,...,t
by

V ′
ρ1,...,t

:= V ′
ρ1
⊗F (Vρ2 ⊗F · · · ⊗F Vρt)

and

V ′′
ρ1,...,t

:= V ′′
ρ1
⊗F (Vρ2 ⊗F · · · ⊗F Vρt)

which closely mirrors our earlier construction of A+
f and A−

f , respectively.
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Recall from Section 4.1 that for f ∈ H
(
ρ1,...,t

)
satisfying f1, . . . , ft ∈

KJqK with Im(χ) ⊂ K and associated uniformiser π = πf,K, there is the
exact sequence (4.2): for every i ⩾ 0 and closed normal subgroup G of the
absolute Galois group of F ,

0→
Hi
(
G,Af [χ, j]

)
π

∂i→ Hi+1(G,Vρ1,...,t⊗ ωj
)

βi+1→ Hi+1(G,Af [χ, j]
)
[π]→ 0.

Indeed if G ◁ Gal(FP/FP) for some prime P
∣∣p, there are short exact se-

quences

0→
Hi
(
G,A+

f [χ, j]
)

π

∂+
i→ Hi+1(G,V ′

ρ1,...,t
⊗ ωj

)
(4.4)

β+
i+1→ Hi+1(G,A+

f [χ, j]
)
[π]→ 0,

0→
Hi
(
G,A−

f [χ, j]
)

π

∂−
i→ Hi+1(G,V ′′

ρ1,...,t
⊗ ωj

)
(4.5)

β−
i+1→ Hi+1(G,A−

f [χ, j]
)
[π]→ 0.

Definition 4.6. — Let Ω ⊂ Spec(Z) be a set of primes with p ̸∈ Ω,
and j ∈ Z.

(i) We define the group Selmin,[j]
F cyc,Ω

(
ρ1,...,t

)
to be the kernel of the re-

striction maps

H1(F cyc, Vρ1,...,t ⊗ ωj)∏
resν
−→

∏
ν∤p, ν ̸∈Ωcyc

H1(F cyc
ν , Vρ1,...,t ⊗ ωj)×

∏
p|p

H1(IF cyc
p
, V ′′
ρ1,...,t

⊗ ωj)

with the first product ranging over the places ν of F cyc not lying
above Ω ∪ {p}.

(ii) If f ∈ H
(
ρ1,...,t

)
then Self,[χ,j]F cyc,Ω

(
ρ1,...,t

)
is the kernel of the restric-

tion maps

H1(F cyc, Vρ1,...,t ⊗ ωj)
∏

resν
−→

∏
ν∤p, ν ̸∈Ωcyc

H1(F cyc
ν , Vρ1,...,t ⊗ ωj)
H

1,[χ,j]
f -ind (F cyc

ν )

×
∏
p|p

H1(IF cyc
p
, V ′′
ρ1,...,t

⊗ ωj)
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where at each place ν ∤ p of F cyc, one selects the specific f -induced
local condition

H
1,[χ,j]
f -ind (F cyc

ν ) := Ker
(
H1(F cyc

ν , Vρ1,...,t ⊗ ωj
) β1−→ H1(F cyc

ν , Af [χ, j]
)
[π]
)
.

For i = 1, the homomorphism βi occurring in the short exact se-
quence (4.2) produces a mapping

β1,⋆ : Self,[χ,j]F cyc,Ω
(
ρ1,...,t

)
→ Sel[χ,j]F cyc,Ω

(
Af
)
[π]

of F-vector spaces. The next result confirms (amongst other things) this
mapping is an isomorphism, thereby providing a mechanism to compare
Sel[χ,j]F cyc,Ω

(
Af
)
[π] and Selmin,[j]

F cyc,Ω
(
ρ1,...,t

)
.

Proposition 4.7. — Assume that H0(F, Vρ1,...,t⊗ ωj
)

= {0} for some
j ∈ Z.

(a) If ν ∤ p is a finite place of F cyc, then

H
1,[χ,j]
f -ind (F cyc

ν ) = Im
(
H0(F cyc

ν , Af [χ, j]
)/
π
∂0
↪→ H1(F cyc

ν , Vρ1,...,t⊗ ωj
))
.

(b) If ν ∤ p lies over the prime l such that l ∤ disc(F ) · NF/Q(cond(χ))
and |cond(ρf1⊗· · ·⊗ρft)|−1

l = |cond(ρ1...,t)|−1
l then the cohomology

group H0(F cyc
ν , Af [χ, j]

)
is π-divisible,

β1 : H1(F cyc
ν , Vρ1,...,t ⊗ ωj

) ∼−→ H1(F cyc
ν , Af [χ, j]

)
[π]

and the local condition H
1,[χ,j]
f -ind (F cyc

ν ) is identically zero.

(c) The induced mapping β1,⋆ : Self,[χ,j]F cyc,Ω
(
ρ1,...,t

)
−→ Sel[χ,j]F cyc,Ω

(
Af
)
[π]

gives an isomorphism of F-vector spaces, for every tuple f ∈
H
(
ρ1,...,t

)
in the Hida family.

Proof. — Statement (a) follows from (4.2), taking i = 0 and

G = Gal
(
F ν/F

cyc
ν

)
.

The proof for (b) is entirely identical to that of [9, Lemma 2.3 and Corollary
2.8]. Lastly to prove (c), consider the commutative diagram below with
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exact columns
0 0y y

H0(F cyc, Af [χ, j]
)/
π

∏
loc(0)

p−→
∏

ν /∈Ωdisc,ν∤p

{
0
}
×
∏
p|p

H0(IF cyc
p
, A−

f [χ, j]
)/
πy∂0

y(0,∂−
0 )

H1(F cyc, Vρ1,...,t

) ∏
resν
−→

∏
ν /∈Ωcyc, ν∤p

H1(F cyc
ν , Af [χ, j]

)
[π]×

∏
p|p

H1(IF cyc
p
, V ′′
ρ1,...,t

⊗ ωj
)

yβ1

y(id,β−
1 )

H1(F cyc, Af [χ, j]
)
[π]

∏
resν
−→

∏
ν /∈Ωcyc,ν∤p

H1(F cyc
ν , Af [χ, j]

)
[π]×

∏
p|p

H1(IF cyc
p
, A−

f [χ, j]
)
[π]y y

0 0

where at each place p
∣∣p, the map loc(0)

p is induced modulo π from the
composition

Af [χ, j]GFcyc ↪→ Af [χ, j]
GFcyc

p

mod F+

−→ H0(F cyc
p , A−

f [χ, j]
)
⊂ H0(IF cyc

p
, A−

f [χ, j]
)
.

Applying the Snake Lemma to this diagram yields an exact sequence

0→
∏
p|p

Ker
(

loc(0)
p

)
∂0,⋆−→ Self,[χ,j]F cyc,Ω

(
ρ1,...,t

)
β1,⋆−→ Sel[χ,j]F cyc,Ω

(
Af
)
[π]→

∏
p|p

Coker
(

loc(0)
p

)
.

The proof will therefore be complete, provided that we can establish the
triviality of both the kernel and cokernel of loc(0)

p (−) at every prime p of
F cyc lying over p.

By assumption H0(F, Vρ1,...,t⊗ ωj
)

is zero, and as Γcyc
F
∼= Zp is a pro-p-

group it follows that H0(F cyc, Vρ1,...,t⊗ ωj
) ∼= H0(F cyc, Af [χ, j]

)
[π] must

also be trivial. Consequently the kernel of loc(0)
p vanishes at each finite place

p
∣∣p, as required.
We now show the vanishing of Coker

(
loc(0)

p

)
. In fact, it is enough to

establish π-divisibility for H0(IF cyc
p
, A−

f [χ, j]
)

at p
∣∣p. We should point out

that this module is equal to Tét
f1
⊗OK H0(IF cyc

p
, A(f2,...,ft)[χ, j]

)
since Tét

f1

has a trivial IF cyc
p

-action, and we will show that the latter H0-group is
π-divisible.
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Suppose initially that we have µp ⊂ F . Here one knows that F cyc
p =

F (µp∞)p, in which case 0 → K/OK ⊗ φ−1
i → Afi → K/OK ⊗ φi → 0 is a

short exact sequence of divisible Gal
(
F p/F

cyc
p

)
-modules for i ∈ {2, . . . , t}.

By an inductive argument, one obtains a long exact sequence of GF cyc
p

-
modules

0→ A
(1)
(f2,...,ft) ⊗ χ→ · · · → A

(2t−2)
(f2,...,ft) ⊗ χ→ A(f2,...,ft)[χ, j]

→ A
(2t−2+1)
(f2,...,ft) ⊗ χ→ · · · → A

(2t−1)
(f2,...,ft) ⊗ χ→ 0

where A(n)
(f2,...,ft) is unramified, and

ckOK

(
A

(n)
(f2,...,ft)

)
=
{
n if n ⩽ 2t−2,

2t−1 − n+ 1 if n > 2t−2.

We may therefore conclude that:

• if χ
(
IF cyc

p

)
̸= {1} then H0(IF cyc

p
, A(f2,...,ft)[χ, j]

)
is equal to zero;

• if χ
(
IF cyc

p

)
= {1} then H0(IF cyc

p
, A(f2,...,ft)[χ, j]

) ∼= (K/OK
)⊕2t−1

.

In both situations the π-divisibility of these H0-cohomology groups is clear.

Alternatively, suppose instead that µp ̸⊂ F . From the standard proper-
ties of continuous cohomology, there is a short exact sequence

0→ Qp/Zp ⊗Zp H
0(IF cyc

p
,T(f2,...,ft)[χ, j]

)
→ H0(IF cyc

p
, A(f2,...,ft)[χ, j]

)
→ H1(IF cyc

p
,T(f2,...,ft)[χ, j]

)
[p∞]→ 0

and the proof will be complete if the right-hand p-primary torsion group
vanishes. If ∆p = Gal

(
F cyc
p (µp)

/
F cyc
p

)
, then under the inflation-restriction

exact sequence

0→ H1(∆p,T(f2,...,ft)[χ, j]
IFcyc

p
(µp)
) inf−→ H1(IF cyc

p
,T(f2,...,ft)[χ, j]

))
res−→ H1(IF cyc

p (µp),T(f2,...,ft)[χ, j]
))

the p∞-part of H1(IF cyc
p
,T(f2,...,ft)[χ, j]

)
injects into

H1(IF cyc
p (µp),T(f2,...,ft)[χ, j]

)
because #∆p is coprime to p. Now over the larger cyclotomic extension
F cyc
p (µp) we have already shownH0(IF cyc

p (µp), A(f2,...,ft)[χ, j]
)

is π-divisible,
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implying that

0→ Qp/Zp ⊗Zp H
0(IF cyc

p (µp),T(f2,...,ft)[χ, j]
)

∼−→ H0(IF cyc
p (µp), A(f2,...,ft)[χ, j]

)
−→ H1(IF cyc

p (µp),T(f2,...,ft)[χ, j]
)
[p∞] = 0.

This latter sequence forces the p∞-part of H1(IF cyc
p
,T(f2,...,ft)[χ, j]

)
to van-

ish too.
The triviality of the cokernel of loc(0)

p at those p
∣∣p now follows in both

cases. □

5. Variation of the algebraic Iwasawa invariants

The technical portion of the paper is complete, and we apply these ideas
to study the µ- and λ-invariant of the Iwasawa module Sel[χ,j]F cyc,Ω

(
Af
)∧

in various situations. Throughout assume there is a minimal tuple f† =(
f†

1 , . . . , f
†
t

)
∈ H

(
ρ1,...,t

)
as in Theorem 3.7, such that cond

(
ρf†

1
⊗ · · · ⊗

ρf†
t

)
(p) = cond

(
ρ1,...,t

)
is true. We shall not continually restate this as-

sumption in the forthcoming results in Section 5.

5.1. Minimality and the finiteness condition

We begin by relating the arithmetic of the minimal tuple f† over F cyc

to the F-vector space Selmin,[j]
F cyc,Ω

(
ρ1,...,t

)
. As usual F denotes a number field,

and χ : GF → µp∞ is a finite order character.

Lemma 5.1. — Suppose that supp
(
disc(F ) ·NF/Q

(
cond(χ)

))
⊂ Ω with

p ̸∈ Ω, and that H0(F, Vρ1,...,t ⊗ ωj
)

= {0} for a particular twist j ∈
{0, . . . , p− 2}.

(i) At every minimal tuple f† ∈ H
(
ρ1,...,t

)
∩ K†JqK, there are isomor-

phisms

Sel[χ,j]F cyc,Ω
(
Af†

)
[π†] ∼= Self

†,[χ,j]
F cyc,Ω

(
ρ1,...,t

) ∼= Selmin,[j]
F cyc,Ω

(
ρ1,...,t

)
where the uniformiser π† = πf†,K† .

(ii) Selmin,[j]
F cyc,Ω

(
ρ1,...,t

)
is finite if and only if for some (every) tuple f ∈

H
(
ρ1,...,t

)
and (every) Hecke character χ : GF → µp∞ of finite

order, the Pontrjagin dual Sel[χ,j]F cyc,Ω
(
Af
)∧ is a finitely-generated

Λcyc
F -torsion module with a trivial µ-invariant.
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Proof. — To show assertion (i), recall that Proposition 4.7(c) states the
mapping

β1,⋆ : Self
†,[χ,j]
F cyc,Ω

(
ρ1,...,t

)
−→ Sel[χ,j]F cyc,Ω

(
Af†

)
[π†]

is an isomorphism, so we need to compare Self
†,[χ,j]
F cyc,Ω

(
ρ1,...,t

)
and

Selmin,[j]
F cyc,Ω

(
ρ1,...,t

)
. The local conditions at p

∣∣p are identical for both Selmer
groups by Definition 4.6. Alternatively, if ν ∤ p does not lie above the primes
in Ω then the requirements of Proposition 4.7(b) are clearly satisfied, hence
H

1,[χ,j]
f†-ind(F cyc

ν ) must be equal to zero.

In order to establish part (ii), if dimF
(

Selmin,[j]
F cyc,Ω(ρ1,...,t)

)
< ∞ then

because
Sel

f,[χ,j]
Fcyc,Ω(ρ1,...,t)

Selmin,[j]
Fcyc,Ω(ρ1,...,t)

∼=
∏
ν∤p, ν ̸∈Ωcyc H

1,[χ,j]
f-ind (F cyc

ν ) is a finite group by

Proposition 4.7(b), it therefore follows that dimF
(

Self,[χ,j]F cyc,Ω(ρ1,...,t)
)
<∞.

As a consequence of 4.7(c) the π-torsion subgroup in Sel[χ,j]F cyc,Ω
(
Af
)

must
be finite as well, in which case both the Λcyc

F -rank and µ-invariant of
Sel[χ,j]F cyc,Ω

(
Af
)∧ are zero using Proposition 4.3(b). Note that the “ ⇐= ”

statement follows by carefully reversing this argument. □

Definition 5.2. — For every finite set of primes Ω ⊂ Spec(Z) not con-
taining p, we write µ[χ,j]

F,Ω (f) and λ[χ,j]
F,Ω (f) for (respectively) the µ-invariant

and λ-invariant of

charΛcyc
F

(
Sel[χ,j]F cyc,Ω

(
Af
))
∈ Λcyc

F

/(
Λcyc
F

)× ∼= OKJXK
/
OKJXK×,

at each tuple f ∈ H
(
ρ1,...,t

)
in the Hida family attached to ρ1,...,t = ρ1 ⊗

· · · ⊗ ρt.

As we already observed, µ[χ,j]
F,Ω (f) and λ[χ,j]

F,Ω (f) only depend on j modulo
p − 1. The following result provides an explicit formula used to compute
these invariants.

Theorem 5.3. — Assume that each of the following three conditions
hold:

• supp
(
disc(F ) ·NF/Q

(
cond(χ)

))
⊂ Ω ∪ {p}

• H0(F, Vρ1,...,t⊗ ωj
)

= {0} for some integer j
• Selmin,[j]

F cyc,Ω
(
ρ1,...,t

)
is finite dimensional over F.
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Then at every tuple f ∈ H
(
ρ1,...,t

)
one finds that µ[χ,j]

F,Ω (f) equals zero, and
moreover

λ
[χ,j]
F,Ω (f) = dimF

(
Selmin,[j]

F cyc,Ω
(
ρ1,...,t

))
+

∑
ν|cond(Vf ),
ν∤p, ν ̸∈Ωcyc

dimF
(
H1(F cyc

ν , Vρ1,...,t ⊗ ωj
))
− δ[χ,j]

F,ν

(
f
)

where δ[χ,j]
F,ν

(
f
)
∈ Z⩾0 denotes the λ-invariant of

charΛcyc
F

(
H1(F cyc

ν , Af [χ, j]
)∧
)
.

Proof. — Firstly the vanishing of µ
[χ,j]
F,Ω (f) follows directly from

Lemma 5.1(ii). Let us fix a larger set of primes Ω̃ ⊃ Ω ∪ supp
(
N tame
f1

×
· · · ×N tame

ft

)
with p ̸∈ Ω̃. Now

0→ Sel[χ,j]F cyc,Ω
(
Af
)
→ Sel[χ,j]

F cyc,Ω̃

(
Af
)
→

∏
ν∈Ω̃cyc−Ωcyc

H1(F cyc
ν , Af [χ, j]

)
→ 0

is an exact sequence of π-divisible groups, thus by the additivity of the
λ-invariant

(5.1) λ
[χ,j]
F,Ω̃

(f) = λ
[χ,j]
F,Ω (f) +

∑
ν∈Ω̃cyc−Ωcyc

δ
[χ,j]
F,ν

(
f
)
.

Furthermore, our preceding work establishes that

(5.2)
λ

[χ,j]
F,Ω̃

(f) by 4.3(c)= dimF

(
Sel[χ,j]

F cyc,Ω̃

(
Af
)
[π]
)

by 4.7(c)= dimF

(
Self,[χ,j]

F cyc,Ω̃

(
ρ1,...,t

))
.

We next make the important comment that

Self,[χ,j]
F cyc,Ω̃

(
ρ1,...,t

)
= Self

†,[χ,j]

F cyc,Ω̃

(
ρ1,...,t

)
for any minimally ramified tuple f† =

(
f†

1 , . . . , f
†
t

)
∈ H

(
ρ1,...,t

)
(see Theo-

rem 3.7) – this assertion follows because H1,[χ,j]
f-ind (F cyc

ν ) = H
1,[χ,j]
f†-ind(F cyc

ν ) =

{0} for all primes ν ̸∈ Ω̃cyc with ν ∤ p, upon utilising Proposition 4.7(b).
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As an immediate corollary,

dimF

(
Self,[χ,j]

F cyc,Ω̃

(
ρ1,...,t

))
= dimF

(
Self

†,[χ,j]

F cyc,Ω̃

(
ρ1,...,t

))
by 5.1(i)= dimF

(
Selmin,[j]

F cyc,Ω̃

(
ρ1,...,t

))

= dimF

(
Selmin,[j]

F cyc,Ω
(
ρ1,...,t

))
+

∑
ν∈Ω̃cyc−Ωcyc

dimF
(
H1(F cyc

ν , Vρ1,...,t ⊗ ωj
))

and combining these identities above with Equations (5.1) and (5.2):

λ
[χ,j]
F,Ω (f) = dimF

(
Selmin,[j]

F cyc,Ω
(
ρ1,...,t

))
+

∑
ν∈Ω̃cyc−Ωcyc

dimF
(
H1(F cyc

ν , Vρ1,...,t ⊗ ωj
))
− δ[χ,j]

F,ν

(
f
)
.

Finally at those places ν ∤ cond(Vf ) lying outside the finite set Ωcyc, one
finds that

δ
[χ,j]
F,ν

(
f
)

= dimF

(
H1(F cyc

ν , Af [χ, j]
)
[π]
)

by 4.7(b)= dimF
(
H1(F cyc

ν , Vρ1,...,t ⊗ ωj
))

and the formula stated in the theorem follows at once. □

5.2. Controlling the error terms eq(−)

We next focus on the λ-invariant associated to the terms
H1(F cyc

ν , Af [χ, j]
)
, and study the variation over TΣ(ρ1,...,t). Let Q ⊂ Fn :=

Q(µpn) ⊂ D be an increasing chain of finite normal extensions of fields, and
we write regD/Q for the regular representation attached to Gal(D/Q). In
addition, we shall suppose that Gal(D/Fn) is an abelian group of p-power
order. Given a character χ : Gal(D/Fw) → µp∞ for some w ∈ {0, . . . , n},
let us define Fχ := Q(µp∞)Stab(χ) where Stab(χ) ⊂ Gal(Q(µp∞)/Q) is the
stabilizer of χ.

Now choosing appropriate subsets R̂(w)
D/F ⊂ Hom

(
Gal(D/Q(µpw)), µp∞

)
and R̂

(w,χ)
F/Q ⊂ Hom

(
Gal(Fn/Q),Q×

p

)
, the regular representation neatly

ANNALES DE L’INSTITUT FOURIER



IWASAWA INVARIANTS FOR TENSOR PRODUCTS 39

decomposes into
(5.3)

regD/Q
∼=

n⊕
w=0

⊕
χ∈R̂(w)

D/F

⊕
ψ∈R̂(w,χ)

F/Q

ϱ
dim(ϱχ,ψ)
χ,ψ where dim(ϱχ,ψ) = [Fχ : Q],

with each ϱχ,ψ := ψ ⊗ IndGal(D/Q)
Stab(χ)⋉Gal(D/Fn)

(
χFn

)
an irreducible GQ-rep-

resentation. The following result generalises work of Greenberg and Vat-
sal [19, Proposition 2.4].

Lemma 5.4. — For all rational primes q ̸= p and j ∈ Z, the non-negative
integer

δ
[j]
D,q
(
f
)

:=
∑
ν|q

n∑
w=0

∑
χ∈R̂(w)

D/F

∑
ψ∈R̂(w,χ)

F/Q

dim(ϱχ,ψ) · [Fχ : Q]× δ[χψF ,j]
Fw,ν

(
f
)

equals the λ-invariant of the (regD/Q⊗ωj)-twisted Euler factor
(cf. Lemma 3.5)

det
(

1− Frobq ·X
∣∣∣(ρf1 ⊗ · · · ⊗ ρft ⊗ regD/Q⊗ωj

)
Iq

) ∣∣∣
X=ϑ([q]−1)

at every tuple f = (f1, . . . , ft) ∈ H
(
ρ1,...,t

)
of eigenforms in the Hida family.

Proof. — Examining the decomposition in (5.3) and applying Shapiro’s
Lemma,∏

ν|q

n∏
w=0

∏
χ

∏
ψ

H1(F cyc
χ,ν , Af [χψF , j]

)dim(ϱχ,ψ)

∼=
∏
η|q

H1(Qcyc
η , Af ⊗ κjp ⊗ regD/Q

)
where η ranges over the primes of Qcyc lying above q (see also [9,
Lemma 2.4]). The λ-invariant of the Pontrjagin dual of the left-hand side
is by definition δ

[j]
D,q
(
f
)
. It thus remains to show that the λ-invariant for

the (dual of the) right-hand side coincides with the λ-invariant of the(
regD/Q⊗ωj

)
-twisted Euler factor above.

To begin with H1(Qcyc
η , Af ⊗ κjp ⊗ regD/Q

) ∼= H1(Qcyc
η , Af ⊗ ωj ⊗

regD/Q
)
⊗ [κjp] so it is enough to compute the λ-invariant of the Pontr-

jagin dual of the latter group. Applying [17, Proposition 2], a local Euler
characteristic calculation implies that

ckOK

(∏
η|q

H1(Qcyc
η , Af ⊗ ωj ⊗ regD/Q

))
= sq × dimK

(
H0(Qcyc

η ,V∗,[j]
D/Q

))
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for any such η lying over q; here sq is the largest power of p with qp−1 ≡
1(mod sqp), whilst V∗,[j]

D/Q := HomK
(
Vf ⊗ ωj ⊗ regD/Q,K(1)

)
denotes the

Kummer dual module.
Let Iq be the inertia subgroup inside Gal

(
Qq/Qunr

q

)
, and write

(
V [j]

D/Q
)

Iq
for the maximal quotient of the vector space Vf ⊗ωj⊗ regD/Q on which Iq
acts trivially. The eigenvalues of Frobq ∈ Gal

(
Qunr
q /Qq

)
acting on the Iq-

coinvariants
(
V [j]

D/Q
)

Iq
will henceforth be labelled as α1, . . . , αe, and counted

with multiplicity.
Because Iq acts trivially on K(1) and Qcyc

η ⊂ Qunr
q for η

∣∣q, there is
an injection H0(Qcyc

η ,V∗,[j]
D/Q

)
↪→ HomK

((
V [j]

D/Q
)

Iq
,K(1)

)
which is a Galois

equivariant mapping. The eigenvalues of Frobq on the right-hand group
are clearly q−1α1, . . . , q

−1αe. Moreover Gal
(
Qunr
q /Qcyc

η

)
operates through

a finite quotient of size coprime to p, hence the eigenvalues of Frobq acting
on H0(Qcyc

η ,V∗,[j]
D/Q

)
must belong to the set{

q−1αs

∣∣∣ s = 1, . . . , e and q−1αs is a principal local unit of K(αs)
}
.

The rest of the argument follows very similar lines to [19, Proposition 2.4].
For each η

∣∣q let Γη ⊂ Γcyc denote the corresponding decomposition
subgroup, in particular Γη ∼= Zp and [Γcyc : Γη] = sq. We will then
write γη for the image of Frobq inside Γη, so that Γη = < γη > and also
Γcyc ∋ ϑ([q]) 7→

(
γη
)
η
∈
∐
η|q Γη. One next defines the power series element

Pη
(
γη − 1

)
:=

e∏
s=1

(
1− q−1αsγη

)
∈ OKJΓηK ⊂ OKJΓcycK ∼= OKJXK.

The µ-invariant of Pq is trivial, hence using the Weierstrass Preparation
Theorem, Pη(X) = uη(X) · hη(X) where uη(X) ∈ OKJXK× and hη(X) ∈
OK[X] is a product of distinguished polynomials. By the above discussion
and the construction of Pη:

λ

∏
η|q

H1(Qcyc
η , Af ⊗ ωj ⊗ regD/Q

)∧


= ckOK

∏
η|q

H1(Qcyc
η , Af ⊗ ωj ⊗ regD/Q

)
=
[
Γcyc : Γη

]
× dimK

(
H0(Qcyc

η ,V∗,[j]
D/Q

))
= deg

(
hη(X)

)
.
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Let us set Jη = Gal
(
QQq
q

/
Qcyc
η

)
, Iq = Iq/Qq and A = Af ⊗ ωj ⊗

regD/Q, where as before Qq denotes the unique normal subgroup of Iq
such that Iq/Qq ∼= Zp(1). The proof in op. cit. implies H1(Qcyc

η ,A
)

=

H1(Jη,AQq
) ∼= H1(Iq,AQq

)Jη/Iq , and secondly that there exist
Gal

(
Qunr
q /Qq

)
-equivariant isomorphisms

H1(Iq,AQq

) ∼= Hom
(
Zp(1),AQq

) ∼= AQq
(−1).

The eigenvalues of Frobq onAQq (−1)∧ are q−1α1, . . . , q
−1αe, and the eigen-

values of γη acting on
(
AQq (−1)Jη/Iq

)∧ are the subset of these which are
principal units.

In conclusion, we have just shown that Pη generates the characteristic
power series of the compact torsion OKJΓcycK-module

∏
η|qH

1(Qcyc
η , Af ⊗

ωj ⊗ regD/Q
)∧. This element has trivial µ-invariant, and its zeroes are in

one-to-one correspondence with those of the twisted Euler factor from the
statement of the lemma. □

Recalling Lemma 3.5, the λ-invariant associated to the
(

regD/Q⊗ωj
)
-

twisted Euler factor at a rational prime q depends exclusively on the multi-
branch a on which f = (f1, . . . , ft) lies. One then interprets δ[j]

D,q
(
f
)

as
the generic λ-invariant for the determinant of Frobq acting on the Iq-
coinvariants of ρT(a)0 ⊗ regD/Q⊗ωj .

Definition 5.5. — Let D be a number field which is a normal extension
of Q. For each multi-branch a = (a1, . . . , at) ∈ B(ρ1,...,t; Σ) and prime q ̸= p,
we define

e[j]
D,q
(
a
)

:=λ

(
det
(
1−Frobq ·X

∣∣∣(ρf1⊗· · ·⊗ρft⊗regD/Q⊗ωj
)
Iq

)∣∣∣
X=ϑ([q]−1)

)
for any (all) tuples f = (f1, . . . , ft) ∈ H

(
ρ1,...,t

)
lying on the same multi-

branch a.

These error terms e[j]
D,q(−) measure the (discrete) jumps in the λ-invariant

for the cyclotomic Selmer group attached to f as we switch between multi-
branches. In the particular situation where µp ⊂ D, one already knows
regD/Q⊗ωj ∼= regD/Q in which case we drop the superscript “[j]” entirely
from the notation for e[j]

D,q.

5.3. Proof of Theorem 2.1

We now prove the three main results from Section 2, starting with the
first. We shall set D = F = Q, Ω = ∅ and the character χ = 1Q. As
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one of Hypotheses (H4a) or (H4b) holds, the existence of a minimally
ramified tuple f† ∈ H

(
ρ1,...,t

)
is guaranteed by Theorem 3.7. In fact,

because ω−j is not a sub-GQ-representation inside ρ1,...,t, it also follows
that H0(Q, Vρ1,...,t ⊗ ωj

)
is zero. Applying Lemma 5.1(ii), if one knows

SelQcyc
(
f, ωj

)∧ is Λ-torsion and µ(f, ωj) = 0 at some tuple of forms f ∈
H
(
ρ1⊗· · ·⊗ρt

)
, then Selmin,[j]

F cyc,Ω
(
ρ1,...,t

)
must be finite. Moreover this same

lemma implies both the Λ-torsion property of SelQcyc
(
f ′, ωj

)∧ and the triv-
iality of the µ-invariant extends to every f ′ ∈ H

(
ρ1 ⊗ · · · ⊗ ρt

)
.

To establish the second statement in Theorem 2.1, if f (1), f (2) ∈ H
(
ρ1⊗

· · · ⊗ ρt
)

then recall we have written c
(
f (⋆)) to indicate the conductor of

Vf(⋆) over Q. Writing dmin,[j] for the F-dimension of Selmin,[j]
Qcyc,∅

(
ρ1,...,t

)
, and

utilising Theorem 5.3:

λ
[j]
Q,∅
(
f (1)) = dmin,[j](5.4)

+
∑

η|c(f(1))c(f(2)),η∤p

dimF
(
H1(Qcyc

η , Vρ1,...,t ⊗ ωj
))
− δ[j]

Q,η
(
f (1)),

λ
[j]
Q,∅
(
f (2)) = dmin,[j](5.5)

+
∑

η|c(f(1))c(f(2)),η∤p

dimF
(
H1(Qcyc

η , Vρ1,...,t ⊗ ωj
))
− δ[j]

Q,η
(
f (2))

since δ[j]
Q,η
(
f (1)) equals dimF

(
H1(Qcyc

η , Vρ1,...,t ⊗ ωj
))

if η | c
(
f (2)) but η ∤

c
(
f (1)), while δ[j]

Q,η
(
f (2)) equals dimF

(
H1(Qcyc

η , Vρ1,...,t ⊗ ωj
))

if η | c
(
f (1))

but η ∤ c
(
f (2)). Subtracting Equation (5.5) from (5.4), one readily deduces

that

λ
[j]
Q,∅
(
f (1)) = λ

[j]
Q,∅
(
f (2))+

∑
q|c(f(1))c(f(2)),q ̸=p

∑
η|q

δ
[j]
Q,η
(
f (2))− δ[j]

Q,η
(
f (1))

and using Lemma 5.4 and Definition 5.5, the inner sum is e[j]
Q,q
(
a(2)) −

e[j]
Q,q
(
a(1)). Lastly, λ[j]

Q,∅
(
f (⋆)) = λ

(
f (⋆), ωj

)
at unbalanced tuples f (⋆) by

Proposition 4.5.

5.4. Proof of Theorem 2.2

In this section we take t = 2, Ω = ∅ and p > 3. In particular, the
condition that a pair

(
f1, f2

)
∈ H

(
ρ1 ⊗ ρ2

)
is unbalanced just means that
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the weight of f1 is strictly greater than the weight of f2, i.e. k1 > k2. For a
Dirichlet character χ and s ∈ C with Re(s)≫ 0, the Rankin L-function is

L
(
f1⊗f2, χ, s

)
= ζ
(
2s+2−k1−k2, εf1εf2χ

2)× ∞∑
n=1

an(f1)an(f2)χ(n) ·n−s.

Also, the completed L-function Ψ∞
(
f1 ⊗ f2, χ, s

)
= Γ(s)Γ(s+1−k2)

(2π)2s · L(f1 ⊗
f2,χ,s) admits an analytic continuation to the whole complex plane (see [37]
for details).

Before we give the proof of Theorem 2.2, let us first recall some of the
p-adic theory. From the work of Hida and Panchishkin [21, 33], for each
j ∈ {0, . . . , p− 2} there exists a unique analytic element Lan

p

(
f1⊗ f2, ω

j
)
∈

OKJΓcycK[1/πK] interpolating

χκrp

(
Lan
p

(
f1 ⊗ f2, ω

j
))

=
G2
χω−jp

nχωj(k2+2r−1)Ep(r, χω−j)
(−1)r · ap(f1)2nχωj

·
L{p}

(
f1 ⊗f2, χω

j , k2+r
)

(2πi)1−k2 ·
〈
f̃1, f̃1

〉
Pet

at points r ∈ {0, . . . , k1−k2−1}, and characters χ : Γcyc → Q×
p of conductor

pnχ . Here Gχ =
∑pnχ

j=1 χ(n) exp
(
2π
√
−1j/pnχ

)
indicates the Gauss sum

associated to χ, and the Euler factor Ep(s, χω−j) equals 1 if the character
χ is non-trivial, while

Ep(s, ωj) =
(
1−ω−j(p)ap(f1)−1ap(f2)ps

)
·
(
1−ωj(p)ap(f1)ap(f2)p−s−k2

)−1
.

We next utilise the Euler system of Beilinson–Flach elements, which re-
quires us to check some necessary conditions from [27, §11] hold in order
to use these results. By the definition of admissibility for a pair (f1, f2) in
Section 2.2, the conditions

• the pair of eigenforms (f1, f2) is unbalanced
• if the weight k2 = 2 then f2 is not Steinberg at p
• both f1 and f2 are non-Eisenstein modulo πK

imply that [27, Hypothesis 1.11] is true (note the prime p divides the level
of the newform, f̃i say, whose associated p-stabilisation is fi, only if ki = 2
and p

∣∣∣∣N
f̃i

). One also checks that [27, Hypothesis 1.12] holds whenever the
following are true:

• there exists τ ∈ Gal
(
Q/Q(µp∞)

)
so that Tf1 ⊗Tf2

(τ−1)·Tf1 ⊗Tf2
is free of

rank one
• there exists σ ∈ Gal

(
Q/Q(µp∞)

)
which acts on Tf1 ⊗Tf2 through

− id4.
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Using deep arithmetic properties of Rankin–Eisenstein classes, the funda-
mental results of Kings, Loeffler and Zerbes [27, Theorem 11.6.4(ii)] im-
ply(3) that Sel[1Q,j]

Qcyc,∅
(
Af
)∧ is Λcyc-torsion for all f = (f1, f2) ∈ H

(
ρ1 ⊗

ρ2
)

such that Lan
p

(
f1 ⊗ f2, ω

1−j) ̸= 0. Furthermore, applying [27, Theo-
rem 11.6.4(iii)] produces a divisibility of power series

charΛcyc

(
Sel[1Q,j]

Qcyc,∅
(
Af
)∧
)

divides hf1 · Tw1−j

(
Lan
p

(
f1 ⊗ f2, ω

j
))

for each integer j, where the isomorphism Twr : Λcyc ∼−→ Λcyc sends γ0 7→
κrp(γ0)γ0.

As an immediate consequence, one may deduce some useful relations be-
tween the algebraic Iwasawa invariants and the analytic Iwasawa invariants,
namely that:{

zeros of charΛcyc

(
Sel[1Q,j]

Qcyc,∅(Af )∧
)}

(5.6)

⊂
{

zeros of Tw1−j
(
Lan
p (f1 ⊗ f2, ω

j)
)}

µ
(
f1 ⊗ f2, ω

j
)
⩽ µan(f1 ⊗ f2, ω

j
)

(5.7)

and λ
(
f1 ⊗ f2, ω

j
)
⩽ λan(f1 ⊗ f2, ω

j
)
.

Now by assumption µan(f1 ⊗ f2, ω
j
)

= 0, therefore µ
(
f1 ⊗ f2, ω

j
)

= 0
from the first part of (5.7) because it is sandwiched between zero from
both below and above. Theorem 2.1(i) tells us that SelQcyc

(
f ′, ωj

)
is Λcyc-

cotorsion and µ
(
f ′

1 ⊗ f ′
2, ω

j
)

= 0 for every unbalanced tuple f ′ = (f ′
1, f

′
2).

Applying Theorem 2.1(ii), one finds that

(5.8) λ
(
f ′

1 ⊗ f ′
2, ω

j
)
− λ

(
f1 ⊗ f2, ω

j
)

=
∑

q|c(f ′
1⊗f ′

2)c(f1⊗f2), q ̸=p

eq
(
a, ωj

)
− eq

(
a′, ωj

)
.

The analytic version of this formula is evidently given by

(5.9) λan(f ′
1 ⊗ f ′

2, ω
j
)
− λan(f1 ⊗ f2, ω

j
)

=
∑

q|c(f ′
1⊗f ′

2)c(f1⊗f2), q ̸=p

eq
(
a, ωj

)
− eq

(
a′, ωj

)
(3) The authors work with H̃2(Z[1/S], Tp(f1 ⊗ f2)∗ ⊗ ΛΓ(−j); ∆(f1)) instead of
Sel[1Q,j]

Qcyc,∅(Af )∧ (using the specific notation of op. cit.), which is also a compact finitely-
generated Λcyc-module; however the former object is isomorphic to the latter by [27,
Proposition 11.2.9], and these both coincide with the Bloch–Kato version within the
critical region j ∈ {2 − k1, . . . , 1 − k2} by Proposition 4.5.
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which was proven if f ′
1 = f1 and k′

2 = k2 in [10, Theorem 1.2(ii)], and
has subsequently been proven by the author in more generality (see the
preprint [7]).

Note the congruence in Theorem 1.2(i) of op. cit. implies Lan
p

(
f ′

1 ⊗
f ′

2, ω
1−j) ̸= 0, and that µan(f ′

1 ⊗ f ′
2, ω

j
)

= µan(f1 ⊗ f2, ω
j
)

which we
already know to be zero. Combining together Equations (5.8) and (5.9), it
follows readily that

λan(f ′
1 ⊗ f ′

2, ω
j
)

= λ
(
f ′

1 ⊗ f ′
2, ω

j
)

+
(
λan(f1 ⊗ f2, ω

j
)
− λ

(
f1 ⊗ f2, ω

j
))
.

However λan(f1 ⊗ f2, ω
j
)

= λ
(
f1 ⊗ f2, ω

j
)

because IMC(f1 ⊗ f2, j) is true,
so that

(5.10)
µan(f ′

1 ⊗ f ′
2, ω

j
)

= µ
(
f ′

1 ⊗ f ′
2, ω

j
)

= 0

and λan(f ′
1 ⊗ f ′

2, ω
j
)

= λ
(
f ′

1 ⊗ f ′
2, ω

j
)
.

Exploiting the containment in (5.6) for the admissible pair f ′ = (f ′
1, f

′
2)

now yields

(5.11)
{

zeros of charΛcyc
(

Sel[1Q,j]
Qcyc,∅(Af ′)∧)}
⊂
{

zeros of Tw1−j
(
Lan
p (f ′

1 ⊗ f ′
2, ω

j)
)}

and the second part of (5.10) turns this containment into an actual equality
of sets. Since any two elements F,G ∈ Λcyc satisfying: (i) µ(F ) = µ(G),
(ii) λ(F ) = λ(G) and (iii) {zeros of F} = {zeros of G} must be equal up
to a unit, clearly one has

charΛcyc
(

Sel[1Q,j]
Qcyc,∅(Af ′)∧) · Λcyc = hf ′

1
· Tw1−j

(
Lan
p (f ′

1 ⊗ f ′
2, ω

j)
)
· Λcyc

in which case IMC(f ′
1 ⊗ f ′

2, j) must be true as well, and the theorem is
established.

Remark. — The restrictions f ′
1 = f1 and k′

2 = k2 are an unwanted by-
product of the low-brow proof of [10, Theorem 1.2], which prevents the
weights of (f ′

1, f
′
2) from moving around. To restore variation in (f ′

1, f
′
2) one

uses a Hida theory approach: first allow f ′
1 and f ′

2 to vary over weight-
space, producing families F′

1 and F′
2, and then compute the F′

1-isotypic
projection of F′

2 · δ(−)(Eis) where Eis is an appropriate Λwt-adic Eisenstein
series, and δ(−) denotes the Maass–Shimura differential operator.

5.5. Proof of Theorem 2.3

We begin by recalling from Section 2.3 that D∞ is a p-adic Lie exten-
sion containing Q(µp∞), in which only finitely many primes ramify. We
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shall write Dn for the n-th layer, so that D∞ =
⋃
n>0Dn and D1 = Q(µp).

Furthermore, G∞ = Gal
(
D∞/Q(µp)

)
is endowed with the additional struc-

ture of a compact, non-abelian, finite-dimensional pro-p-group without any
p-torsion.

It is worthwhile to list which types of non-abelian group can occur for G∞.
Firstly, if D∞ = Q

(
µp∞ ,m

1/p∞

1 , . . . ,m
1/p∞

d

)
is a d-fold false Tate extension,

then
• G∞ ∼= ⟨γ⟩ ⋉ Zdp where γ acts on Zdp through a diagonal matrix in

GLd(Zp).
Secondly, if G∞ is two-dimensional then it is automatically solvable, in
which case

• G∞ ∼= ⟨γ⟩ ⋉ Zp where γ acts on the second factor by scalar multi-
plication.

Thirdly, if G∞ is three-dimensional and solvable(4) then by the work of
Klopsch and González-Sánchez [16, Theorem 7.4], G∞ must be isomorphic
to one of the following:

• an open subgroup of the Heisenberg group, i.e. a group presented
in the form

〈
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = 1, [h2, γ] = hp

s

1
〉

for
some s ∈ Z⩾0;

• the group
〈
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s

1 , [h2, γ] = hp
s

2
〉

where
s ∈ N;

• the group
〈
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s

1 h
ps+rc
2 , [h2, γ] =

hp
s+r

1 hp
s

2
〉

for some s, r ∈ N with c ∈ Zp;
•
〈
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

sc
2 , [h2, γ] = hp

s

1 h
ps+r

2
〉

where
s, r ∈ N0 and c ∈ Zp, such that either s ⩾ 1, or instead r ⩾ 1 and
c ∈ pZp;

• either one of:
(a)

〈
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s+r

2 , [h2, γ] = hp
s

1
〉

or
(b)

〈
γ, h1, h2 : [h1, h2] = 1, [h1, γ] = hp

s+rt
2 , [h2, γ] = hp

s

1
〉

where s, r ∈ Z⩾0 so that s+ r ⩾ 1, and t ∈ Z×
p is not a square

modulo p.
In all seven of the cases listed above, G∞ ∼= ⟨γ⟩⋉H∞ where H∞ is a free

Zp-module of rank = dim(G∞)− 1. We also identify γ with the topological
generator γ0 ∈ Γcyc.

(4) If G∞ is isomorphic to an open subgroup of SL2(Zp) or SL1(Dp) then it is insolvable,
and so does not occur on this list – we can thus infer nothing about the λ-invariant in
these two cases.
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Let us now choose the finite set Ωram to contain all primes that ram-
ify in the infinite extension D∞/Q with the exception of the prime p,
i.e. Ωram = Sram

D∞
− {p}. We also recall that Fχ = Q(µp∞)Stab(χ) and

Dn = H0(Gpn−1

∞ ,D∞
)

is the n-th layer. Combining Equation (5.3) with [9,
Corollary 2.5], for every tuple f ′ ∈ H

(
ρ1,...,t

)
there is a natural decompo-

sition of compact finitely-generated Λcyc-modules

(5.12) Sel[j]Dcyc
n ,Ωram

(
Af ′
)∧

∼=
n⊕

w=0

⊕
χ∈R̂(w)

D/F

⊕
ψ∈R̂(w,χ)

F/Q

(
Sel[χψF ,j]

F cyc
χ ,Ωram

(
Af ′
)∧
)dim(ϱχ,ψ)

.

Furthermore, the additivity of the Λcyc-rank, the µ- and the λ-invariant
implies

(5.13) β
(

Sel[j]Dcyc
n ,Ωram

(
Af ′
)∧
)

=
n∑

w=0

∑
χ∈R̂(w)

D/F

∑
ψ∈R̂(w,χ)

F/Q

dim(ϱχ,ψ) · β
(

Sel[χψF ,j]
F cyc
χ ,Ωram

(
Af ′
)∧
)

for β ∈ {rkΛcyc , µ, λ}, where we take all these invariants over Λcyc rather
than Λcyc

Fχ
.

We shall proceed by establishing the three statements of Theorem 2.3
in order. Starting with assertion (i), the condition that H0(GQ(µp), Vρ1,...,t)
is zero implies that ω−j cannot occur as a sub-GQ-representation inside
of ρ1,...,t for all j ∈ Z. Applying Lemma 5.1(ii), one has twin vanishing
identities

β
(

Sel[χψF ,j]
F cyc
χ ,Ωram

(
Af ′
)∧
)

= β
(

Sel[χψF ,j]
F cyc
χ ,∅

(
Af ′
)∧
)

= 0 where β ∈{rkΛcyc , µ}

at all unbalanced tuples f ′, since the characteristic ideal for the quotient of
the two Selmer groups has unit content. Consequently the Λcyc-rank and
µ-invariant of Sel[j]Dcyc

n ,Ωram(Af ′)∧ vanish too by the previous summation
formula, and (i) follows.

To establish (ii), we note for all w ∈ {0, . . . , n} and characters χ ∈ R̂(w)
D/F

that supp
(
disc(Fχ) ·NFχ/Q

(
cond(χ)

))
⊂ Ωram∪{p}, that H0(Fχ, Vρ1,...,t⊗

ωj
)

= {0} at every twist j ∈{0, . . . , p−2}, and lastly that Selmin,[j]
F cyc
χ ,Ωram

(
ρ1,...,t

)
is a finite group. For each ψ on Gal(Q(µpn)/Q), one uses Theorem 5.3 (with
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Ω = Ωram) to show that

(5.14) λ
[χψFχ ,j]
Fχ,Ωram (f ′) = dmin,[j]

Fχ,Ωram +
∑

ν|cond(Vf′ ),
ν∤p, ν ̸∈Ωcyc

Fχ

d[χ,j]
Fχ,ν
− δ[χψFχ ,j]

Fχ,ν

(
f ′)

where dmin,[j]
Fχ,Ωram := dimF

(
Selmin,[j]

F cyc
χ ,Ωram

(
ρ1,...,t

))
, and at places ν ∤ p of F cyc

χ

we define
d[χ,j]
Fχ,ν

:= dimF
(
H1(F cyc

χ,ν , Vρ1,...,t ⊗ ωj
))
.

If Fχ = Q then clearly both

F cyc
χ = Qcyc and λ

[χψFχ ,j]
Fχ,Ωram (f) = λ

(
Sel[χψF ,j]Qcyc,Ωram

(
Af ′
)∧
)
,

whilst if Fχ ̸= Q then

F cyc
χ = Q(µp∞) and λ

[χψFχ ,j]
Fχ,Ωram (f) =

λ
(

Sel[χψF ,j]Q(µp∞ ),Ωram(Af ′)∧)
[Fχ : Q(µp)]

.

Substituting this scaling information into our earlier formula

λ
(

Sel[j]Dcyc
n ,Ωram

(
Af ′
)∧
)

=
n∑

w=0

∑
χ∈R̂(w)

D/F

∑
ψ∈R̂(w,χ)

F/Q

dim(ϱχ,ψ) · λ
(

Sel[χψF ,j]
F cyc
χ ,Ωram

(
Af ′
)∧
)

and then rearranging, we deduce directly from Equation (5.14) that

λ
(

Sel[j]Dcyc
n ,Ωram

(
Af ′
)∧
)

+
∑

q|cond(Vf′ ),
q ̸∈Ωram∪{p}

δ
[j]
Dn,q

(
f ′)

=
∑

ψ∈R̂
(0,1Q)
F/Q

(
dmin,[j]
Q,Ωram +

∑
ν

d[χ,j]
Q,ν

)

+
n∑

w=1

∑
χ∈R̂(w)

D/F

∑
ψ∈R̂(w,χ)

F/Q

dim(ϱχ,ψ) · [Fχ : Q]
p− 1

×

(
dmin,[j]
Fχ,Ωram ; +

∑
ν|cond(Vf′ ),
ν∤p,ν ̸∈Ωcyc

Fχ

d[χ,j]
Fχ,ν

)
.

The left-hand side is independent of j as µp ⊂ Dn, hence so is the right-hand
side. In fact as [Fχ : Q] = dim(ϱχ,ψ), one can reinterpret the right-hand

ANNALES DE L’INSTITUT FOURIER



IWASAWA INVARIANTS FOR TENSOR PRODUCTS 49

side as being
n∑

w=0

∑
χ∈R̂(w)

D/F

∑
ψ∈R̂(w,χ)

F/Q

dim(ϱχ,ψ)2

p− 1 ×

(
dmin,[−]
Q(µp),Ωram +

∑
ν|cond(Vf′ ),
ν∤p,ν ̸∈Ωcyc

Q(µp)

d[χ,−]
Q(µp),ν

)
.

We next observe that this triple summation for dim(ϱχ,ψ)2 is equal to the
sum of dim(ϱ)2 as ϱ ranges over the irreducible representations factoring
through Dn/Q; in other words

∑
w,χ,ψ dim(ϱχ,ψ)2 =

∑
irr ϱ dim(ϱ)2 = [Dn :

Q]. As a nice corollary,

(5.15) λ
(

Sel[j]Dcyc
n ,Ωram

(
Af ′
)∧
)

+
∑

q|cond(Vf′ ),
q ̸∈Ωram∪{p}

δ
[j]
Dn,q

(
f ′) = [Dn : Q]

p− 1 × J
(
f ′)

where the non-negative constant J
(
f ′)= J

(
f ′; ρ1,...,t,Ωram) is given by

J
(
f ′) = dimF

(
Selmin,[−]

Q(µp∞ ),Ωram

(
ρ1,...,t

))
+

∑
ν|cond(Vf′ ),
ν∤p,ν ̸∈Ωcyc

Q(µp)

dimF

(
H1(Q(µp∞)ν , Vρ1,...,t

))
.

However δ[j]
Dn,q

(
f ′) coincides with e[j]

Dn,q
(
a′) for all f ′ lying on the multi-

branch a′, and one may then use Equation (5.15) to conclude that

(5.16) [Dn : D1]−1 ×

(
λ
(

Sel[j]Dcyc
n ,Ωram

(
Af ′
)∧
)

+
∑

q|cond(Vf′ ),
q ̸∈Ωram∪{p}

e[j]
Dn,q

(
a′))

is a non-negative integer, independent of n ⩾ 1 and j but dependent on
cond(Vf ′). Note that assertion (ii) now follows inductively from this inde-
pendence property.

Finally to establish assertion (iii), we first remark that one can rear-
range (5.14) into the modified form

(5.14)† λ
[χψFχ ,j]
Fχ,Ωram (f ′) = dmin,[j]

Fχ,Ωram +
∑

ν|D·cond(Vf′ ),
ν∤p,ν ̸∈Ωcyc

Fχ

d[χ,j]
Fχ,ν
− δ[χψFχ ,j]

Fχ,ν

(
f ′)

for any D ∈ N, because d[χ,j]
Fχ,ν

= δ
[χψFχ ,j]
Fχ,ν

(
f ′) at places ν ∤ p · cond(Vf ′) ·

disc(Dn). We shall study what happens to the cyclotomic λ-invariant when
we switch between the two pairs

(
f ′, a′) =

(
f (1), a(1)) and

(
f ′, a′) =(

f (2), a(2)) in the Hida family. Let us carefully choose the positive integer
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D to equal cond
(
Vf(1)

)
· cond

(
Vf(2)

)
. Applying the same reasoning as we

employed for the proof of statement (ii) above, and using Equation (5.14)†

in the rôle of (5.14), one deduces that

(5.15)† λ
(

Sel[j]Dcyc
n ,Ωram

(
Af ′
)∧
)

+
∑
q|D,

q ̸∈Ωram∪{p}

e[j]
Dn,q

(
a′) = [Dn : Q]

p− 1 ×J†(D)

where the modified constant J†(D) = J†(D; ρ1,...,t,Ωram) is explicitly de-
fined as

J†(D) = dimF

(
Selmin,[−]

Q(µp∞ ),Ωram

(
ρ1,...,t

))
+

∑
ν|D,

ν∤p,ν ̸∈Ωcyc
Q(µp)

dimF

(
H1(Q(µp∞)ν , Vρ1,...,t

))
.

Since J†(D) is unchanged whenever we switch between f ′ = f (1) and
f ′ = f (2) so is the left-hand side of Equation (5.15)†, and the last part
of Theorem 2.3 is proved.
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