Dans cet article, pour une variété lisse X munie d’une action d’un groupe algébrique connexe G (non nécessairement linéaire), on introduit la notion de sous-groupe de Brauer invariant et la notion d’obstruction de Brauer–Manin étale invariante. Ensuite, on montre que cette obstruction équivaut à l’obstruction de Brauer–Manin étale. Ceci généralise la notion principale et le résultat clé de l’aticle précédent de l’auteur et ceci généralise aussi un résultat de B. Creutz.
In this paper, for a smooth variety X equipped with an action of a connected algebraic group G (not necessary linear), we introduce the notion of invariant Brauer sub-group and the notion of invariant étale Brauer–Manin obstruction. Then we prove that this obstruction is equivalent to the étale Brauer–Manin obstruction. This extends the main notion and the key result of author’s previous article and this also extends a result of B. Creutz.
Révisé le :
Accepté le :
Première publication :
Publié le :
Mot clés : Groupe algébrique, groupe de Brauer, principe de Hasse.
Keywords: Algebraic group, Brauer group, Hasse principle.
Cao, Yang 1
@article{AIF_2024__74_2_627_0, author = {Cao, Yang}, title = {Sous-groupe de {Brauer} invariant pour un groupe alg\'ebrique connexe quelconque}, journal = {Annales de l'Institut Fourier}, pages = {627--661}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {2}, year = {2024}, doi = {10.5802/aif.3590}, language = {fr}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3590/} }
TY - JOUR AU - Cao, Yang TI - Sous-groupe de Brauer invariant pour un groupe algébrique connexe quelconque JO - Annales de l'Institut Fourier PY - 2024 SP - 627 EP - 661 VL - 74 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3590/ DO - 10.5802/aif.3590 LA - fr ID - AIF_2024__74_2_627_0 ER -
%0 Journal Article %A Cao, Yang %T Sous-groupe de Brauer invariant pour un groupe algébrique connexe quelconque %J Annales de l'Institut Fourier %D 2024 %P 627-661 %V 74 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3590/ %R 10.5802/aif.3590 %G fr %F AIF_2024__74_2_627_0
Cao, Yang. Sous-groupe de Brauer invariant pour un groupe algébrique connexe quelconque. Annales de l'Institut Fourier, Tome 74 (2024) no. 2, pp. 627-661. doi : 10.5802/aif.3590. https://aif.centre-mersenne.org/articles/10.5802/aif.3590/
[1] Manin obstruction to strong approximation for homogeneous spaces, Comment. Math. Helv., Volume 88 (2013) no. 1, pp. 1-54 | DOI | MR | Zbl
[2] Representations of compact Lie groups, Graduate Texts in Mathematics, 98, Springer-Verlag, New York, 1995, x+313 pages (Translated from the German manuscript, Corrected reprint of the 1985 translation) | MR | Zbl
[3] Approximation forte pour les variétés avec une action d’un groupe linéaire, Compos. Math., Volume 154 (2018) no. 4, pp. 773-819 | DOI | MR | Zbl
[4] Sous-groupe de Brauer invariant et obstruction de descente itérée, Algebra Number Theory, Volume 14 (2020) no. 8, pp. 2151-2183 | DOI | MR | Zbl
[5] Comparing descent obstruction and Brauer–Manin obstruction for open varieties, Trans. Amer. Math. Soc., Volume 371 (2019) no. 12, pp. 8625-8650 | DOI | MR | Zbl
[6] Arithmetic purity of strong approximation for homogeneous spaces, J. Math. Pures Appl. (9), Volume 132 (2019), pp. 334-368 | DOI | MR | Zbl
[7] Strong approximation with Brauer–Manin obstruction for groupic varieties, Proc. Lond. Math. Soc. (3), Volume 117 (2018) no. 4, pp. 727-750 | DOI | MR | Zbl
[8] La descente sur les variétés rationnelles. II, Duke Math. J., Volume 54 (1987) no. 2, pp. 375-492 | DOI | MR | Zbl
[9] Principal homogeneous spaces under flasque tori : applications, J. Algebra, Volume 106 (1987) no. 1, pp. 148-205 | DOI | MR | Zbl
[10] Weil and Grothendieck approaches to adelic points, Enseign. Math. (2), Volume 58 (2012) no. 1-2, pp. 61-97 | DOI | MR | Zbl
[11] There are no transcendental Brauer-Manin obstructions on abelian varieties, Int. Math. Res. Not. IMRN (2020) no. 9, pp. 2684-2697 | DOI | MR | Zbl
[12] Méthodes cohomologiques pour l’étude des points rationnels sur les espaces homogènes, Ph. D. Thesis, Université Paris-Sud (2009)
[13] Obstruction de descente et obstruction de Brauer–Manin étale, Algebra Number Theory, Volume 3 (2009) no. 2, pp. 237-254 | DOI | MR | Zbl
[14] Etale cohomology theory, Nankai Tracts in Mathematics, 14, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2015, x+611 pages | DOI | MR | Zbl
[15] Revêtements étales et groupe fondamental (SGA 1) (Grothendieck, A., ed.), Documents Mathématiques (Paris), 3, Société Mathématique de France, Paris, 2003, xviii+327 pages Séminaire de géométrie algébrique du Bois Marie 1960–61. Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin ; MR0354651 (50 #7129)] | MR | Zbl
[16] Groupes algébriques et points rationnels, Math. Ann., Volume 322 (2002) no. 4, pp. 811-826 | DOI | MR | Zbl
[17] Descent theory for open varieties, Torsors, étale homotopy and applications to rational points (London Math. Soc. Lecture Note Ser.), Volume 405, Cambridge Univ. Press, Cambridge, 2013, pp. 250-279 | DOI | MR | Zbl
[18] On some types of topological groups, Ann. of Math. (2), Volume 50 (1949), pp. 507-558 | DOI | MR | Zbl
[19] Very strong approximation for certain algebraic varieties, Math. Ann., Volume 363 (2015) no. 3-4, pp. 701-731 | DOI | MR | Zbl
[20] Étale cohomology, Princeton Mathematical Series, 33, Princeton University Press, Princeton, N.J., 1980, xiii+323 pages | MR | Zbl
[21] Morse theory, Annals of Mathematics Studies, 51, Princeton University Press, Princeton, N.J., 1963, vi+153 pages (Based on lecture notes by M. Spivak and R. Wells) | DOI | MR | Zbl
[22] Invariant Brauer group of an abelian variety, Israel J. Math., Volume 249 (2022) no. 2, pp. 695-733 | DOI | MR | Zbl
[23] Insufficiency of the Brauer–Manin obstruction applied to étale covers, Ann. of Math. (2), Volume 171 (2010) no. 3, pp. 2157-2169 | DOI | MR | Zbl
[24] Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres, J. Reine Angew. Math., Volume 327 (1981), pp. 12-80 | DOI | MR | Zbl
[25] Torsors and rational points, Cambridge Tracts in Mathematics, 144, Cambridge University Press, Cambridge, 2001, viii+187 pages | DOI | MR | Zbl
[26] Descent obstruction is equivalent to étale Brauer-Manin obstruction, Math. Ann., Volume 344 (2009) no. 3, pp. 501-510 | DOI | MR | Zbl
[27] Beyond the Manin obstruction, Invent. Math., Volume 135 (1999) no. 2, pp. 399-424 | DOI | MR | Zbl
[28] The Brauer group and the Brauer–Manin set of products of varieties, J. Eur. Math. Soc. (JEMS), Volume 16 (2014) no. 4, pp. 749-768 | DOI | MR | Zbl
[29] Algebraic -theory, Progress in Mathematics, 90, Birkhäuser Boston, Inc., Boston, MA, 1996, xviii+341 pages | DOI | MR | Zbl
[30] Finite descent obstructions and rational points on curves, Algebra Number Theory, Volume 1 (2007) no. 4, pp. 349-391 | DOI | MR | Zbl
[31] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, Cambridge, 1994, xiv+450 pages | DOI | MR | Zbl
Cité par Sources :