[Le spectre de certaines matrices du noyau de Hardy]
Pour on considère l’opérateur correspondant à la matrice
En interprétant comme l’inverse d’une matrice de Jacobi non bornée, on montre que le spectre absolument continu coïncide avec (multiplicité un), et qu’il n’y a pas de spectre continu singulier. Il existe un nombre fini de valeurs propres au-dessus du spectre continu. Nous appliquons nos résultats pour démontrer que la thèse du noyau reproduisant est en défaut pour les opérateurs de composition sur l’espace de Hardy des séries de Dirichlet.
For we consider the operator corresponding to the matrix
By interpreting as the inverse of an unbounded Jacobi matrix, we show that the absolutely continuous spectrum coincides with (multiplicity one), and that there is no singular continuous spectrum. There is a finite number of eigenvalues above the continuous spectrum. We apply our results to demonstrate that the reproducing kernel thesis does not hold for composition operators on the Hardy space of Dirichlet series .
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Spectrum, Jacobi matrix, Hardy kernel, Hardy space of Dirichlet series, composition operator
Mot clés : Spectre, matrice de Jacobi, noyau de Hardy, espace de Hardy de séries de Dirichlet, opérateur de composition
Brevig, Ole Fredrik 1 ; Perfekt, Karl-Mikael 2 ; Pushnitski, Alexander 3
@article{AIF_2024__74_3_1061_0, author = {Brevig, Ole Fredrik and Perfekt, Karl-Mikael and Pushnitski, Alexander}, title = {The spectrum of some {Hardy} kernel matrices}, journal = {Annales de l'Institut Fourier}, pages = {1061--1094}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {3}, year = {2024}, doi = {10.5802/aif.3589}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3589/} }
TY - JOUR AU - Brevig, Ole Fredrik AU - Perfekt, Karl-Mikael AU - Pushnitski, Alexander TI - The spectrum of some Hardy kernel matrices JO - Annales de l'Institut Fourier PY - 2024 SP - 1061 EP - 1094 VL - 74 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3589/ DO - 10.5802/aif.3589 LA - en ID - AIF_2024__74_3_1061_0 ER -
%0 Journal Article %A Brevig, Ole Fredrik %A Perfekt, Karl-Mikael %A Pushnitski, Alexander %T The spectrum of some Hardy kernel matrices %J Annales de l'Institut Fourier %D 2024 %P 1061-1094 %V 74 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3589/ %R 10.5802/aif.3589 %G en %F AIF_2024__74_3_1061_0
Brevig, Ole Fredrik; Perfekt, Karl-Mikael; Pushnitski, Alexander. The spectrum of some Hardy kernel matrices. Annales de l'Institut Fourier, Tome 74 (2024) no. 3, pp. 1061-1094. doi : 10.5802/aif.3589. https://aif.centre-mersenne.org/articles/10.5802/aif.3589/
[1] Norms of composition operators on the Hardy space, Experiment. Math., Volume 5 (1996) no. 2, pp. 111-117 http://projecteuclid.org/euclid.em/1047565642 | DOI | MR | Zbl
[2] Sharp norm estimates for composition operators and Hilbert-type inequalities, Bull. Lond. Math. Soc., Volume 49 (2017) no. 6, pp. 965-978 | DOI | MR | Zbl
[3] The multiplicative Hilbert matrix, Adv. Math., Volume 302 (2016), pp. 410-432 | DOI | MR | Zbl
[4] On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl., Volume 128 (1987) no. 1, pp. 30-56 | DOI | MR | Zbl
[5] The composition operators on the space of Dirichlet series with square summable coefficients, Michigan Math. J., Volume 46 (1999) no. 2, pp. 313-329 | DOI | MR | Zbl
[6] Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988, xii+324 pages (Reprint of the 1952 edition) | MR | Zbl
[7] Dirichlet series and functional analysis, The legacy of Niels Henrik Abel, Springer, Berlin, 2004, pp. 673-684 | DOI | MR | Zbl
[8] A family of explicitly diagonalizable weighted Hankel matrices generalizing the Hilbert matrix, Linear Multilinear Algebra, Volume 64 (2016) no. 5, pp. 870-884 | DOI | MR | Zbl
[9] Subordinacy and spectral theory for infinite matrices, Helv. Phys. Acta, Volume 65 (1992) no. 4, pp. 505-527 | MR
[10] Hypergeometric orthogonal polynomials and their -analogues, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2010, xx+578 pages (With a foreword by Tom H. Koornwinder) | DOI | MR | Zbl
[11] A Helson matrix with explicit eigenvalue asymptotics, J. Funct. Anal., Volume 275 (2018) no. 4, pp. 967-987 | DOI | MR | Zbl
[12] Restriction theorems for Hankel operators, Studia Math., Volume 254 (2020) no. 1, pp. 1-21 | DOI | MR | Zbl
[13] Estimate for norm of a composition operator on the Hardy–Dirichlet space, Integral Equations Operator Theory, Volume 90 (2018) no. 1, 11, 12 pages | DOI | MR | Zbl
[14] Diagonalization of the Hilbert matrix, Conference talk at ICDESFA, 2005 (https://homepage.ruhr-uni-bochum.de/Peter.Otte/publications.html)
[15] On the spectrum of the multiplicative Hilbert matrix, Ark. Mat., Volume 56 (2018) no. 1, pp. 163-183 | DOI | MR | Zbl
[16] The spectral density of Hardy kernel matrices (to appear in J. Operator Theory, https://arxiv.org/abs/2103.12642)
[17] Diophantine approximation and Dirichlet series, Harish-Chandra Research Institute Lecture Notes, 2, Hindustan Book Agency, New Delhi, 2013, xii+232 pages | DOI | MR | Zbl
[18] On the Hilbert matrix. II, Proc. Amer. Math. Soc., Volume 9 (1958), pp. 581-585 | DOI | MR | Zbl
[19] Unbounded self-adjoint operators on Hilbert space, Graduate Texts in Mathematics, 265, Springer, Dordrecht, 2012, xx+432 pages | DOI | MR | Zbl
[20] Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., Volume 140 (1911), pp. 1-28 | DOI | MR | Zbl
[21] The Hilbert -matrix, J. Funct. Anal., Volume 282 (2022) no. 8, 109401, 46 pages | DOI | MR | Zbl
[22] Jacobi operators and completely integrable nonlinear lattices, Mathematical Surveys and Monographs, 72, American Mathematical Society, Providence, RI, 2000, xvii+351 pages | DOI | MR | Zbl
[23] On Dirichlet series and Toeplitz forms, J. Math. Anal. Appl., Volume 8 (1964), pp. 45-51 | DOI | MR | Zbl
[24] Asymptotic expansions for second-order linear difference equations, J. Comput. Appl. Math., Volume 41 (1992) no. 1-2, pp. 65-94 (Asymptotic methods in analysis and combinatorics) | DOI | MR | Zbl
Cité par Sources :