Note on three-fold branched covers of S 4
[Remarque sur les revêtements de degré 3 de S 4 ]
Annales de l'Institut Fourier, Tome 74 (2024) no. 2, pp. 849-866.

Nous montrons que toute variété de dimension 4 admettant une (g;k 1 ,k 2 ,0)-trisection est un revêtement irrégulier de degré 3 de la 4-sphère dont l’ensemble de ramification est une surface dans S 4 , plongée de manière lisse à l’exception d’un point singulier qui est un cône sur un entrelacs. Une 4-variété admet une telle trisection si et seulement si elle a une décomposition en anses sans 1-anses ; il est conjecturé que toutes les variétés de dimension 4 simplement connexes ont cette propriété.

We show that any 4-manifold admitting a (g;k 1 ,k 2 ,0)-trisection is an irregular 3-fold cover of the 4-sphere whose branching set is a surface in S 4 , smoothly embedded except for one singular point which is the cone on a link. A 4-manifold admits such a trisection if and only if it has a handle decomposition with no 1-handles; it is conjectured that all simply-connected 4-manifolds have this property.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3588
Classification : 57M12, 57M25
Keywords: 4-manifold, branched covering, trisection.
Mot clés : 4-variété, revêtement ramifiée, trisection.

Blair, Ryan 1 ; Cahn, Patricia 2 ; Kjuchukova, Alexandra 3 ; Meier, Jeffrey 4

1 Department of Mathematics and Statistics 1250 Bellflower Boulevard Long Beach, California 90840 (USA)
2 Department of Mathematics & Statistics Clark Science Center Smith College Burton Hall 115 Northampton, MA 01063 (USA)
3 Department of Mathematics University of Notre Dame 255 Hurley Bldg Notre Dame, IN 46556 (USA)
4 Department of Mathematics Western Washington University 516 High Street, Bellingham, WA 98229 (USA)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2024__74_2_849_0,
     author = {Blair, Ryan and Cahn, Patricia and Kjuchukova, Alexandra and Meier, Jeffrey},
     title = {Note on three-fold branched covers of $S^4$},
     journal = {Annales de l'Institut Fourier},
     pages = {849--866},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {74},
     number = {2},
     year = {2024},
     doi = {10.5802/aif.3588},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3588/}
}
TY  - JOUR
AU  - Blair, Ryan
AU  - Cahn, Patricia
AU  - Kjuchukova, Alexandra
AU  - Meier, Jeffrey
TI  - Note on three-fold branched covers of $S^4$
JO  - Annales de l'Institut Fourier
PY  - 2024
SP  - 849
EP  - 866
VL  - 74
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3588/
DO  - 10.5802/aif.3588
LA  - en
ID  - AIF_2024__74_2_849_0
ER  - 
%0 Journal Article
%A Blair, Ryan
%A Cahn, Patricia
%A Kjuchukova, Alexandra
%A Meier, Jeffrey
%T Note on three-fold branched covers of $S^4$
%J Annales de l'Institut Fourier
%D 2024
%P 849-866
%V 74
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3588/
%R 10.5802/aif.3588
%G en
%F AIF_2024__74_2_849_0
Blair, Ryan; Cahn, Patricia; Kjuchukova, Alexandra; Meier, Jeffrey. Note on three-fold branched covers of $S^4$. Annales de l'Institut Fourier, Tome 74 (2024) no. 2, pp. 849-866. doi : 10.5802/aif.3588. https://aif.centre-mersenne.org/articles/10.5802/aif.3588/

[1] Berstein, Israel; Edmonds, Allan L. The degree and branch set of a branc(ed covering, Invent. Math., Volume 45 (1978) no. 3, pp. 213-220 | DOI | MR | Zbl

[2] Blair, Ryan; Cahn, Patricia; Kjuchukova, Alexandra Blowing up dihedral covers of S 4 (in preparation)

[3] Cahn, Patricia; Kjuchukova, Alexandra Singular branched covers of four-manifolds (2017) (https://arxiv.org/abs/1710.11562)

[4] Cahn, Patricia; Kjuchukova, Alexandra The dihedral genus of a knot, Algebr. Geom. Topol., Volume 20 (2020) no. 4, pp. 1939-1963 | DOI | MR | Zbl

[5] Cappell, Sylvain E.; Shaneson, Julius L. Linking numbers in branched covers, Four-manifold theory (Durham, N.H., 1982) (Contemp. Math.), Volume 35, Amer. Math. Soc., Providence, RI, 1984, pp. 165-179 | DOI | MR | Zbl

[6] Fox, Ralph H. Covering spaces with singularities, Algebraic Geometry and Topology: A Symposium in Honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 243-257 | MR | Zbl

[7] Freedman, Michael H.; Quinn, Frank Topology of 4-manifolds, Princeton Mathematical Series, 39, Princeton University Press, Princeton, NJ, 1990, viii+259 pages | MR | Zbl

[8] Freedman, Michael Hartley The topology of four-dimensional manifolds, J. Differential Geometry, Volume 17 (1982) no. 3, pp. 357-453 http://projecteuclid.org/euclid.jdg/1214437136 | DOI | MR | Zbl

[9] Gay, David; Kirby, Robion Trisecting 4-manifolds, Geom. Topol., Volume 20 (2016) no. 6, pp. 3097-3132 | DOI | MR | Zbl

[10] Gay, David T. From Heegaard splittings to trisections; porting 3-dimensional ideas to dimension 4, Winter Braids Lect. Notes, Volume 5 (2018), 4, 19 pages Winter Braids VIII (Marseille, 2018) | DOI | Numdam | MR | Zbl

[11] Geske, Christian; Kjuchukova, Alexandra; Shaneson, Julius L. Signatures of topological branched covers, Int. Math. Res. Not. IMRN (2021) no. 6, pp. 4605-4624 | DOI | MR | Zbl

[12] Gompf, Robert E.; Stipsicz, András I. 4-manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, Providence, RI, 1999, xvi+558 pages | DOI | MR | Zbl

[13] Gordon, C. McA. On the higher-dimensional Smith conjecture, Proc. London Math. Soc. (3), Volume 29 (1974), pp. 98-110 | DOI | MR | Zbl

[14] Hilden, Hugh M. Every closed orientable 3-manifold is a 3-fold branched covering space of S 3 , Bull. Amer. Math. Soc., Volume 80 (1974), pp. 1243-1244 | DOI | MR | Zbl

[15] Hirsch, Ulrich Über offene Abbildungen auf die 3-Sphäre, Math. Z., Volume 140 (1974), pp. 203-230 | DOI | MR | Zbl

[16] Iori, Massimiliano; Piergallini, Riccardo 4-manifolds as covers of the 4-sphere branched over non-singular surfaces, Geom. Topol., Volume 6 (2002), pp. 393-401 | DOI | MR | Zbl

[17] Kirby, Rob Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2 (Proc. Sympos. Pure Math., XXXII), Amer. Math. Soc., Providence, R.I., 1978, pp. 273-312 | MR | Zbl

[18] Kjuchukova, Alexandra Dihedral branched covers of four-manifolds, Adv. Math., Volume 332 (2018), pp. 1-33 | DOI | MR | Zbl

[19] Kjuchukova, Alexandra; Orr, Kent Knots arising as singularities on branched covers between four-manifolds (in preparation)

[20] Lambert-Cole, Peter; Meier, Jeffrey Bridge trisections in rational surfaces, J. Topol. Anal., Volume 14 (2022) no. 3, pp. 655-708 | DOI | MR | Zbl

[21] Lambert-Cole, Peter; Meier, Jeffrey; Starkston, Laura Symplectic 4-manifolds admit Weinstein trisections, J. Topol., Volume 14 (2021) no. 2, pp. 641-673 | DOI | MR | Zbl

[22] Laudenbach, François; Poénaru, Valentin A note on 4-dimensional handlebodies, Bull. Soc. Math. France, Volume 100 (1972), pp. 337-344 | DOI | Numdam | MR | Zbl

[23] Meier, Jeffrey; Schirmer, Trent; Zupan, Alexander Classification of trisections and the generalized property R conjecture, Proc. Amer. Math. Soc., Volume 144 (2016) no. 11, pp. 4983-4997 | DOI | MR | Zbl

[24] Meier, Jeffrey; Zupan, Alexander Bridge trisections of knotted surfaces in S 4 , Trans. Amer. Math. Soc., Volume 369 (2017) no. 10, pp. 7343-7386 | DOI | MR | Zbl

[25] Meier, Jeffrey; Zupan, Alexander Bridge trisections of knotted surfaces in 4-manifolds, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 43, pp. 10880-10886 | DOI | MR | Zbl

[26] Montesinos, José María A representation of closed orientable 3-manifolds as 3-fold branched coverings of S 3 , Bull. Amer. Math. Soc., Volume 80 (1974), pp. 845-846 | DOI | MR | Zbl

[27] Montesinos, José María 4-manifolds, 3-fold covering spaces and ribbons, Trans. Amer. Math. Soc., Volume 245 (1978), pp. 453-467 | DOI | MR | Zbl

[28] Montesinos, José María A note on moves and on irregular coverings of S 4 , Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) (Contemp. Math.), Volume 44, Amer. Math. Soc., Providence, RI, 1985, pp. 345-349 | DOI | MR | Zbl

[29] Piergallini, R. Covering moves, Trans. Amer. Math. Soc., Volume 325 (1991) no. 2, pp. 903-920 | DOI | MR | Zbl

[30] Piergallini, R. Four-manifolds as 4-fold branched covers of S 4 , Topology, Volume 34 (1995) no. 3, pp. 497-508 | DOI | MR | Zbl

[31] Spreer, Jonathan; Tillmann, Stephan The trisection genus of standard simply connected PL 4-manifolds, 34th International Symposium on Computational Geometry (LIPIcs. Leibniz Int. Proc. Inform.), Volume 99, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018 (Id/No 71, 13 pages) | MR | Zbl

[32] Waldhausen, Friedhelm Heegaard-Zerlegungen der 3-Sphäre, Topology, Volume 7 (1968), pp. 195-203 | DOI | MR | Zbl

[33] Zuddas, Daniele Branched coverings and 4-manifolds, Ph. D. Thesis, Scuola Normale Superiore Pisa (2008)

Cité par Sources :