[Remarque sur les revêtements de degré 3 de ]
Nous montrons que toute variété de dimension 4 admettant une -trisection est un revêtement irrégulier de degré 3 de la 4-sphère dont l’ensemble de ramification est une surface dans , plongée de manière lisse à l’exception d’un point singulier qui est un cône sur un entrelacs. Une 4-variété admet une telle trisection si et seulement si elle a une décomposition en anses sans 1-anses ; il est conjecturé que toutes les variétés de dimension 4 simplement connexes ont cette propriété.
We show that any 4-manifold admitting a -trisection is an irregular 3-fold cover of the 4-sphere whose branching set is a surface in , smoothly embedded except for one singular point which is the cone on a link. A 4-manifold admits such a trisection if and only if it has a handle decomposition with no 1-handles; it is conjectured that all simply-connected 4-manifolds have this property.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: 4-manifold, branched covering, trisection.
Mot clés : 4-variété, revêtement ramifiée, trisection.
Blair, Ryan 1 ; Cahn, Patricia 2 ; Kjuchukova, Alexandra 3 ; Meier, Jeffrey 4
@article{AIF_2024__74_2_849_0, author = {Blair, Ryan and Cahn, Patricia and Kjuchukova, Alexandra and Meier, Jeffrey}, title = {Note on three-fold branched covers of $S^4$}, journal = {Annales de l'Institut Fourier}, pages = {849--866}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {74}, number = {2}, year = {2024}, doi = {10.5802/aif.3588}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3588/} }
TY - JOUR AU - Blair, Ryan AU - Cahn, Patricia AU - Kjuchukova, Alexandra AU - Meier, Jeffrey TI - Note on three-fold branched covers of $S^4$ JO - Annales de l'Institut Fourier PY - 2024 SP - 849 EP - 866 VL - 74 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3588/ DO - 10.5802/aif.3588 LA - en ID - AIF_2024__74_2_849_0 ER -
%0 Journal Article %A Blair, Ryan %A Cahn, Patricia %A Kjuchukova, Alexandra %A Meier, Jeffrey %T Note on three-fold branched covers of $S^4$ %J Annales de l'Institut Fourier %D 2024 %P 849-866 %V 74 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3588/ %R 10.5802/aif.3588 %G en %F AIF_2024__74_2_849_0
Blair, Ryan; Cahn, Patricia; Kjuchukova, Alexandra; Meier, Jeffrey. Note on three-fold branched covers of $S^4$. Annales de l'Institut Fourier, Tome 74 (2024) no. 2, pp. 849-866. doi : 10.5802/aif.3588. https://aif.centre-mersenne.org/articles/10.5802/aif.3588/
[1] The degree and branch set of a branc(ed covering, Invent. Math., Volume 45 (1978) no. 3, pp. 213-220 | DOI | MR | Zbl
[2] Blowing up dihedral covers of (in preparation)
[3] Singular branched covers of four-manifolds (2017) (https://arxiv.org/abs/1710.11562)
[4] The dihedral genus of a knot, Algebr. Geom. Topol., Volume 20 (2020) no. 4, pp. 1939-1963 | DOI | MR | Zbl
[5] Linking numbers in branched covers, Four-manifold theory (Durham, N.H., 1982) (Contemp. Math.), Volume 35, Amer. Math. Soc., Providence, RI, 1984, pp. 165-179 | DOI | MR | Zbl
[6] Covering spaces with singularities, Algebraic Geometry and Topology: A Symposium in Honor of S. Lefschetz, Princeton University Press, Princeton, N.J., 1957, pp. 243-257 | MR | Zbl
[7] Topology of 4-manifolds, Princeton Mathematical Series, 39, Princeton University Press, Princeton, NJ, 1990, viii+259 pages | MR | Zbl
[8] The topology of four-dimensional manifolds, J. Differential Geometry, Volume 17 (1982) no. 3, pp. 357-453 http://projecteuclid.org/euclid.jdg/1214437136 | DOI | MR | Zbl
[9] Trisecting 4-manifolds, Geom. Topol., Volume 20 (2016) no. 6, pp. 3097-3132 | DOI | MR | Zbl
[10] From Heegaard splittings to trisections; porting 3-dimensional ideas to dimension 4, Winter Braids Lect. Notes, Volume 5 (2018), 4, 19 pages Winter Braids VIII (Marseille, 2018) | DOI | Numdam | MR | Zbl
[11] Signatures of topological branched covers, Int. Math. Res. Not. IMRN (2021) no. 6, pp. 4605-4624 | DOI | MR | Zbl
[12] -manifolds and Kirby calculus, Graduate Studies in Mathematics, 20, American Mathematical Society, Providence, RI, 1999, xvi+558 pages | DOI | MR | Zbl
[13] On the higher-dimensional Smith conjecture, Proc. London Math. Soc. (3), Volume 29 (1974), pp. 98-110 | DOI | MR | Zbl
[14] Every closed orientable -manifold is a -fold branched covering space of , Bull. Amer. Math. Soc., Volume 80 (1974), pp. 1243-1244 | DOI | MR | Zbl
[15] Über offene Abbildungen auf die -Sphäre, Math. Z., Volume 140 (1974), pp. 203-230 | DOI | MR | Zbl
[16] 4-manifolds as covers of the 4-sphere branched over non-singular surfaces, Geom. Topol., Volume 6 (2002), pp. 393-401 | DOI | MR | Zbl
[17] Problems in low dimensional manifold theory, Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., Stanford, Calif., 1976), Part 2 (Proc. Sympos. Pure Math., XXXII), Amer. Math. Soc., Providence, R.I., 1978, pp. 273-312 | MR | Zbl
[18] Dihedral branched covers of four-manifolds, Adv. Math., Volume 332 (2018), pp. 1-33 | DOI | MR | Zbl
[19] Knots arising as singularities on branched covers between four-manifolds (in preparation)
[20] Bridge trisections in rational surfaces, J. Topol. Anal., Volume 14 (2022) no. 3, pp. 655-708 | DOI | MR | Zbl
[21] Symplectic 4-manifolds admit Weinstein trisections, J. Topol., Volume 14 (2021) no. 2, pp. 641-673 | DOI | MR | Zbl
[22] A note on -dimensional handlebodies, Bull. Soc. Math. France, Volume 100 (1972), pp. 337-344 | DOI | Numdam | MR | Zbl
[23] Classification of trisections and the generalized property R conjecture, Proc. Amer. Math. Soc., Volume 144 (2016) no. 11, pp. 4983-4997 | DOI | MR | Zbl
[24] Bridge trisections of knotted surfaces in , Trans. Amer. Math. Soc., Volume 369 (2017) no. 10, pp. 7343-7386 | DOI | MR | Zbl
[25] Bridge trisections of knotted surfaces in 4-manifolds, Proc. Natl. Acad. Sci. USA, Volume 115 (2018) no. 43, pp. 10880-10886 | DOI | MR | Zbl
[26] A representation of closed orientable -manifolds as -fold branched coverings of , Bull. Amer. Math. Soc., Volume 80 (1974), pp. 845-846 | DOI | MR | Zbl
[27] -manifolds, -fold covering spaces and ribbons, Trans. Amer. Math. Soc., Volume 245 (1978), pp. 453-467 | DOI | MR | Zbl
[28] A note on moves and on irregular coverings of , Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) (Contemp. Math.), Volume 44, Amer. Math. Soc., Providence, RI, 1985, pp. 345-349 | DOI | MR | Zbl
[29] Covering moves, Trans. Amer. Math. Soc., Volume 325 (1991) no. 2, pp. 903-920 | DOI | MR | Zbl
[30] Four-manifolds as -fold branched covers of , Topology, Volume 34 (1995) no. 3, pp. 497-508 | DOI | MR | Zbl
[31] The trisection genus of standard simply connected PL 4-manifolds, 34th International Symposium on Computational Geometry (LIPIcs. Leibniz Int. Proc. Inform.), Volume 99, Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2018 (Id/No 71, 13 pages) | MR | Zbl
[32] Heegaard-Zerlegungen der -Sphäre, Topology, Volume 7 (1968), pp. 195-203 | DOI | MR | Zbl
[33] Branched coverings and 4-manifolds, Ph. D. Thesis, Scuola Normale Superiore Pisa (2008)
Cité par Sources :