We characterize the nonemptiness and dimension problems for an affine Deligne–Lusztig variety in the affine flag variety in terms of galleries that are positively folded with respect to a chimney. If the parabolic subgroup associated to the Newton point of has rank 1, we then prove nonemptiness for a certain class of Iwahori–Weyl group elements by explicitly constructing such galleries.
Nous donnons une caractérisation des problèmes d’existence et de dimension pour une variété affine de Deligne–Lusztig dans la variété de drapeaux affine, en utilisant des galeries pliées positivement par rapport à une cheminée. Nous prouvons ensuite, en construisant explicitement telles galeries, que si le sous-groupe parabolique associé au point de Newton de a rang 1, les variétés sont non vides pour une certaine classe d’éléments du groupe d’Iwahori–Weyl.
Revised:
Accepted:
Published online:
Keywords: Affine Deligne–Lusztig variety, positively folded gallery, chimney retraction.
Mot clés : Variété affine de Deligne–Lusztig, galeries pliées positivement, rétraction de cheminée.
Milićević, Elizabeth 1; Schwer, Petra 2; Thomas, Anne 3
@article{AIF_2023__73_6_2469_0, author = {Mili\'cevi\'c, Elizabeth and Schwer, Petra and Thomas, Anne}, title = {Affine {Deligne{\textendash}Lusztig} varieties and folded galleries governed by chimneys}, journal = {Annales de l'Institut Fourier}, pages = {2469--2541}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {6}, year = {2023}, doi = {10.5802/aif.3578}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3578/} }
TY - JOUR AU - Milićević, Elizabeth AU - Schwer, Petra AU - Thomas, Anne TI - Affine Deligne–Lusztig varieties and folded galleries governed by chimneys JO - Annales de l'Institut Fourier PY - 2023 SP - 2469 EP - 2541 VL - 73 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3578/ DO - 10.5802/aif.3578 LA - en ID - AIF_2023__73_6_2469_0 ER -
%0 Journal Article %A Milićević, Elizabeth %A Schwer, Petra %A Thomas, Anne %T Affine Deligne–Lusztig varieties and folded galleries governed by chimneys %J Annales de l'Institut Fourier %D 2023 %P 2469-2541 %V 73 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3578/ %R 10.5802/aif.3578 %G en %F AIF_2023__73_6_2469_0
Milićević, Elizabeth; Schwer, Petra; Thomas, Anne. Affine Deligne–Lusztig varieties and folded galleries governed by chimneys. Annales de l'Institut Fourier, Volume 73 (2023) no. 6, pp. 2469-2541. doi : 10.5802/aif.3578. https://aif.centre-mersenne.org/articles/10.5802/aif.3578/
[1] The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983) no. 1505, pp. 523-615 | DOI | MR | Zbl
[2] Codimensions of Newton strata for in the Iwahori case, Math. Z., Volume 263 (2009) no. 3, pp. 499-540 | DOI | MR | Zbl
[3] Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics, Springer-Verlag, Berlin, 2002, xii+300 pages (translated from the 1968 French original by Andrew Pressley) | DOI | MR | Zbl
[4] Representations of reductive groups over finite fields, Ann. Math. (2), Volume 103 (1976) no. 1, pp. 103-161 | DOI | MR | Zbl
[5] On a conjecture of Kottwitz and Rapoport, Ann. Sci. Éc. Norm. Supér. (4), Volume 43 (2010) no. 6, pp. 1017-1038 | DOI | MR
[6] LS galleries, the path model, and MV cycles, Duke Math. J., Volume 127 (2005) no. 1, pp. 35-88 | DOI | MR | Zbl
[7] Affine Springer fibers and affine Deligne–Lusztig varieties, Affine flag manifolds and principal bundles (Trends Math.), Birkhäuser/Springer Basel AG, Basel, 2010, pp. 1-50 | DOI | MR | Zbl
[8] Dimensions of some affine Deligne–Lusztig varieties, Ann. Sci. École Norm. Sup. (4), Volume 39 (2006) no. 3, pp. 467-511 | DOI | MR | Zbl
[9] Affine Deligne–Lusztig varieties in affine flag varieties, Compos. Math., Volume 146 (2010) no. 5, pp. 1339-1382 | DOI | MR | Zbl
[10] -alcoves and nonemptiness of affine Deligne–Lusztig varieties, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015) no. 3, pp. 647-665 | DOI | MR | Zbl
[11] Geometric and homological properties of affine Deligne–Lusztig varieties, Ann. of Math. (2), Volume 179 (2014) no. 1, pp. 367-404 | DOI | MR | Zbl
[12] Hecke algebras and -adic groups, Current developments in mathematics 2015, Int. Press, Somerville, MA, 2016, pp. 73-135 | MR | Zbl
[13] On the cocenters of -adic groups, Proceedings of the Seventh International Congress of Chinese Mathematicians, Vol. I (Adv. Lect. Math. (ALM)), Volume 43, Int. Press, Somerville, MA (2019), pp. 255-266 | MR | Zbl
[14] Cordial elements and dimensions of affine Deligne–Lusztig varieties, Forum Math. Pi, Volume 9 (2021), e9, 15 pages | DOI | MR | Zbl
[15] Isocrystals with additional structure, Compos. Math., Volume 56 (1985) no. 2, pp. 201-220 | MR | Zbl
[16] Isocrystals with additional structure. II, Compos. Math., Volume 109 (1997) no. 3, pp. 255-339 | MR | Zbl
[17] On the existence of -crystals, Comment. Math. Helv., Volume 78 (2003) no. 1, pp. 153-184 | DOI | MR | Zbl
[18] A converse to Mazur’s inequality for split classical groups, J. Inst. Math. Jussieu, Volume 3 (2004) no. 2, pp. 165-183 | DOI | MR | Zbl
[19] Maximal Newton points and the quantum Bruhat graph, Michigan Math. J., Volume 70 (2021) no. 3, pp. 451-502 | DOI | MR | Zbl
[20] et al. A Gallery Model for Affine Flag Varieties via Chimney Retractions, Transform. Groups (2022) | DOI
[21] Dimensions of affine Deligne–Lusztig varieties: a new approach via labeled folded alcove walks and root operators, Mem. Amer. Math. Soc., Volume 261 (2019) no. 1260, p. v+101 | DOI | MR | Zbl
[22] Generic Newton points and the Newton poset in Iwahori-double cosets, Forum Math. Sigma, Volume 8 (2020), e50, 18 pages | DOI | MR | Zbl
[23] Combinatorics in affine flag varieties, J. Algebra, Volume 321 (2009) no. 11, pp. 3469-3493 | DOI | MR | Zbl
[24] Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux, Pure Appl. Math. Q., Volume 2 (2006) no. 4, Part 2, pp. 963-1013 | DOI | MR | Zbl
[25] A positivity property of the Satake isomorphism, Manuscr. Math., Volume 101 (2000) no. 2, pp. 153-166 | DOI | MR | Zbl
[26] A guide to the reduction modulo of Shimura varieties, Automorphic forms. I (Astérisque), Société Mathématique de France, 2005 no. 298, pp. 271-318 | MR | Zbl
[27] Truncations of level 1 of elements in the loop group of a reductive group, Ann. Math. (2), Volume 179 (2014) no. 3, pp. 1009-1040 | DOI | MR | Zbl
[28] Minimal Newton strata in Iwahori double cosets, Int. Math. Res. Not. IMRN (2021) no. 7, pp. 5349-5365 | DOI | MR | Zbl
[29] Class polynomials for some affine Hecke algebras, J. Algebra, Volume 452 (2016), pp. 502-548 | DOI | MR | Zbl
Cited by Sources: