Affine Deligne–Lusztig varieties and folded galleries governed by chimneys
Annales de l'Institut Fourier, Volume 73 (2023) no. 6, pp. 2469-2541.

We characterize the nonemptiness and dimension problems for an affine Deligne–Lusztig variety X x (b) in the affine flag variety in terms of galleries that are positively folded with respect to a chimney. If the parabolic subgroup associated to the Newton point of b has rank 1, we then prove nonemptiness for a certain class of Iwahori–Weyl group elements x by explicitly constructing such galleries.

Nous donnons une caractérisation des problèmes d’existence et de dimension pour une variété affine de Deligne–Lusztig X x (b) dans la variété de drapeaux affine, en utilisant des galeries pliées positivement par rapport à une cheminée. Nous prouvons ensuite, en construisant explicitement telles galeries, que si le sous-groupe parabolique associé au point de Newton de b a rang 1, les variétés X x (b) sont non vides pour une certaine classe d’éléments x du groupe d’Iwahori–Weyl.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/aif.3578
Classification: 20G25, 11G25, 20F55, 20E42, 14L05
Keywords: Affine Deligne–Lusztig variety, positively folded gallery, chimney retraction.
Mot clés : Variété affine de Deligne–Lusztig, galeries pliées positivement, rétraction de cheminée.

Milićević, Elizabeth 1; Schwer, Petra 2; Thomas, Anne 3

1 Department of Mathematics & Statistics Haverford College 370 Lancaster Avenue Haverford, PA (USA)
2 Department of Mathematics Universitaetsplatz 2 Otto-von-Guericke University of Magdeburg (Germany)
3 School of Mathematics & Statistics Carslaw Building F07 University of Sydney NSW 2006 (Australia)
License: CC-BY-ND 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{AIF_2023__73_6_2469_0,
     author = {Mili\'cevi\'c, Elizabeth and Schwer, Petra and Thomas, Anne},
     title = {Affine {Deligne{\textendash}Lusztig} varieties and folded galleries governed by chimneys},
     journal = {Annales de l'Institut Fourier},
     pages = {2469--2541},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {73},
     number = {6},
     year = {2023},
     doi = {10.5802/aif.3578},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3578/}
}
TY  - JOUR
AU  - Milićević, Elizabeth
AU  - Schwer, Petra
AU  - Thomas, Anne
TI  - Affine Deligne–Lusztig varieties and folded galleries governed by chimneys
JO  - Annales de l'Institut Fourier
PY  - 2023
SP  - 2469
EP  - 2541
VL  - 73
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3578/
DO  - 10.5802/aif.3578
LA  - en
ID  - AIF_2023__73_6_2469_0
ER  - 
%0 Journal Article
%A Milićević, Elizabeth
%A Schwer, Petra
%A Thomas, Anne
%T Affine Deligne–Lusztig varieties and folded galleries governed by chimneys
%J Annales de l'Institut Fourier
%D 2023
%P 2469-2541
%V 73
%N 6
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3578/
%R 10.5802/aif.3578
%G en
%F AIF_2023__73_6_2469_0
Milićević, Elizabeth; Schwer, Petra; Thomas, Anne. Affine Deligne–Lusztig varieties and folded galleries governed by chimneys. Annales de l'Institut Fourier, Volume 73 (2023) no. 6, pp. 2469-2541. doi : 10.5802/aif.3578. https://aif.centre-mersenne.org/articles/10.5802/aif.3578/

[1] Atiyah, M. F.; Bott, R. The Yang–Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A, Volume 308 (1983) no. 1505, pp. 523-615 | DOI | MR | Zbl

[2] Beazley, E. T. Codimensions of Newton strata for SL 3 (F) in the Iwahori case, Math. Z., Volume 263 (2009) no. 3, pp. 499-540 | DOI | MR | Zbl

[3] Bourbaki, Nicolas Lie groups and Lie algebras. Chapters 4–6, Elements of Mathematics, Springer-Verlag, Berlin, 2002, xii+300 pages (translated from the 1968 French original by Andrew Pressley) | DOI | MR | Zbl

[4] Deligne, P.; Lusztig, G. Representations of reductive groups over finite fields, Ann. Math. (2), Volume 103 (1976) no. 1, pp. 103-161 | DOI | MR | Zbl

[5] Gashi, Qëndrim R. On a conjecture of Kottwitz and Rapoport, Ann. Sci. Éc. Norm. Supér. (4), Volume 43 (2010) no. 6, pp. 1017-1038 | DOI | MR

[6] Gaussent, S.; Littelmann, P. LS galleries, the path model, and MV cycles, Duke Math. J., Volume 127 (2005) no. 1, pp. 35-88 | DOI | MR | Zbl

[7] Görtz, Ulrich Affine Springer fibers and affine Deligne–Lusztig varieties, Affine flag manifolds and principal bundles (Trends Math.), Birkhäuser/Springer Basel AG, Basel, 2010, pp. 1-50 | DOI | MR | Zbl

[8] Görtz, Ulrich; Haines, Thomas J.; Kottwitz, Robert E.; Reuman, Daniel C. Dimensions of some affine Deligne–Lusztig varieties, Ann. Sci. École Norm. Sup. (4), Volume 39 (2006) no. 3, pp. 467-511 | DOI | MR | Zbl

[9] Görtz, Ulrich; Haines, Thomas J.; Kottwitz, Robert E.; Reuman, Daniel C. Affine Deligne–Lusztig varieties in affine flag varieties, Compos. Math., Volume 146 (2010) no. 5, pp. 1339-1382 | DOI | MR | Zbl

[10] Görtz, Ulrich; He, Xuhua; Nie, Sian P-alcoves and nonemptiness of affine Deligne–Lusztig varieties, Ann. Sci. Éc. Norm. Supér. (4), Volume 48 (2015) no. 3, pp. 647-665 | DOI | MR | Zbl

[11] He, Xuhua Geometric and homological properties of affine Deligne–Lusztig varieties, Ann. of Math. (2), Volume 179 (2014) no. 1, pp. 367-404 | DOI | MR | Zbl

[12] He, Xuhua Hecke algebras and p-adic groups, Current developments in mathematics 2015, Int. Press, Somerville, MA, 2016, pp. 73-135 | MR | Zbl

[13] He, Xuhua On the cocenters of p-adic groups, Proceedings of the Seventh International Congress of Chinese Mathematicians, Vol. I (Adv. Lect. Math. (ALM)), Volume 43, Int. Press, Somerville, MA (2019), pp. 255-266 | MR | Zbl

[14] He, Xuhua Cordial elements and dimensions of affine Deligne–Lusztig varieties, Forum Math. Pi, Volume 9 (2021), e9, 15 pages | DOI | MR | Zbl

[15] Kottwitz, Robert E. Isocrystals with additional structure, Compos. Math., Volume 56 (1985) no. 2, pp. 201-220 | MR | Zbl

[16] Kottwitz, Robert E. Isocrystals with additional structure. II, Compos. Math., Volume 109 (1997) no. 3, pp. 255-339 | MR | Zbl

[17] Kottwitz, Robert E.; Rapoport, Michael On the existence of F-crystals, Comment. Math. Helv., Volume 78 (2003) no. 1, pp. 153-184 | DOI | MR | Zbl

[18] Lucarelli, Catherine A converse to Mazur’s inequality for split classical groups, J. Inst. Math. Jussieu, Volume 3 (2004) no. 2, pp. 165-183 | DOI | MR | Zbl

[19] Milićević, Elizabeth Maximal Newton points and the quantum Bruhat graph, Michigan Math. J., Volume 70 (2021) no. 3, pp. 451-502 | DOI | MR | Zbl

[20] Milićević, Elizabeth; Naqvi, Yusra; Schwer, Petra et al. A Gallery Model for Affine Flag Varieties via Chimney Retractions, Transform. Groups (2022) | DOI

[21] Milićević, Elizabeth; Schwer, Petra; Thomas, Anne Dimensions of affine Deligne–Lusztig varieties: a new approach via labeled folded alcove walks and root operators, Mem. Amer. Math. Soc., Volume 261 (2019) no. 1260, p. v+101 | DOI | MR | Zbl

[22] Milićević, Elizabeth; Viehmann, Eva Generic Newton points and the Newton poset in Iwahori-double cosets, Forum Math. Sigma, Volume 8 (2020), e50, 18 pages | DOI | MR | Zbl

[23] Parkinson, James; Ram, Arun; Schwer, Christoph Combinatorics in affine flag varieties, J. Algebra, Volume 321 (2009) no. 11, pp. 3469-3493 | DOI | MR | Zbl

[24] Ram, Arun Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux, Pure Appl. Math. Q., Volume 2 (2006) no. 4, Part 2, pp. 963-1013 | DOI | MR | Zbl

[25] Rapoport, Michael A positivity property of the Satake isomorphism, Manuscr. Math., Volume 101 (2000) no. 2, pp. 153-166 | DOI | MR | Zbl

[26] Rapoport, Michael A guide to the reduction modulo p of Shimura varieties, Automorphic forms. I (Astérisque), Société Mathématique de France, 2005 no. 298, pp. 271-318 | MR | Zbl

[27] Viehmann, Eva Truncations of level 1 of elements in the loop group of a reductive group, Ann. Math. (2), Volume 179 (2014) no. 3, pp. 1009-1040 | DOI | MR | Zbl

[28] Viehmann, Eva Minimal Newton strata in Iwahori double cosets, Int. Math. Res. Not. IMRN (2021) no. 7, pp. 5349-5365 | DOI | MR | Zbl

[29] Yang, Zhongwei Class polynomials for some affine Hecke algebras, J. Algebra, Volume 452 (2016), pp. 502-548 | DOI | MR | Zbl

Cited by Sources: