[Flots géodésiques modelisés par des flots expansifs : surfaces compactes sans points conjugués avec fibrés de Green continus]
Nous considérons le flot géodésique d’une surface compacte sans points conjugués, de genre supérieur à un et de fibrés de Green continus. L’identification de chaque bande de géodésiques bi-asymptotiques induit une relation d’équivalence dans le fibré unitaire tangent. Nous montrons que son espace quotient porte la structure d’une variété compacte tridimensionnelle. Cette variété porte un flot continu défini canoniquement par la relation d’équivalence, le flot quotient. Ce flot est expansif, semi-conjugué au flot géodésique de la surface en préservant le paramétrage du flot géodésique, et muni d’une structure de produit locale. Une étape essentielle de la preuve de ces propriétés est l’étude de la régularité des feuilletages horosphériques, nous montrons qu’ils sont bien tangents aux sous-fibrés de Green. En tant qu’application, il est montré que le flot géodésique a une mesure unique d’entropie maximale.
We study the geodesic flow of a compact surface without conjugate points and genus greater than one and continuous Green bundles. Identifying each strip of bi-asymptotic geodesics induces an equivalence relation on the unit tangent bundle. Its quotient space is shown to carry the structure of a 3-dimensional compact manifold. This manifold carries a canonically defined continuous flow which is expansive, time-preserving semi-conjugate to the geodesic flow, and has a local product structure. An essential step towards the proof of these properties is to study regularity properties of the horospherical foliations and to show that they are indeed tangent to the Green subbundles. As an application it is shown that the geodesic flow has a unique measure of maximal entropy.
Révisé le :
Accepté le :
Publié le :
Keywords: Geodesic flows, conjugate points, expansive flow, Green bundles, measure of maximal entropy.
Mot clés : Flots géodésiques, points conjugués, flot expansif, fibrés de Green, mesure d’entropie maximale.
Gelfert, Katrin 1 ; Ruggiero, Rafael O. 2
@article{AIF_2023__73_6_2605_0, author = {Gelfert, Katrin and Ruggiero, Rafael O.}, title = {Geodesic flows modeled by expansive flows: {Compact} surfaces without conjugate points and continuous {Green} bundles}, journal = {Annales de l'Institut Fourier}, pages = {2605--2649}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {6}, year = {2023}, doi = {10.5802/aif.3574}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3574/} }
TY - JOUR AU - Gelfert, Katrin AU - Ruggiero, Rafael O. TI - Geodesic flows modeled by expansive flows: Compact surfaces without conjugate points and continuous Green bundles JO - Annales de l'Institut Fourier PY - 2023 SP - 2605 EP - 2649 VL - 73 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3574/ DO - 10.5802/aif.3574 LA - en ID - AIF_2023__73_6_2605_0 ER -
%0 Journal Article %A Gelfert, Katrin %A Ruggiero, Rafael O. %T Geodesic flows modeled by expansive flows: Compact surfaces without conjugate points and continuous Green bundles %J Annales de l'Institut Fourier %D 2023 %P 2605-2649 %V 73 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3574/ %R 10.5802/aif.3574 %G en %F AIF_2023__73_6_2605_0
Gelfert, Katrin; Ruggiero, Rafael O. Geodesic flows modeled by expansive flows: Compact surfaces without conjugate points and continuous Green bundles. Annales de l'Institut Fourier, Tome 73 (2023) no. 6, pp. 2605-2649. doi : 10.5802/aif.3574. https://aif.centre-mersenne.org/articles/10.5802/aif.3574/
[1] Geodesic flows on closed Riemann manifolds with negative curvature, Proceedings of the Steklov Institute of Mathematics, No. 90 (1967), American Mathematical Society, Providence, R.I., 1969, iv+235 pages (translated from the Russian by S. Feder) | MR | Zbl
[2] Green bundles, Lyapunov exponents and regularity along the supports of the minimizing measures, Ann. Inst. H. Poincaré C Anal. Non Linéaire, Volume 29 (2012) no. 6, pp. 989-1007 | DOI | MR | Zbl
[3] On surfaces with no conjugate points, J. Differ. Geom., Volume 25 (1987) no. 2, pp. 249-273 | DOI | MR | Zbl
[4] Uniqueness of central foliations of geodesic flows for compact surfaces without conjugate points, Nonlinearity, Volume 20 (2007) no. 2, pp. 497-515 | DOI | MR | Zbl
[5] An alternative proof that -manifolds can be triangulated, Ann. Math. (2), Volume 69 (1959), pp. 37-65 | DOI | MR | Zbl
[6] Expansive geodesic flows on compact manifolds without conjugate points, Ph. D. Thesis, Institut Fourier and Fakultät für Mathematik der Ruhr-Universität Bochum (2015) (https://tel.archives-ouvertes.fr/tel-01691107/)
[7] Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc., Volume 153 (1971), pp. 401-414 | DOI | MR | Zbl
[8] Entropy-expansive maps, Trans. Amer. Math. Soc., Volume 164 (1972), pp. 323-331 | DOI | MR | Zbl
[9] Some systems with unique equilibrium states, Math. Systems Theory, Volume 8 (1974/75) no. 3, pp. 193-202 | DOI | MR | Zbl
[10] The ergodic theory of Axiom A flows, Invent. Math., Volume 29 (1975) no. 3, pp. 181-202 | DOI | MR | Zbl
[11] Expansive one-parameter flows, J. Differential Equations, Volume 12 (1972), pp. 180-193 | DOI | MR | Zbl
[12] The flat strip theorem fails for surfaces with no conjugate points, Proc. Amer. Math. Soc., Volume 115 (1992) no. 1, pp. 199-206 | DOI | MR | Zbl
[13] Maximal entropy measures for certain partially hyperbolic, derived from Anosov systems, Ergodic Theory Dynam. Systems, Volume 32 (2012) no. 1, pp. 63-79 | DOI | MR | Zbl
[14] Riemannian geometry, Mathematics: Theory & Applications, Birkhäuser Boston, Inc., Boston, MA, 2013
[15] Uniqueness of the measure of maximal entropy for geodesic flows on certain manifolds without conjugate points, Adv. Math., Volume 376 (2021), 107452, 44 pages | DOI | MR | Zbl
[16] Generic measures for geodesic flows on nonpositively curved manifolds, J. Éc. polytech. Math., Volume 1 (2014), pp. 387-408 | DOI | MR | Zbl
[17] The marked length-spectrum of a surface of nonpositive curvature, Topology, Volume 31 (1992) no. 4, pp. 847-855 | DOI | MR | Zbl
[18] Rigidity for surfaces of nonpositive curvature, Comment. Math. Helv., Volume 65 (1990) no. 1, pp. 150-169 | DOI | MR | Zbl
[19] Visibility manifolds, Pacific J. Math., Volume 46 (1973), pp. 45-109 | DOI | MR | Zbl
[20] Geodesic flow in certain manifolds without conjugate points, Trans. Amer. Math. Soc., Volume 167 (1972), pp. 151-170 | DOI | MR | Zbl
[21] Geodesic flows on negatively curved manifolds. II, Trans. Amer. Math. Soc., Volume 178 (1973), pp. 57-82 | DOI | MR | Zbl
[22] When is a geodesic flow of Anosov type? I,II, J. Differ. Geom., Volume 8 (1973), p. 437-463; 565–577
[23] Horocycle flows on certain surfaces without conjugate points, Trans. Amer. Math. Soc., Volume 233 (1977), pp. 1-36 | DOI | MR | Zbl
[24] Horospheres and the stable part of the geodesic flow, Math. Z., Volume 153 (1977) no. 3, pp. 237-251 | DOI | MR | Zbl
[25] Flows with unique equilibrium states, Amer. J. Math., Volume 99 (1977) no. 3, pp. 486-514 | DOI | MR | Zbl
[26] On the entropy of the geodesic flow in manifolds without conjugate points, Invent. Math., Volume 69 (1982) no. 3, pp. 375-392 | DOI | MR | Zbl
[27] Non-hyperbolic behavior of geodesic flows of rank 1 surfaces, Discrete Contin. Dyn. Syst., Volume 39 (2019) no. 1, pp. 521-551 | DOI | MR | Zbl
[28] Geodesic flows modelled by expansive flows, Proc. Edinb. Math. Soc. (2), Volume 62 (2019) no. 1, pp. 61-95 | DOI | MR | Zbl
[29] Flots d’Anosov sur les -variétés fibrées en cercles, Ergodic Theory Dynam. Systems, Volume 4 (1984) no. 1, pp. 67-80 | DOI | MR | Zbl
[30] Surfaces without conjugate points, Trans. Amer. Math. Soc., Volume 76 (1954), pp. 529-546 | DOI | MR | Zbl
[31] A theorem of E. Hopf, Michigan Math. J., Volume 5 (1958), pp. 31-34 | DOI | MR | Zbl
[32] Hyperbolic groups, Essays in group theory (Math. Sci. Res. Inst. Publ.), Volume 8, Springer, New York, 1987, pp. 75-263 | DOI | MR | Zbl
[33] Three remarks on geodesic dynamics and fundamental group, Enseign. Math. (2), Volume 46 (2000) no. 3-4, pp. 391-402 | MR | Zbl
[34] Geometry of horospheres, J. Differ. Geom., Volume 12 (1977) no. 4, pp. 481-491 | DOI | MR | Zbl
[35] Entropy and closed geodesics, Ergodic Theory Dynam. Systems, Volume 2 (1982) no. 3-4, p. 339-365 (1983) | DOI | MR | Zbl
[36] Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, 54, Cambridge University Press, Cambridge, 1995, xviii+802 pages (with a supplementary chapter by Katok and Leonardo Mendoza) | DOI | MR | Zbl
[37] Geodätischer Fluss auf Mannigfaltigkeiten vom hyperbolischen Typ, Invent. Math., Volume 14 (1971), pp. 63-82 | DOI | MR | Zbl
[38] Riemannian manifolds with geodesic flow of Anosov type, Ann. Math. (2), Volume 99 (1974), pp. 1-13 | DOI | MR | Zbl
[39] Mannigfaltigkeiten ohne konjugierte Punkte, Bonner Mathematische Schriften, 168, Universität Bonn, Mathematisches Institut, Bonn, 1986, iii+54 pages (Dissertation, Rheinische Friedrich-Wilhelms-Universität, Bonn, 1985) | MR | Zbl
[40] A relativised variational principle for continuous transformations, J. London Math. Soc. (2), Volume 16 (1977) no. 3, pp. 568-576 | DOI | MR | Zbl
[41] Entropy-expansiveness of geodesic flows on closed manifolds without conjugate points, Acta Math. Sin. (Engl. Ser.), Volume 32 (2016) no. 4, pp. 507-520 | DOI | MR | Zbl
[42] On the Patterson–Sullivan measure for geodesic flows on rank 1 manifolds without focal points, Discrete Contin. Dyn. Syst., Volume 40 (2020) no. 3, pp. 1517-1554 | DOI | MR | Zbl
[43] Geometric topology in dimensions and , Graduate Texts in Mathematics, 47, Springer-Verlag, New York-Heidelberg, 1977, x+262 pages | MR | Zbl
[44] A fundamental class of geodesics on any closed surface of genus greater than one, Trans. Amer. Math. Soc., Volume 26 (1924) no. 1, pp. 25-60 | DOI | MR
[45] Le spectre marqué des longueurs des surfaces à courbure négative, Ann. Math. (2), Volume 131 (1990) no. 1, pp. 151-162 | DOI | MR | Zbl
[46] Geodesic flows in closed Riemannian manifolds without focal points, Izv. Akad. Nauk SSSR Ser. Mat., Volume 41 (1977) no. 6, p. 1252-1288, 1447 | MR
[47] On the divergence of geodesic rays in manifolds without conjugate points, dynamics of the geodesic flow and global geometry, Geometric methods in dynamics. II (Astérisque), Société Mathématique de France, 2003 no. 287, pp. xx, 231-249 | MR | Zbl
[48] Dynamics and global geometry of manifolds without conjugate points, Ensaios Matemáticos, 12, Sociedade Brasileira de Matemática, Rio de Janeiro, 2007, iv+181 pages | MR | Zbl
[49] On the Pesin set of expansive geodesic flows in manifolds with no conjugate points, Bull. Braz. Math. Soc. (N.S.), Volume 34 (2003) no. 2, pp. 263-274 | DOI | MR | Zbl
[50] An introduction to ergodic theory, Graduate Texts in Mathematics, 79, Springer-Verlag, New York-Berlin, 1982, ix+250 pages | MR | Zbl
Cité par Sources :