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GEODESIC FLOWS MODELED BY EXPANSIVE
FLOWS: COMPACT SURFACES WITHOUT

CONJUGATE POINTS AND CONTINUOUS GREEN
BUNDLES

by Katrin GELFERT & Rafael O. RUGGIERO (*)

Abstract. — We study the geodesic flow of a compact surface without conju-
gate points and genus greater than one and continuous Green bundles. Identify-
ing each strip of bi-asymptotic geodesics induces an equivalence relation on the
unit tangent bundle. Its quotient space is shown to carry the structure of a 3-
dimensional compact manifold. This manifold carries a canonically defined contin-
uous flow which is expansive, time-preserving semi-conjugate to the geodesic flow,
and has a local product structure. An essential step towards the proof of these
properties is to study regularity properties of the horospherical foliations and to
show that they are indeed tangent to the Green subbundles. As an application it
is shown that the geodesic flow has a unique measure of maximal entropy.

Résumé. — Nous considérons le flot géodésique d’une surface compacte sans
points conjugués, de genre supérieur à un et de fibrés de Green continus. L’iden-
tification de chaque bande de géodésiques bi-asymptotiques induit une relation
d’équivalence dans le fibré unitaire tangent. Nous montrons que son espace quo-
tient porte la structure d’une variété compacte tridimensionnelle. Cette variété
porte un flot continu défini canoniquement par la relation d’équivalence, le flot
quotient. Ce flot est expansif, semi-conjugué au flot géodésique de la surface en
préservant le paramétrage du flot géodésique, et muni d’une structure de produit
locale. Une étape essentielle de la preuve de ces propriétés est l’étude de la régu-
larité des feuilletages horosphériques, nous montrons qu’ils sont bien tangents aux
sous-fibrés de Green. En tant qu’application, il est montré que le flot géodésique a
une mesure unique d’entropie maximale.

1. Introduction

The geodesic flow of a compact surface without conjugate points whose
genus is greater than one belongs to the most challenging examples of
Keywords: Geodesic flows, conjugate points, expansive flow, Green bundles, measure of
maximal entropy.
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nonuniformly hyperbolic dynamics. From the point of view of topological
dynamics, any such flow can be considered “hyperbolic in the large” after
Morse’s work [44] which shows that geodesics in the universal covering
space, endowed by the pullback of the metric of the surface by the covering
map, are “shadowed” by hyperbolic geodesics, that is, geodesics of the
hyperbolic space. To be more precise, a rectifiable curve c : I → N , I
an interval, of a complete Riemannian manifold (N, g) is a A,B-quasi-
geodesic if for every t, s ∈ I it holds ℓg(c[s, t]) ⩽ Adg(c(s), c(t)) +B, where
ℓg denotes curve length and dg the distance relative to the Riemannian
metric g. Morse shows that if (N, g) is the hyperbolic plane, then there
exists D > 0 such that the curve c is within a distance D from a hyperbolic
geodesic. The term “shadowing” is used to somehow draw a connection to
the Anosov-shadowing lemma in hyperbolic dynamics (see, for instance,
[36, Section 18]) which asserts that any ε-pseudo-orbit (for ε small enough)
is shadowed by some true orbit of the dynamics. In some sense quasi-
geodesics play a role analogous to pseudo-orbits of Anosov dynamics and
the constant D replaces ε in the Anosov-shadowing lemma.

Even though, by the above, geodesics behave similar to hyperbolic geo-
desics, there is a fundamental difference: there might exist infinitely many
geodesics in the universal covering of the compact surface shadowed by just
a single hyperbolic geodesic. These geodesics form “strips” of bi-asymptotic
geodesics which have been the object of study of dynamicists working in ge-
ometry. One of the most famous results is the so-called “flat strip theorem”
for surfaces without focal points (see [19, 46] and discussion in Section 3).

The similarities between the dynamics of the geodesic flow of a surface
without conjugate points and genus greater than one and the geodesic flow
of a hyperbolic surface have been inspiration in the fields of dynamical sys-
tems theory, geometry, and topology. Among the most studied problems is
the existence of conjugacies or semi-conjugacies between these flows, a prob-
lem which arises naturally from Morse’s work. It was shown in [29, 33] that
there exist such semi-conjugacies provided one allows for a reparametriza-
tion of the geodesic flow. On the other hand, after the works [17, 18, 45]
on rigidity of the marked length spectrum it is known that such semi-
conjugacies in general cannot be time-preserving. It is natural, although
somewhat naive, to ask whether there exists a sort of equivalence relation
in the class of orbits of the geodesic flow assigning any strip of geodesics
one common equivalence class such that the induced quotient space of the
unit tangent bundle still has some nice metric properties and carries a
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continuous flow. Without any further hypotheses, presumably the struc-
ture of strips is quite complicate. One partial result in this direction is
Coudène-Schapira [16] stating that in the universal covering of a compact
surface without focal points and genus greater than one the only nontrivial
strips project under the covering map on cylinders which are completely
foliated by closed geodesics. Even though, a priori there may be infinitely
many strips to “quotient” and the quotient space may be quite singular.
A general structure may be described by the equivalence relation in Gro-
mov hyperbolic spaces investigated by Gromov [32, Section 8.3] obtaining
a quotient with some very mild topological structure only.

Towards this direction, the following is our first main result. We recall
the definitions of the corresponding topological concepts in Section 4.

Theorem A. — Let (M, g) be a C∞ compact connected boundaryless
Riemannian surface without conjugate points of genus greater than one
and with continuous stable and unstable Green bundles. Then there exists
a continuous flow of a compact topological 3-manifold which is expansive,
topologically mixing, has a local product structure, and is time-preserving
semi-conjugate to the geodesic flow of (M, g).

Theorem A generalizes [28] which put the more restrictive assumption
that (M, g) is a compact surface without focal points and genus greater
than one. Let us in the following discuss our hypotheses and some of the
main ingredients for its proof.

Green bundles (bundles of stable (resp. unstable) Green Jacobi fields, see
definition in Section 2.3) are one of the main tools when studying smooth
aspects of the dynamics of geodesic flows. Their existence is a special fea-
ture of manifolds without conjugate points and more generally of globally
minimizing objects of Lagrangian dynamics (Aubry–Mather theory). One
immediate consequence of their definition is that Green bundles are mea-
surable and invariant under the action of the differential of the geodesic
flow. By Eberlein [20], their linear independence is equivalent to the prop-
erty that the geodesic flow is an Anosov flow. The hypothesis in Theorem A
about continuity of Green bundles is an additional restriction in the set-
ting of manifolds without conjugate points, and it does not grant a priori
their linear independence. In examples such as manifolds without focal
points (and hence in nonpositive or negative curvature) Green bundles are
continuous and in fact have an “expected” asymptotic behavior (the sta-
ble Green bundle is a counterpart of center stable dynamics, the unstable
Green bundle of the center unstable one). Anosov [1] shows that Green
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bundles coincide with the dynamical invariant bundles of hyperbolic dy-
namics if the compact manifold has negative curvature. Very much as in
the classification into regular or rank one vectors and singular or higher
rank vectors in compact manifolds of nonpositive curvature, here we con-
sider two distinguished sets of vectors of the unit tangent bundle:

R1
def= {θ ∈ T 1M has linear independent Green bundles}

the sets of generalized rank one vectors and

R0
def= {θ ∈ T 1M defines a trivial strip} ⊃ R1,

the set of expansive vectors. Note that both are invariant under the geodesic
flow.

A crucial issue in the theory of manifolds without conjugate points is
the regularity of the horospheres in the universal covering of the manifold.
It is not known whether horospheres give rise to continuous foliations of
the unit tangent bundle of the universal covering, invariant by the geodesic
flow, as it is the case in Anosov dynamics. The case of compact surfaces
without conjugate points is quite special since geodesic rays diverge in
the universal covering [30] and since this property is equivalent to the
existence and continuity of horospherical foliations [47]. In the more special
case of compact nonpositively curved surfaces this was shown by Eberlein
(see [34]), moreover, in this case Green bundles vary continuously and are
tangent to the horospherical foliations. However, in a more general setting
(even for compact surfaces without conjugate points) it is not known if the
latter remains true. What is known is that a “tame asymptotic behavior”
of Green bundles usually implies that horospherical foliations exist and are
tangent to Green bundles (see, for example, [46, Part II] and discussion in
Section 2.3).

As part of the proof of Theorem A, but interesting in itself, the following
result states that the continuity of Green bundles implies that the horo-
spherical foliations F s and F u (see Section 2.2 for definition) are continu-
ous foliations by C1 leaves, tangent to the Green bundles. It hence justifies
the terms stable and unstable foliations for F s and F u, respectively.

Theorem B. — Under the hypotheses of Theorem A:
(1) The families F s and F u are continuous foliations by C1 curves

which are tangent to the stable and the unstable Green bundles,
respectively.

(2) The set R1 coincides with the set of vectors θ ∈ T 1M such that
F s(θ) and F u(θ) intersect transversally at θ.
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(3) The set R1 is invariant, open, and dense in T 1M .
(4) Any vector θ ∈ T 1M with positive (forward or backward) Lyapunov

exponent belongs to R1.
Theorem B(3) extends previous results for compact surfaces with no fo-

cal points [46] and with bounded asymptote [49]. It is not known if the
continuous Green bundles-hypothesis alone implies any controlled asymp-
totic behavior of Green Jacobi fields as it does in those cases. Note that in
general (for example assuming that the surface has nonpositive curvature
and does not have an Anosov geodesic flow) there exist vectors in R1 with
Lyapunov exponent zero (see, for example, [27]).

Theorem B will play a crucial role in the proof of the existence of a
3-dimensional manifold carrying an expansive flow time-preserving, semi-
conjugate to the geodesic flow. Although the internal structure of strips
(classes of bi-asymptotic geodesics) may be quite complicated, nevertheless
we obtain – up to time-preserving semi-conjugacy – a model which describes
well the dynamics of the geodesic flow under consideration.

Returning to the term nonuniformly hyperbolic dynamics coined in the
beginning, we remark that the relevance of Green bundles was settled after
the work by Freire–Mañé [26]. It draws a connection between the Lya-
punov spectrum of the geodesic flow, Green bundles, and the calculation
of the metric entropy of the Liouville measure (see also Section 5.2). In-
deed, negative Lyapunov exponents are associated to stable Green bundles
while positive exponents are associated to unstable ones. It is unknown if
the converse is true. Even under the assumption of their continuity, Green
bundles have no a priori prescribed asymptotic behavior and its analysis
still remains one of the most subtle issues and challenges of the theory of
manifolds without conjugate points.

Under the hypotheses of Theorem A, a straightforward combination of
the variational principle for entropy (6.1) and Ruelle’s inequality (6.2) for
the positive topological entropy geodesic flow yields the existence of hy-
perbolic ergodic measures with large metric entropy. As an application,
also using Bowen’s work about thermodynamical formalism, we show the
following result.

Theorem C. — Under the hypotheses of Theorem A, the entropy map
for the geodesic flow is upper semi-continuous and there is a unique measure
of maximal entropy.

Existence and uniqueness of measures of maximal entropy for nonuni-
formly hyperbolic dynamical systems have been subject of interest in er-
godic theory and dynamical systems theory since the 1960s. Knieper [39]
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brought attention to the subject in the context of geodesic flows proving
that for compact rank one manifolds of nonpositive curvature the geodesic
flow has a unique measure of maximal entropy. His proof is based on the
construction and study of a Patterson–Sullivan measure and was extended
in [42] to compact rank one manifolds without focal points and in [6] to
compact manifolds without conjugate points and expansive geodesic flow.
Recently, Climenhaga et al. [15] generalizes Knieper’s work to compact sur-
faces without conjugate points. There, they essentially follow an extension
of Bowen’s classical construction [9] of maximizing measures for expansive
homeomorphisms (see [25] in the case of expansive continuous flows). The-
orem C for compact surfaces without focal points was shown in [28], and
here we largely will follow the strategy developed therein. Our approach,
in some essential points different from [15], relies on a direct application
of Bowen–Franco’s method for expansive dynamics. Once we have Theo-
rem A, the expansive model for the geodesic flow of the surface satisfies the
assumptions required to conclude that the expansive model has a unique
measure of maximal entropy. Then we apply criteria for extensions of ex-
pansive dynamics in [13] to carry over the uniqueness of the measure of
maximal entropy to the extending flow, proving Theorem C.

The paper is organized as follows. In Section 2 we recall some geometric
preliminaries, in particular, in Section 2.3 we define Green bundles. In
Section 3 we properly define the above somewhat vaguely introduced term
strip and investigate properties of the set of generalized rank one vectors.
We also study the set of generalized rank one vectors in this section and
prove Theorem B, except for item (4) whose proof we postpone to Section 5.
In Section 4 defines an equivalence relation between vectors of the unit
tangent bundle which correspondingly defines a quotient space and quotient
flow. The proof of Theorem A will be consequence of Theorems 4.2 and 4.3
which are proved in Section 4. Section 5 discusses the relation between
Lyapunov exponents and Green bundles. In Section 6 we study the entropy
of the geodesic flow on the set of generalized rank one vectors and prove
Theorem C.

2. Preliminaries

Standing Assumption. — Throughout the paper (M, g) is a compact con-
nected C∞ Riemannian manifold without boundary and dimension n. We
shall always assume that M has no conjugate points, that is, the exponen-
tial map is nonsingular at every point.
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Our main result concerns surfaces, though many statements hold in any
dimension.

Each vector θ ∈ TM in the tangent bundle of M determines a unique
geodesic γθ(·) such that γ̇θ(0) = θ. The geodesic flow Φ = (ϕt)t∈R acts
by ϕt(θ) = γ̇θ(t). We shall study its restriction to the unit tangent bun-
dle T 1M , which is an invariant subset of TM . All the geodesics will be
parametrized by arc length.

We shall denote by M̃ the universal covering of M and endow it with the
pullback g̃ of the metric g by the covering map π : M̃ →M which gives the
Riemannian manifold (M̃, g̃). We shall also consider the geodesic flow of
this manifold which acts on T 1M̃ which we will also denote by Φ = (ϕt)t∈R
(the domain of the flow is enough to specify the dynamical system under
consideration). We will consider the natural projection π : T 1M̃ → T 1M .
The distance associated to the Riemannian metric g will be denoted by dg

and the one associated to g̃ by dg̃. We will omit the metric if there is no
danger of confusion.

Given θ = (p, v), we recall the natural isomorphism between the tangent
space TvTM and TpM ⊕ TpM via the isomorphism ξ 7→ (Dµ(ξ), C(ξ)),
where µ : TM →M is the canonical projection µ(p, v) = p and C : TTM →
TM is the connection map defined by the Levi-Civita connection. One
refers to the orthogonal decomposition of TθTM into the horizontal and the
vertical subspace TθTM = Hθ ⊕ Vθ, respectively. The Riemannian metric
on M lifts to the Sasaki metric on TM induced by the scalar product
structure which we denote by dS and which is induced by the following
scalar product: for ξ, η ∈ TvTM

⟨⟨ ξ, η ⟩⟩v = ⟨Dµv(ξ), Dµv(η)⟩p + ⟨Cv(ξ), Cv(η)⟩p.

2.1. Jacobi fields

The notion of conjugate points has variational origin. Recall that the
Jacobi equation of a geodesic γθ of (M, g) is given by

(2.1) J ′′(t) +R(J(t), γ̇θ(t))γ̇θ(t) = 0,

where R denotes the curvature tensor and ′ denotes covariant differentiation
along γθ. Solutions of equation (2.1) are called Jacobi fields. The Jacobi
equation arises in the study of the second variation of the length function
of smooth curves [14]. If J is a Jacobi field along a geodesic γ so that J(t)
and J ′(t) are orthogonal to γ̇(t) for some t (and hence for all t ∈ R) then
it is called orthogonal.

TOME 73 (2023), FASCICULE 6
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Let γθ be a geodesic of (M, g). Two points γθ(t), γθ(s), r ̸= s, are con-
jugate along γθ if there exists a nontrivial Jacobi field J(r) of γ which
vanishes at r = t and at r = s. The geodesic γθ : (a, b) → M has no con-
jugate points if every nontrivial Jacobi field of γθ has at most one zero
in (a, b). The manifold (M, g) has no conjugate points if and only if no
geodesic has conjugate points.

Given θ = (p, v) and ξ ∈ TvTM , the Jacobi field Jξ along γθ is uniquely
determined by its initial conditions (Jξ(0), J ′

ξ(0)) = (dµ(ξ), Cv(ξ)) ∈ TpM⊕
TpM . The above described isomorphism acts as Dϕt(ξ) 7→ (Jξ(t), J ′

ξ(t))
and, in particular,

∥Dϕt(ξ)∥2
v = ∥Jξ(t)∥2

p + ∥J ′
ξ(t)∥2

p.

As (M, g) is compact, the curvature is bounded from below by −κ2 ⩽ K

for some κ > 0. By [22, Proposition 2.11], it holds ∥J ′
ξ(t)∥ ⩽ κ∥Jξ(t)∥ and

hence

(2.2) ∥Jξ(t)∥ ⩽ ∥Dϕt(ξ)∥v

∥ξ∥v
⩽

√
1 + κ2∥Jξ(t)∥.

By the above, there is an intimate relation between Lyapunov exponents
and the growth of nonradial Jacobi fields. We will use this in Section 5.2.

In Section 2.3 we will introduce a distinguished family of Jacobi fields
which define the stable and unstable Green bundles. To do so, we need first
to discuss some further ingredients.

2.2. Horospheres and un-/stable submanifolds

A very special property of manifolds with no conjugate points is the
existence of the Busemann functions and horospheres (see, for example,
[46, Part II] or [24] for details). Given θ = (p, v) ∈ T 1M̃ , the (forward and
backward) Busemann functions b±

θ
: M̃ → R associated to θ are defined by

b+
θ

(x) def= lim
t→+∞

dg̃(x, γθ(t))− t and b−
θ

(x) def= lim
t→+∞

dg̃(x, γθ(−t))− t ,

respectively. For every θ, the Busemann functions b±
θ

are C1 functions with
L-Lipschitz continuous derivative (with L > 0 being a Lipschitz constant
depending on curvature bounds, see [24, Propositions 1 and 2] and also [39,
Satz 3.5]), the gradients ∇b±

θ
are Lipschitz continuous unit vector fields.

The level sets of the Busemann functions are the horospheres. We define
the (level 0) (positive and negative) horospheres of θ ∈ T 1M̃ by

H+(θ) def= (b+
θ

)−1(0) and H−(θ) def= (b−
θ

)−1(0),
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respectively. Every horosphere is an embedded submanifold of M̃ of dimen-
sion n− 1 tangent to a Lipschitz plane field.

Let us denote by σθ
t : M̃ → M̃ the integral flow of the vector field −∇b+

θ
(also called Busemann flow). The orbits of this flow are the Busemann
asymptotes of γθ. They are geodesics which are everywhere orthogonal to
the horosphere H+(θ). In particular, the geodesic γθ is an orbit of this flow
and for every t ∈ R we have

σθ
t (H+(θ)) = H+(γθ(t)).

Geodesics β and γ in M̃ are asymptotic (as t → ∞) if dg̃(β(t), γ(t)) is
bounded for t ⩾ 0, that is, there exists C > 0 such that dg̃(β(t), γ(t)) ⩽ C

for all t ⩾ 0, and bi-asymptotic if dg̃(β(t), γ(t)) is bounded as t → ±∞,
that is, the previous inequality holds for all t ∈ R. Being asymptotic is an
equivalence relation and we denote by ∂M̃ the set of equivalence classes (the
points at infinity). Given a geodesic β, we denote by β(∞) its equivalence
class and by β(−∞) the equivalence class of the geodesic γ(t) = β(−t).
By [37], for every pair of distinct points in ∂M̃ there exists a (not necessarily
unique) geodesic β such that β(∞) and β(−∞) are those points at infinity,
respectively.

If β ⊂ M̃ is a geodesic such that β and γθ are asymptotic, then β

is (up to reparametrization) a Busemann asymptote of γθ. Moreover, if
inft>0 dg̃(γθ(t), β(t)) = 0, then β is a Busemann asymptote and β(0) ∈
H+(θ).

Horospheres are equidistant in the sense that, given any point p ∈
H+(γθ(t)), the distance dg̃(p,H+(γθ(s))) is equal to |t − s|. In particular,
H+(γθ(t)) varies continuously with t ∈ R, however it is not known whether
horospheres depend continuously (in the compact-open topology(1) ) on
their defining vector. The continuity of θ 7→ H±(θ) is equivalent to the
continuity in the C1 topology of the map θ 7→ b±

θ
uniformly on compact

subsets of M̃ . By [47], for (M, g) a compact manifold without conjugate
points, the latter continuity is equivalent to uniform divergence of geodesic
rays in (M̃, g̃).(2)

(1) The map θ 7→ H±(θ) is continuous (in the compact-open topology) if given a compact
ball B(q, r) ⊂ M̃ centred at q and of radius r and ε > 0, there exists δ = δ(r, q, ε) such
that ∥θ − ι∥ ⩽ δ implies dg̃

(
H±(θ) ∩ B(q, r), H±(ι) ∩ B(q, r)

)
⩽ ε.

(2) Geodesic rays diverge uniformly if for every ε > 0, L > 0 there exist s = s(ε, L) > 0
such that for every pair of vectors (p, v), (p, w) ∈ T 1M̃ such that ∠(v, w) ⩾ ε for every
t ⩾ s we have dg̃

(
γp,v , γp,w

)
⩾ L.
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The case of compact surfaces is special. The divergence of geodesic rays
in the universal covering of a compact surface without conjugate points was
shown by Green [30]. In higher dimensions the divergence of geodesic rays
in the universal covering of compact manifolds without conjugate points
still remains an open question.

The horospheres in M̃ lift naturally to T 1M̃ as follows. Consider the
gradient vector fields ∇b±

θ
and define the positive horocycle F̃ s(θ) and the

negative horocycle F̃ u(θ) in T 1M̃ through θ to be the restriction of ∇b±
θ

to H±(θ)

F̃ s(θ) def=
{

(q,−∇qb
+
θ

) : q ∈ H+(θ)
}

and

F̃ u(θ) def=
{

(q,∇qb
−
θ

) : q ∈ H−(θ)
}
,

respectively.

Remark 2.1. — As recalled above, Busemann functions are C1 with Lip-
schitz continuous derivative (with Lipschitz constant depending on curva-
ture bounds). Each F̃ s(θ) (each F̃ u(θ)) is the union of the vectors of the
unit vector field being normal to the horosphere H+(θ) (to H−(θ)), and
hence a continuous (n− 1)-dimensional submanifold of T 1M̃ .

By definition, the families {F̃ s(θ)}
θ∈M̃

and {F̃ s(θ)}
θ∈M̃

both are in-
variant in the sense that for every θ and every t ∈ R it holds

ϕt(F̃ s(θ)) = F̃ s(ϕt(θ)) and ϕt(F̃ u(θ)) = F̃ u(ϕt(θ)).

When M has nonpositive curvature this family provides a continuous
foliation of T 1M̃ [24]. In the particular case of a compact surface with-
out conjugate points each leaf of this foliation is a Lipschitz leaf (this is a
consequence of the divergence of geodesic rays in the universal cover due
to Green [30] and the so-called quasi-convexity of the universal cover due
to Morse [44]). Not assuming anything about curvatures, the Axiom of
Asymptoticity introduced in [46, Definition 5.1] also guarantees the contin-
uous foliation-property (see [46, Theorem 6.1]). At the present state of the
art the most general result is the following. Note that the first claim in this
proposition holds true if (M, g) is a compact manifold without conjugate
points and has bounded asymptote (we recall its definition at the end of
Section 2.3) since this property implies uniform divergence of geodesic rays
(we refer to [30] and [39]).
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Proposition 2.2 ([47]). — Let (M, g) be a compact manifold without
conjugate points. Then geodesic rays diverge in (M̃, g̃) if and only if the
family F̃ s def= {F̃ s(θ)}θ forms a continuous foliation of T 1M̃ (and the latter
holds true if and only if F̃ u def= {F̃ u(θ)}θ forms a continuous foliation).
Moreover, both foliations are invariant by the action of the geodesic flow.

In particular, if (M, g) is a compact surface without conjugate points
then the above families form continuous foliations which are invariant by
the geodesic flow.

The projections of the sets F̃ s(θ) and F̃ u(θ) by the natural covering map
π : T 1M̃ → T 1M give rise to sets F s(θ) and F u(θ) which we call stable
and unstable foliations, respectively (these adjectives will be justified by
Theorem B). In particular, for every θ ∈ T 1M and every t ∈ R we have

(2.3) ϕt(F s(θ)) = F s(ϕt(θ)) and ϕt(F u(θ)) = F u(ϕt(θ)).

The collections F̃ s, F̃ u are continuous foliations if and only if the families
of sets F s def= {F s(θ)}θ and F u def= {F u(θ)}θ define continuous foliations,
respectively.

Finally, let us also define the center stable and the center unstable sets by

F̃ cs(θ) def=
⋃
t∈R

ϕt(F̃ s(θ)) and F̃ cu(θ) def=
⋃
t∈R

ϕt(F̃ u(θ)),

respectively. The sets F̃ cs(θ) and F̃ cu(θ) project to analogously defined
sets F cs(θ) and F cs(θ), respectively.

One key concept to several topological properties is the following one
coined by Eberlein in [20]. A complete simply connected Riemannian man-
ifold (M, g) is a uniform visibility manifold if it has no conjugate points and
if for every ε > 0 there exists r = r(ε) > 0 such that for every p, x, y ∈M ,
if the distance between p and the geodesic segment [x, y] is greater than r,
then the angle at p formed by the geodesic segments [p, x] and [p, y] is less
than ε.

Any compact manifold with negative sectional curvature is a uniform vis-
ibility manifold. Moreover, if (M, g) is a compact uniform visibility manifold
and h is any other metric on M without conjugate points, then (M,h) is
also a uniform visibility manifold [20]. Hence, in particular, as every com-
pact surface of genus greater than one admits some metric with negative
sectional curvature, every compact surface (M, g) without conjugate points
is a uniform visibility manifold.
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Theorem 2.3. — Let (M, g) be a compact surface without conjugate
points.

(1) The foliations F s, F u are minimal.
(2) The geodesic flow is topologically mixing.
(3) The geodesic flow has a local product structure in the sense that

every two points (p, v), (q, w) ∈ T 1M̃ , (q, w) ̸∈ F cs(p,−v), are het-
eroclinically related, that is, we have

F̃ cs(p, v) ∩ F̃ cu(q, w) ̸= ∅, F̃ cs(q, w) ∩ F̃ cu(p, v) ̸= ∅.

Sketch of proof. — The proof of item (3) follows from the work of
Morse [44] about the shadowing of geodesics in the universal covering of a
compact surface of genus > 1 and without conjugate points, by geodesics in
the hyperbolic plane. Indeed, given (p, v), (q, w)∈T 1M̃ , (q, w) ̸∈F cs(p,−v),
there exists a geodesic β such that β(∞) = γ(p,v)(∞) and β(−∞) =
γ(q,w)(−∞). There is a unique real parameter t such that β(t) ∈ H+(p, v)
and hence β̇(t) ∈ F̃ s(p, v). Moreover, there is a unique real parameter s
such that γ(q,w)(s) ∈ H−(β(t)) and hence β(t) ∈ F̃ cu(q, w), proving (3).

By [23, Theorem 4.5], for a compact uniform visibility surface the horo-
cyle flow on T 1M is minimal (every orbit is dense). This immediately im-
plies that the foliations F s,F u both are minimal (every leaf is dense),
proving (1).

Item (2) follow from the main results by Eberlein in [20, 21], where he
develops a theory relating the dynamics of the geodesic flow and hyper-
bolic geometry of visibility manifolds in the large. The transitivity of the
geodesic flow is proved in [20] under the assumptions of compactness and
visibility universal covering. Moreover, Eberlein points out on [21, page 69]
that Hedlund’s ideas for the proof of the minimality of horocycle foliations
of hyperbolic compact surfaces can be pushed forward to show that the
geodesic flow in any dimension is topologically mixing. Essentially, what
Eberlein shows is that Hedlund’s work about horocycle foliations for hyper-
bolic surfaces can be extended to any compact Riemannian manifold (M, g)
without conjugate points assuming that the universal covering (M̃, g̃) sat-
isfies the following three properties:

(1) (M̃, g̃) is a quasi-convex space, namely, there exist positive numbers
A,B such that for every set of points x, y, p, q ∈ M̃ the Hausdorff
distance between the geodesics [x, y], [p, q] joining respectively, x to
y and p to q satisfies

dH([x, y], [p, q] ⩽ A sup{d(x, p), d(y, q)}+B.
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Quasi-convexity allows to define equivalence classes of asymptotic
geodesics in (M̃, g̃) and to compactify the universal covering with
the cone topology (see [20] for details). Let M̃(∞) be this compacti-
fication of the universal covering, and let ∂M̃(∞) be its ideal bound-
ary, whose elements precisely represent the equivalence classes of
geodesics.

(2) Given two different asymptotic classes ξ, η, there exists at least one
geodesic in (M̃, g̃) such that its forward asymptotic class is η and
its backward asymptotic class is ξ. Eberlein [21] calls this condition
is called Axiom I.

(3) Geodesic rays diverge uniformly in (M̃, g̃).
[21, Theorem 6.3] states that if a manifold of nonpositive curvature is

such that the nonwandering set is the whole unit tangent bundle, then
the geodesic flow is topologically mixing. It is straightforward to check
that, assuming the three properties listed above, that each step of the
proof of [21, Theorem 6.3] extends to visibility manifolds without conjugate
points. Finally note that the above three properties are satisfied provided
the universal covering of a compact manifold without conjugate points
is a uniform visibility manifold (see [20]). By the above, this is true, in
particular, if M is a surface. □

2.3. Green subspaces

Let us first recall the concept of hyperbolicity.

Remark 2.4 (Hyperbolic subsets). — An invariant set Z ⊂ T 1M is hy-
perbolic (with respect to the geodesic flow Φ) if there exist constants C > 0,
λ > 0 and for every θ ∈ Z there exist subspaces Es(θ) and Eu(θ) so that
Es(θ)⊕Eu(θ)⊕X(θ) = TθT

1M , where X(θ) here is the subspace tangent
to the flow, for every t ∈ R we have Dϕt(E†(θ)) = E†(ϕt(θ)), † ∈ {s,u},
and for every t ⩾ 0, ξ ∈ Es(θ), η ∈ Eu(θ) we have

∥Dϕt(ξ)∥ ⩽ C e−λt∥ξ∥, ∥Dϕ−t(η)∥ ⩽ C e−λt∥η∥.

One key feature of a compact hyperbolic set Z is that for every θ ∈ Z

there exist invariant submanifolds W s(θ) and W u(θ) which are stable and
unstable sets and at θ are tangent to the subspaces Es(θ) and Eu(θ), re-
spectively. The geodesic flow is an Anosov flow if T 1M is hyperbolic. It is
then an immediate consequence that F s(θ) and F u(θ) coincide with the
stable and unstable submanifolds W s(θ) and W u(θ), respectively, at every
point θ ∈ Z.
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When studying weaker types of hyperbolicity, it is natural to look for
subbundles which are invariant under the action of the linearization of the
flow. Green [31] identifies a distinguished family of Jacobi fields defined in
any geodesic without conjugate points, which is defined as follows.

For θ = (p, v), letNθ ⊂ TpM denote the set of vectors that are orthogonal
to v. Take ξ ∈ Nθ, and let Jξ,T be the Jacobi field of γθ given by the initial
conditions

Jξ,T (0) = ξ, Jξ,T (T ) = 0.

By [31], for every t ∈ R the limit

J s
ξ(t) def= lim

T →∞
Jξ,T (t)

exists (and is a Jacobi field satisfying J s
ξ(0) = ξ). The limit is called stable

Green Jacobi field. Analogously the unstable Green Jacobi field is defined
as the limit

Ju
ξ (t) def= lim

T →−∞
Jξ,T (t).

Moreover, J s
ξ(t) and Ju

ξ (t) are always orthogonal to γ̇θ(t) and never vanish.
The collection of initial conditions

Gs(θ) def=
⋃

ξ∈Nθ

{(J s
ξ(0), J s

ξ
′(0))} and Gu(θ) def=

⋃
ξ∈Nθ

{(Ju
ξ (0), Ju

ξ
′(0))}

are called the stable Green subspace and the unstable Green subspace at
θ, respectively. Both subspaces are Lagrangian subspaces with respect to
the canonical two-form of the geodesic flow restricted to Nθ and the hence
defined vector bundles are invariant under the action of the differential of
the geodesic flow:

(2.4) Dϕt(G†(θ)) = G†(ϕt(θ)), † ∈ {s,u}.

The above construction can be carried over to the universal cover M̃
and its tangent space. In particular, for every θ ∈ T 1M̃ one can construct
stable and unstable Green subspaces G̃s(θ) and G̃u(θ), respectively.

Below, we will study the case when stable and unstable Green bundles
both are continuous. Note that when (M, g) has this property then in the
language of [24, 39] this manifold has continuous asymptote.

Remark 2.5. — Recall that Klingenberg [38] shows that, if the geodesic
flow of a compact Riemannian manifold (M, g) is Anosov, then (M, g) has
no conjugate points. On the other hand, assuming that (M, g) has no con-
jugate points, by Eberlein [22, Theorem 3.2] the geodesic flow is Anosov if
and only if Gs(θ) ̸= Gu(θ) for every θ ∈ T 1M .
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Remark 2.6 (Green subbundles for hyperbolic subsets). — Given a hy-
perbolic compact invariant set Z ⊂ T 1M , for every θ ∈ Z the stable and
unstable Green subspaces at θ coincide with the usual stable and unstable
subspaces of the dynamics, respectively. Moreover, in this case, for ev-
ery θ ∈ Z the stable and unstable submanifolds of the dynamics coincide
with the sets F s(θ) and F u(θ), respectively, and hence at every point of
these submanifolds the Green Jacobi fields are tangent to them: For every
η ∈ F s(θ) it holds that Gs(η) is tangent to F s(θ). For every η ∈ F u(θ)
the space Gu(η) is tangent to F u(θ).

Remark 2.7. — In the general case, Green subspaces may not be tan-
gent to the un-/stable sets everywhere. Indeed, an example due to Ball-
mann et al. [3] shows that there exists compact surfaces without conjugate
points where un-/stable Green subspaces do not depend continuously on
θ, whereas the collections {F s(θ)}θ and {F u(θ)}θ are always continuous
foliations.

Without any further assumption on the dynamics of the geodesic flow, it
is difficult to characterize un-/stable Green Jacobi fields since they might
have unpredictable asymptotic behavior. When (M, g) has nonpositive cur-
vature, the norm of Jacobi fields is convex and therefore a stable Green
Jacobi field J(t) is characterized by the existence of a constant C > 0
such that supt⩾0∥J(t)∥ ⩽ C. The analogous property holds for an unstable
Green Jacobi field with t ⩽ 0.

Perhaps the more general sufficient criterion to characterize an un-/stable
Green Jacobi field is the following (the proof follows essentially from the
divergence of radial Jacobi field). We call a Jacobi field radial if J(t) = 0
for some t. We say that radial Jacobi fields diverge uniformly if for any
positive number a there exists T = T (a) > 0 such that every nontrivial
radial Jacobi field J with J(0) = 0 satisfies ∥J(t)∥ ⩾ a∥J ′(0)∥ for every
t ⩾ T . See also [22, Proposition 2.9] or [48, Chapter 3.2].

Lemma 2.8. — Let (M, g) be a compact manifold without conjugate
points.

(1) Any orthogonal Jacobi field J(t) which satisfies inft>0∥J(t)∥ = 0 is
a stable Green Jacobi field.

(2) Suppose that the radial Jacobi fields of (M, g) diverge uniformly. If
a orthogonal Jacobi field J(t) satisfies inft>0∥J(t)∥ ⩽ C for some
C > 0 then it is a stable Green Jacobi field.

(3) If (M, g) is a compact surface without conjugate points then radial
Jacobi fields diverge uniformly and therefore item (2) applies.
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The analogous statements hold true for unstable Green Jacobi fields.

To fix notation, let us recall some further classifications of manifolds ac-
cording to their growth behavior of stable Green Jacobi fields (for unstable
Green Jacobi fields analogous conditions are put). A manifold without con-
jugate points has bounded asymptote if there exists C > 0 such that every
stable Green Jacobi field J satisfies supt⩾0∥J(t)∥ ⩽ C∥J(0)∥. A manifold
has no focal points if the norm of any stable Green Jacobi field is always
nonincreasing. Observe that if M has nonpositive curvature then the norm
of any stable Green Jacobi field is always a nonincreasing convex function.
If M has negative curvature then any stable Green Jacobi field has a norm
which decays exponentially. The following implications hold true:

nonpositive curvature ⇒ no focal points ⇒ no conjugate points.

Note also (e.g. [39, 5.3 Satz]) that for a manifold without conjugate points
bounded asymptote ⇒ continuous un-/stable Green bundles

(that is, continuous asymptote).

3. Strips and their relation with Green subspaces

In this section, in addition to our Standing Assumption, we assume that
(M, g) is a compact surface of genus greater than one.

We start by defining a strip in the universal covering.

Definition 3.1. — Given θ ⊂ T 1M̃ the strip S(θ) ⊂ M̃ is the set of
all geodesics that are bi-asymptotic to γθ.

The following statement is essentially due to Morse [44] and recollects
properties of a strip. Recall the definition of the Busemann flow σθ

t in
Section 2.2.

Lemma 3.2. — For every θ ∈ T 1M̃ ,

S(θ) =
⋃
t∈R

σθ
t (I(θ)), where I(θ) def= H+(θ) ∩H−(θ).

Moreover, I(θ) is the arc of a continuous simple curve cθ : [a, b]→ I(θ) and
S(θ) is foliated by geodesics which all are bi-asymptotic to γθ.

If θ ∈ T 1M̃ is the lift of a periodic vector θ ∈ T 1M , then S(θ) is foliated
by lifts of periodic geodesics which all are in the same homotopy class of
γθ and which all have the same period.

There exists Q = Q(M) > 0 such that the Hausdorff distance between
any two bi-asymptotic geodesics in M̃ is bounded from above by Q.
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If the surface has no focal point and, in the notation in Lemma 3.2, if [a, b]
is not just one point then the curve I(θ) is a geodesic and the strip S(θ) is
flat, that is, isometric to [a, b]× R endowed with the Euclidean metric for
suitably chosen a < b (see the “flat strip theorem”, [19, Proposition 5.1]
or [46, Theorem 7.3]). In general, however, the geometry of a strip might be
quite different from a flat object. There are examples of surfaces without
conjugate points and with nonflat strips [12].

Lemma 3.2 justifies the term strip to designate S(θ). Note that I(θ) can
contain just a single point, as it is, for example, in the case of negative
curvature for any θ.

Definition 3.3. — We say that S(θ) is nontrivial if I(θ) is not a single
point, otherwise S(θ) is trivial and in this case we call θ an expansive point.

Lemma 3.2 immediately implies the following.

Corollary 3.4. — It holds that

S(θ) def=
⋃
t∈R

ϕt(I(θ)), where I(θ) def= F̃ s(θ) ∩ F̃ u(θ),

is a lift of I(θ) to T 1M̃ . Moreover, S(θ) nontrivial if and only if there exists
a continuous simple curve cθ : [0, 1]→ T 1M̃ such that

cθ([0, 1]) = I(θ).

By Corollary 3.4, the existence of nontrivial strips is equivalent to the
existence of (topologically) nontransversal intersections between stable and
unstable leaves in T 1M̃ . Let S(θ) ⊂ T 1M be the image of S(θ) by the
natural projection from T 1M̃ to T 1M . We shall as well refer to S(θ) as a
strip. Let I(θ) ⊂ T 1M be the connected component containing θ of the
image of I(θ) by the natural projection from T 1M̃ to T 1M or, equivalently,

I(θ) = F s(θ) ∩F u(θ).

Definition 3.5. — We call θ ∈ T 1M a generalized rank one vector if
Gs(θ) ̸= Gu(θ). We denote by

R1
def= {θ ∈ T 1M : Gs(θ) ̸= Gu(θ)}

the set of all generalized rank one vectors. We denote by

R0
def= {θ ∈ T 1M : S(θ) is trivial} = {θ ∈ T 1M : F s(θ) ∩F u(θ) = {θ}}

the set of expansive vectors.
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The set of expansive points was also studied in [15, 2.1.4].
It holds R1 ⊂ R0. Note that, by invariance of the Green bundles (2.4)

and by (2.3), the sets R1 and R0 both are invariant under the geodesic
flow. Moreover, assuming continuity of Green bundles, both sets are open.
Note that if (M, g) is a compact surface without focal points, then R1 is
just the set of rank one vectors.

Proof of Theorem B. — By Knieper [39, Theorem 3.8], the stable and
the unstable Green Jacobi fields are integrable vector fields, respectively.
Hence, there exist continuous foliations G s and G u of T 1M by C1 curves
which, using invariance of the Green bundles (2.4), are invariant in the
sense that for every θ ∈ T 1M and every t ∈ R there hold

ϕt(G †(θ)) = G †(ϕt(θ))

and
TηG †(θ) = G†(η) for every η ∈ G †(θ),

for † ∈ {s,u}, respectively.
By [4, Theorem A], the center stable and the center unstable foliations

F cs and F cu are the only continuous invariant codimension-one foliations
of the geodesic flow satisfying the hypotheses. Hence, letting

G cs(θ) def=
⋃
t∈R

ϕt(G s(θ)) and G cu(θ) def=
⋃
t∈R

ϕt(G u(θ)),

it holds either G cs = F cs or G cs = F cu, and analogously for G cu. Let θ ∈
T 1M be a hyperbolic periodic vector. Hence Gs(θ) is tangent to F s(θ) and
Gu(θ) is tangent to F u(θ) (Remark 2.6). Thus, it follows G cs(θ) ̸= F cu(θ)
and hence G cs = F cs.

Hence, we have already shown that each leaf F cs(θ) is sub-foliated by
the leaves of G s. Given θ ∈ T 1M , consider any of its lifts θ to T 1M̃ and
consider the corresponding foliation G̃ cs which by analogous arguments
coincides with F̃ cs. Let Pr: T 1M̃ → M̃ be the canonical projection. Re-
call that the projection Pr(F̃ cs(θ)) = Pr(

⋃
t∈R ϕt(F̃ s(θ))) gives rise to the

Busemann flow associated to θ, and the leaves Pr(ϕt(F̃ s(θ))) are just the
horospheres H+(γθ(t)). The projection Pr(ϕt(G̃ s(θ))) gives rise to a folia-
tion of Pr(F̃ cs) which is everywhere orthogonal to the vector field of the
Busemann flow. Recall that the Green subbundle Gs is orthogonal to the
vector field defining the geodesic flow (in fact, everywhere in T 1M̃ , not just
in F̃ cs(θ)). Since the Busemann vector field −∇b+

θ
is a Lipschitz continu-

ous vector field, its orthogonal (−∇b+
θ

)⊥ inherits this Lipschitz regularity.
Hence, the foliations {Pr(ϕt(G̃ s(θ)))}t and {H+(γθ(t)}t, being tangent to
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(−∇b+
θ

)⊥, must coincide. This implies F s(η) = G s(η) for every η ∈ F cs(θ),
which implies F s = G s. This proves item (1) and item (2).

As we assume that both Green bundles vary continuously, given a peri-
odic hyperbolic vector θ ∈ T 1M , there is an open set U ⊂ T 1M containing
the orbit of θ such that Gs(η) and Gu(η) are linearly independent for every
η ∈ U . Again using transitivity, this proves item (3).

Item (4) will be a consequence of Proposition 5.3(3). □

Proposition 3.6. — For every θ ∈ R1 that is forward recurrent (with
respect to the geodesic flow), for every η ∈ F s(θ) there exists a sequence
tn →∞ such that ϕtn

(θ)→ θ as n→∞ and

(3.1) lim
n→∞

dS(ϕtn(η), ϕtn(θ)) = 0.

The analogous statement holds true for F u as t→ −∞.

Property (3.1) was shown in [15, Lemma 6.7] for almost every vector
θ ∈ T 1M (relative to any invariant probability measure giving full mea-
sure to R1) using properties of generalized rank one vectors and ergodic
theory-arguments. Notice that, assuming additionally that (M, g) has no
focal points, property (3.1) is true for every θ ∈ R1 and moreover it holds
convergence as t→∞.

Proof of Proposition 3.6. — As θ is recurrent, there exists a sequence
tn → ∞ such that ϕtn

(θ) → θ as n → ∞. By contradiction, suppose that
there exist η ∈ F s(θ) such that for every such sequence tn →∞ satisfying
ϕtn

(θ)→ θ there is a > 0 such that for all n it holds

dS(ϕtn
(η), ϕtn

(θ)) ⩾ a.

Let θ ∈ T 1M̃ be a lift of θ and let η ∈ T 1M̃ be a lift of η satisfying
η ∈ F̃ s(θ̃). Then there is a′ > 0 such that the corresponding geodesic
curves in M̃ satisfy dg̃(γθ(tn), γη(tn)) ⩾ a′ for all n. On the other hand,
as η ∈ F̃ s(θ̃), it is a consequence of Morse’s lemma that dg(γη(t), γθ(t)) ⩽
D′(η) def= dg(η, θ) + 2D for all t ⩾ 0 and some D = D(M) > 0. Moreover,
for every t ∈ R the point γη(t) belongs to the horosphere H+(γθ(t)).

Since, by hypothesis, θ is accumulated by ϕtn
(θ), we can choose covering

isometries Tn : M̃ → M̃ such that

θn
def=

(
Tn(γθ(tn)), DTn(γ̇θ(tn))

)
→ θ
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as n → ∞. Up to considering some subsequence, we can assume that the
sequence

ηn
def=

(
Tn(γη(tn)), DTn(γ̇η(tn))

)
converges as n → ∞, denote its limit by η∞. The geodesics γθn

and γηn

then satisfy:

• limn→∞ γθn
(t) = γθ(t) uniformly on compact intervals of t ∈ R,

• dg̃(γθn
(t), γηn

(t)) ⩽ D′(η) for all t ∈ [−tn,∞),
• dg̃(γθn

(0), γηn
(0)) ⩾ a′ for all n,

The limiting geodesic γη∞ hence satisfies:

• dg̃(γθ(t), γη∞(t)) ⩽ D′(η) for all t ∈ R,
• dg̃(γθ(0), γη∞(0)) ⩾ a′,
• η∞ ∈ F̃ s(θ).

Indeed, the latter property is a consequence of the continuity of the sta-
ble foliation and the fact that ηn ∈ F̃ s(θn) for all n. Thus, γη∞ and γθ

are bi-asymptotic and hence they bound a strip of geodesics all being bi-
asymptotic. But this contradicts that θ is the lift of a vector in R1. □

Note that if θ is contained in a hyperbolic invariant set (recall Re-
mark 2.4; in particular this holds if θ is a hyperbolic periodic point), then
the sets F s(θ) and F u(θ) are just the stable and unstable submanifolds at
θ and hence at θ they are transverse and tangent to the stable and unstable
Green subspaces, respectively. The following result states that F s(ι) and
F u(ι) are also transverse as ι varies along F s(θ) (analogously for F u(θ)).

Corollary 3.7. — For every θ ∈ R1 that is forward recurrent (with
respect to the geodesic flow) it holds F s(θ) ⊂ R1. In particular,

F s(η) ∩F u(η) = {η} for all η ∈ F s(θ).

The analogous statements hold true for F u(θ).

Proof. — Given θ ∈ R1 forward recurrent, by Theorem B(3), there exists
an open set U ⊂ R1 containing θ. Since θ is forward recurrent, by Proposi-
tion 3.6 for every η ∈ F s(θ) there is a sequence tn →∞ so that ϕtn(η) ∈ U .
As Green bundles are invariant and transversality is preserved under the
application of Dϕt, it follows that Gs(η) and Gu(η) are transverse. Hence,
η ∈ R1. This together with R1 ⊂ R0 implies the claim. □

In Section 4, we will use the above results to construct a basis for the
quotient topology.
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4. The quotient flow: definition and properties

4.1. Quotient space and the model flow

Analogously to [28, Section 4], we say that two points θ, η ∈ T 1M are
related θ ∼ η if and only if

• η ∈ F s(θ),
• if θ is any lift of θ and η is any lift of η to T 1M̃ satisfying η ∈ F̃ s(θ),

then the geodesics γθ and γη are bi-asymptotic.

The above relation indeed defines an equivalence relation on T 1M . Given
θ ∈ T 1M , denote by [θ] the equivalence class containing θ. Denote by
X

def= T 1M/∼ the set of all equivalence classes and equip it with the quotient
topology. Denote by χ : T 1M → X, χ(θ) def= [θ], the quotient map. We
consider the flow Ψ = (ψt)t∈R, Ψ: R×X → X defined by

ψt = Ψ(t, ·)

as

ψt([θ])
def= [ϕt(θ)].

This quotient flow is continuous in the quotient topology generated by
the topology in T 1M . By the very definition of the flows and because the
geodesic flow preserves the foliations F s and F u (compare (2.3)), Ψ is a
time-preserving factor of the geodesic flow Φ by means of χ, that is, for
every t ∈ R

(4.1) χ ◦ ϕt = ψt ◦ χ.

The above defined equivalence relation on T 1M with quotient map χ

naturally induces an equivalence relation in T 1M̃ . We denote by [θ] the
corresponding equivalence class of θ ∈ T 1M̃ , by X the set of all equiva-
lence classes, by χ : T 1M̃ → X the quotient map, and by Ψ: R ×X → X

the corresponding quotient flow. Denote by Π: X → X the corresponding
canonical projection.

The following result is immediate.

Lemma 4.1. — For every θ ∈ R1 there exists an open set U ⊂ R1 of θ
such that χ|U : U → χ(U) is a local homeomorphism.
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Notations

The following diagram summarizes our setting (compare (4.3) for the
definition of the stable and unstable sets for the flows Ψ and Ψ).

M
π←− M̃, I(θ) def= H+(θ) ∩H−(θ)

θ = (p, v) ∈ T 1M
π←− θ = (p, v) ∈ T 1M̃

F †(θ) π←− F̃ †(θ), † = s,u, cs, cu

I(θ) = F s(θ) ∩F u(θ) π←− I(θ) def= F̃ s(θ) ∩ F̃ u(θ)

ϕt : T 1M → T 1M
π←− ϕt : T 1M̃ → T 1M̃

↓ χ ↓ χ

ψt : X → X
Π←− ψt : X → X

W †([θ]) Π←− W̃ †([θ]), † = ss,uu, cs, cu
The following two results establish the essential properties of the quotient

space and of the dynamical properties of the quotient flow.

Theorem 4.2. — Let (M, g) be a compact surface without conjugate
points and continuous stable and unstable Green bundles. Then the quo-
tient space X is a compact topological 3-manifold. In particular, X admits
a smooth 3-dimensional structure where the quotient flow Ψ is continuous.

The proof of Theorem 4.2 will be sketched in Section 4.2. In the following,
let us fix some metric d on X which is induced by a Riemannian metric.
We will recall expansiveness and local product structure in Sections 4.3
and 4.5, respectively.

Theorem 4.3. — Let (M, g) be a compact surface without conjugate
points and continuous stable and unstable Green bundles. Then the quo-
tient flow Ψ is expansive, topologically mixing, and has a local product
structure.

The proof of Theorem 4.3 will be completed in Section 4.6.

4.2. Proof of Theorem 4.2

The proof is analogous to [28, Theorem 4.3]. We only sketch it, indicating
the differences.
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Recall that at θ ∈ T 1M , the vertical subspace is Vθ = ker(dθπ) ∈ TθT
1M

and that this vertical distribution V is smooth and integrable. Its integral
curve through θ is simply the fiber of π, that is, the unit tangent space of
M at π(θ) ∈M . These integral curves naturally lift to T 1M̃ by π−1. Given
δ > 0, let us denote by Vδ(θ) the δ-neighborhood of θ in this vertical fiber.

As in [28], given a vector θ ∈ T 1M̃ and ε > 0 and δ > 0 sufficiently
small, we choose the local cross-section

Σθ(ε, δ) def= R((r−
0 − ε, r

+
0 + ε)× (−δ, δ)),

where R : (r−
0 −ε, r

+
0 +ε)×(−δ, δ)→ T 1M̃ is a map so that (r, s) 7→ R(r, s)

is a homeomorphism between (r−
0 −ε, r

+
0 +ε)×(−δ, δ) and its image having

the properties (compare also Figure 4.1):
• R(0, 0) = θ;
• s 7→ R(0, s), s ∈ (−δ, δ), is the arc length parametrization (in the

Sasaki metric) of Vδ(θ);
• r 7→ R(r, 0), r ∈ (r−

0 − ε, r
+
0 + ε), is the arc length parametrization

of the ε-tubular neighborhood of I(θ) in F̃ s(θ), with R(r−
0 , 0) and

R(r+
0 , 0) being the endpoints of I(θ);

• for each s ∈ (−δ, δ), r 7→ R(r, s) is the arc length parametrization
of the continuous curve in F̃ s(R(0, s)).

R(r−
0 , 0) R(r+

0 , 0)

R(0, s)

R(r, 0)

F̃s(θ)

F̃s(R(0, s))

F̃cu(θ) ∩ Σ

θ = R(0, 0)

Vδ(θ)

Figure 4.1. Parametrization of the local cross-section Σ = Σθ(ε, δ)

For better illustration, Figure 4.2 also displays this parametrization in
the case of negative curvature. In the following, we will shortly denote this
disk by Σ. This defines a continuously embedded closed two-dimensional
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disc Σθ(ε, δ) transverse to the geodesic flow, containing I(θ), and foliated
by leaves of F̃ s.

θ R(0, s)

R(r, 0)

γ
θ

γR(0,s)

γR(0,s)(∞)
γ

θ
(∞)

R(0, s)

R(r, 0)
F̃s(θ)

F̃s(R(0, s))
F̃cu(θ) ∩ Σ

θ = R(0, 0)

Vδ(θ)

Figure 4.2. Vectors close to the local cross section Σ = Σθ(ε, δ) (left)
and the parametrization of their projection to Σ (right), in case of
negative curvature.

Given an interval (a, b) and Y ⊂ T 1M̃ , denote

ϕ(a,b)(Y ) def=
⋃

t∈(a,b)

ϕt(Y ).

For τ > 0, consider the open neighborhood of θ in T 1M̃ defined by

Bθ(ε, δ, τ) def= ϕ(−τ,τ)(Σ)

and consider the projection ΠΣ : Bθ(ε, δ, τ)→ Σ by the flow Φ.
Given any strip S which intersects Bθ(ε, δ, τ), there exists a vector η ∈ Σ

such that ΠΣ(S ∩Bθ(ε, δ, τ)) is a connected component of I(η). In partic-
ular, if I(η) ⊂ Bθ(ε, δ, τ) then ΠΣ(S) = I(η).

Given η ∈ Bθ(ε, δ, τ), denote by

Bcs
η (ε, δ, τ) def= F̃ cs(η) ∩Bθ(ε, δ, τ), Bcu

η (ε, δ, τ) def= F̃ cu(η) ∩Bθ(ε, δ, τ),

the connected components of the intersections of the central stable and
the central unstable sets of η with Bθ(ε, δ, τ) that contain η, respectively.
Denote

W s
Σ(η) def= ΠΣ(Bcs

η (ε, δ, τ)), W u
Σ(η) def= ΠΣ(Bcu

η (ε, δ, τ)).

Choose δ0 = δ(θ)> 0 so small that F̃ cu(θ) intersects F̃ s(R(0, (−δ0, δ0))).
Given δ ∈ (0, δ0), there exists ε0 = ε0(θ, δ) > 0 so that for every ε ∈ (0, ε0),
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every r ∈ (r−
0 − ε, r−

0 ) ∪ (r+
0 , r

+
0 + ε), and every s ∈ (−δ, δ) for points

η
def= R(0, r) and ξ

def= R(0, s) the intersection

[ξ, η] def= W s
Σ(ξ) ∩W u

Σ(η) ⊂ Σ

is nonempty (though they may be contained in a nontrivial strip).
Let us consider the following open subsets of Σ

Σ+,+ def= {R(r, s) : r ∈ (0, r+
0 + ε), s ∈ (0, δ)},

Σ+,− def= {R(r, s) : r ∈ (0, r+
0 + ε), s ∈ (−δ, 0)},

Σ−,+ def= {R(r, s) : r ∈ (r−
0 − ε, 0), s ∈ (0, δ)},

Σ−,− def= {R(r, s) : r ∈ (r−
0 − ε, 0), s ∈ (−δ, 0)}.

By Corollary 3.7, given a hyperbolic periodic η ∈ T 1M and any lift η,
then the leaves F̃ s(η) and F̃ u(η) do not intersect any nontrivial strip.
By invariance, F̃ cs(η) and F̃ cu(η) also do not contain a nontrivial strip.
By Theorem 2.3, the foliations are minimal. Hence, in particular, the leafs
F s(η) and F u(θ) both are dense in T 1M . Therefore there exist lifts of η to
T 1M̃ whose center stable set intersects the sets Σ+,+ and Σ−,− in points ξ+

and ξ−, respectively. Analogously, there exists a lift whose center unstable
set intersects Σ−,+ and Σ+,− in η+ and η−, respectively. Note that η±

and ξ± are expansive points. Moreover the sets W s
Σ(ξ±) and W u

Σ(η±) are
curves which are disjoint from W u

Σ(θ). Each of the intersections [ξ±, η±] =
W s

Σ(ξ±)∩W u
Σ(η±) contains a single point and the corresponding arcs bound

a region in Σ which is homeomorphic to a rectangle whose relative interior
contains I(θ).

Denote by U = Uθ(ε, δ, ξ−, ξ+, η−, η+) this open region in Σ whose
boundary is formed by the corresponding arcs contained in W u

Σ(η+),
W s

Σ(ξ+), W u
Σ(η−), and W s

Σ(ξ−) (compare Figure 4.3).
Following now verbatim arguments in the proofs of [28, Lemmas 4.6

and 4.7 and Proposition 4.8], we show the following.

Lemma 4.4. — Given θ ∈ T 1M̃ , there exists δ0 = δ0(θ) > 0 and for
every δ ∈ (0, δ0) there exists ε0 = ε0(θ, δ) so that for every ε ∈ (0, ε0) there
are numbers ρ± ∈ (0, ε) and expansive points η+ ∈ Σ−,+, η− ∈ Σ+,−, ξ− ∈
Σ−,−, and ξ+ ∈ Σ+,+, where Σ = Σθ(ε, δ). Consider the above constructed
region U = Uθ(ε, δ, ξ−, ξ+, η−, η+) ⊂ Σ. Then for τ > 0 sufficiently small
the set

A = Aθ(τ, ε, δ, ξ−, ξ+, η−, η+) def= ϕ(−τ,τ)(U)
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ξ− η−

ξ+

Wu
Σ(η+) Wu

Σ(η−)Wu
Σ(θ)

W s
Σ(θ)

θ

η+

Σ+,+Σ−,+

Σ−,− Σ+,−

Figure 4.3. Region defined by expansive points η±, contained in the
region Σθ(ε, δ) splits into Σ+ and Σ−, and containing the open set
Uθ(ε, δ, ξ−, ξ+, η−, η+) (shaded region)

satisfies χ−1(χ(A)) = A. The collection

(4.2) {χ(Aθ(τ, ε, δ, ξ−, ξ+, η−, η+))}

provides a basis for the quotient topology of X.
Moreover, there exist numbers a < a′ and b < b′ and a homeomorphism

f : (a, a′)× (b, b′)× (−τ, τ)→ ψ(−τ,τ)(χ(U)) = χ(A)

for every τ > 0. In particular, the quotient space X is a topological 3-
manifold.

By the above lemma, every point in X has an open neighborhood which
is homeomorphic to an open subset of R3. Hence X is a topological 3-
manifold. By [5, 43], the space X has a smooth structure which is compati-
ble with the quotient topology. Since its quotientX is locally homeomorphic
to X, the last assertion also extends to this space. This sketches the proof
of the theorem. □

Remark 4.5 (Metric structure on X). — As any smooth compact mani-
fold admits a Riemannian metric, there exists a distance d : X ×X → R⩾0
which endows X with the structure of a complete metric space. The pull-
back d of d to X by

Π: X → X, Π(χ(θ)) def= χ(π(θ))
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provides a structure of a complete metric space (X, d) locally isometric to
(X, d). This metric d is continuous and the quotient flow Ψ is continuous
with respect to d, analogously d and Ψ. In the following, we will fix such
metrics d and d.

4.3. Expansiveness

A continuous flow Ψ = (ψt)t on a compact metric space (X, d) is expan-
sive if for every ε > 0 there exists δ > 0 with the property that if x ∈ X
and y ∈ X is a point for which there exists an increasing homeomorphism
ρ : R→ R with ρ(0) = 0 and for every t ∈ R satisfying

d(ψt(x), ψρ(t)(y)) ⩽ δ,

then y = ψt(y)(x) for some |t(y)| ⩽ ε (see [11, Theorem 3] for equivalent
definitions).

Proposition 4.6. — The quotient flow Ψ on (X, d) and the quotient
flow Ψ on (X, d) both are expansive flows.

The proof of this proposition goes verbatim to the arguments in [28,
Section 5.1]. Indeed, observe that the key argument used in [28] is that the
width of any strip is bounded from above, which is a consequence of the
fact that any two bi-asymptotic geodesics in M̃ stay in uniformly bounded
Hausdorff distance from each other. But this latter fact continues to hold
true for compact Riemannian surfaces without conjugate points and of
genus greater than one (compare Lemma 3.2).

4.4. Dynamics on stable and unstable sets

In this section we will study the quotients of the stable and unstable
manifolds.

Given θ ∈ T 1M and one of its lifts θ ∈ T 1M̃ , define

W̃ †([θ]) def= χ(F̃ †(θ)), W †([θ]) def= χ(F †(θ)), † ∈ {cs, cu}

W̃ ss([θ]) def= χ(F̃ s(θ)), W ss([θ]) def= χ(F s(θ))

W̃ uu([θ]) def= χ(F̃ u(θ)), W uu([θ]) def= χ(F u(θ)).

(4.3)

The following relations are immediate consequences of the semi-conjuga-
tion (4.1) and the definitions in (4.3)

W̃ cs([θ]) def=
⋃
t∈R

ψt(W̃ ss([θ])) = χ(F̃ cs(θ)),
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analogously for W̃ cs([θ]). Moreover, for x def= χ(θ) = Π([θ])

W cs(x) def=
⋃
t∈R

ψt(W ss(x)) = Π(W̃ cs([θ])),

analogously for W cu(x).
The proof of the following result will be completed at the end of this

section. In this section we only investigate stable sets, the analogous results
hold true for unstable sets.

Proposition 4.7 (Uniform contraction in W ss). — For every D > 0
and a > 0 there exists T > 0 such that for every x ∈ X for all t ⩾ T it
holds that

d(ψt(y), ψt(x)) ⩽ a for every y ∈W ss(x) with d(y, x) ⩽ D.

Besides the fact that the quotient flow is expansive, Proposition 3.6 will
be a key fact towards proving Proposition 4.7. Let us introduce some more
notation. Let θ ∈ T 1M and x

def= χ(θ). Let

cs
θ : (−∞,∞)→ F s(θ)

be the parametrization of F s(θ) by arc length satisfying cs
θ(0) = θ. Let

F s
D(θ) def= cs

θ([−D,D]).

Define, as in (4.3),

W ss(x) def= χ(F s(θ)), and let W ss
D (x) def= χ(F s

D(θ)).

Note that the sets F s
D(θ) are compact and depend continuously on θ ∈

T 1M and D > 0. By continuity of the quotient map, their quotients W ss
D (x)

also depend continuously on x = χ(θ) and D.
Notice that if F s

D(θ) is contained in a nontrivial equivalence class, then
its quotient collapses to the single point

χ(F s
D(θ)) = {χ(θ)}.

So a priori the geometry of such quotient curves can be quite singular.

Lemma 4.8. — Let θ ∈ R1 be forward recurrent (with respect to the
geodesic flow) and x def= χ(θ). Then lim inft→∞ d(ψt(y), ψt(x)) = 0 for every
y ∈W ss(x).

Proof. — Recall that, by Lemma 4.1, there exists an open neighborhood
U = U(θ) of θ such that χ|U : U → χ(U) is a homeomorphism, considering
the Sasaki distance dS in U and the metric d in χ(U), respectively. Then
χ(U) is an open set. Let η ∈ F s(θ) such that χ(η) = y. By Proposition 3.6,
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there exists a sequence tn →∞ such that ϕtn
(θ) ∈ U and ϕtn

(θ)→ θ and
dS(ϕtn

(ξ), ϕtn
(θ))→ 0 as n→∞. This implies the claim. □

The proof of the next result uses strongly the expansivity of the quotient
flow.

Proposition 4.9 (Pseudo-convexity of orbits). — For every δ > 0 there
exists D0 > 0 such that for every x ∈ X, every t ⩾ 0, and every y ∈W ss(x)
satisfying

max
{
d(y, x), d(ψt(y), ψt(x))

}
⩽ D0

it holds d(ψs(y), ψs(x)) ⩽ δ for all s ∈ [0, t].

Proof. — We argue by contradiction. Suppose that there exist a > 0,
sequences of points θn ∈ T 1M , xn

def= χ(θn), ηn ∈ F s(θn), and yn
def= χ(ηn),

and a sequence of times tn →∞ as n→∞ and Tn ∈ (0, tn) such that

d(yn, xn) ⩽ 1
n

and d(ψtn
(yn), ψtn

(xn)) ⩽ 1
n

and
d(ψTn

(yn), ψTn
(xn)) ⩾ a.

From continuity of the flow Ψ, it follows that Tn → ∞ and tn − Tn → ∞
as n→∞.

Let δ ∈ (0, a]. Recalling that W ss(xn) = χ(F s(θn)), let cs
n : [0, Dn] →

F s(θn) be the continuous curve parametrized by arc length and joining θn

and ηn so that χ ◦ cs
n(0) = xn and χ ◦ cs

n(δn) = yn. Let δn ∈ (0, Dn] so that

sup
r∈[0,δn],t∈[0,tn]

d
(
ψt(χ ◦ cs

n(r)), ψt(x)
)

= δ.

As χ is continuous and the distance restricted to the arc connected sets
W ss(xn) is continuous, the above supremum is in fact obtained at some
r = δ′

n ∈ (0, δn], and there exists a sequence sn ∈ [0, tn] such that

d(ψsn
(χ ◦ cs

n(δ′
n)), ψsn

(x)) = δ.

Again by continuity of the flow Ψ, it holds sn → ∞ and sn − tn → ∞ as
n→∞.

Consider now the sequences of points

zn
def= ψsn

(xn) and wn
def= ψsn

(χ ◦ cs
n(δ′

n)).

Notice that they are quotients by χ of vectors

ζn
def= ϕsn

(θn) and ξn
def= ϕsn

(cs
n(δ′

n)),

respectively. Note that
• ξn ∈ F s(ζn) (by invariance (2.3)) and hence
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• wn ∈ χ(F s(ζn)) = W ss(zn)
• d(ψt(wn), ψt(zn)) ⩽ δ for every t ∈ [−sn, tn − sn]
• d(wn, zn) = δ.

Up to passing to some subsequence, we can assume that these sequences
converge to limit points ζ∞ = limn ζn and ξ∞ = limn ξn and hence we
have limit points z∞ = limn zn and w∞ = limn wn, respectively. It follows
from the continuity of foliations that limn F s(ζn) = F s(ζ∞) and hence
ξ∞ ∈ F s(ζ∞). Thus, we obtain

• w∞ ∈W ss(z∞); moreover
• d(ψt(z∞), ψt(w∞)) ⩽ δ for all t ∈ R and
• d(w∞, z∞) = δ.

But this contradicts the fact that the flow Ψ is expansive. □

Proof of Proposition 4.7. — Let ε > 0. By Proposition 4.6, the flow Ψ
is expansive and choose δ = δ(ε) > 0 accordingly. Choose D0 = D0(δ) as
provided by Proposition 4.9. Let D ∈ (0, D0).

We first prove that for every a ∈ (0, D) there is T > 0 such that for
any x = χ(θ) where θ ∈ R1 is forward recurrent (with respect to the
geodesic flow) the assertion is true for every t ⩾ T and y ∈ W ss(x) with
d(y, x) ⩽ 2D. Clearly, it hence will satisfy the assertion also for any y much
closer to x. We argue by contradiction. Suppose that there exist a ∈ (0, D),
sequences of forward recurrent vectors θn ∈ R1 and points xn = χ(θn) and
yn ∈ W ss(xn) satisfying d(yn, xn) ⩽ 2D, and a sequence of times tn → ∞
as n→∞ such that for every n ⩾ 1

d(ψtn(yn), ψtn(xn)) ⩾ a.

By Lemma 4.8, for every n ⩾ 1 we can choose τn > tn arbitrarily large
such that

d(ψτn
(yn), ψτn

(xn)) ⩽ 2D.
Hence, the points zn

def= ψtn(xn) and wn
def= ψtn

(yn) satisfy
• wn ∈W ss(zn) and
• d(wn, zn) ⩾ a.

Moreover, as τn can be chosen arbitrarily large, by Proposition 4.9
• d(ψt(wn), ψt(zn)) ⩽ δ for every t ⩾ −tn.

Up to passing to some subsequence of indices, we can assume that these
sequences have limit points z∞ = limn zn and w∞ = limn wn. It holds:

• w∞ ∈W ss(z∞),
• d(ψt(w∞), ψt(z∞)) ⩽ δ for every t ∈ R, and
• d(w∞, z∞) ⩾ a.
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(Compare also Figure 4.4.)

x1

W ss(x1) W ss(z1)

W ss(z∞)

y1

ψt1 (x1) = z1

ψt1 (y1) = w1

⩾ a

⩾ a

⩾ a

zn

wn

ψ−tn (wn)
ψ−tn (zn)

w∞

z∞
δ-neigbh.

Figure 4.4. Proof of Proposition 4.7.

But this contradicts expansivity. This proves the existence of T =
T (2D, a) > 0 satisfying the assertion of the proposition for any x ∈ χ(R1)
and y ∈W ss(x) with d(y, x) ⩽ 2D.

Let us now consider the general case. Take T as provided by the first
part of the proof. To fix some more quantifiers, by continuity of the flow Ψ
on the compact space X, for every t0 ⩾ T there exists δ1 ∈ (0, 1

2D) such
that

d(ψt(z), ψt(y)) ⩽ a for every z, y ∈ X, d(z, y) ⩽ δ1, for every t ∈ [0, t0].

By uniform continuity of the quotient χ : T 1M → X, there is δ2 > 0 such
that every set of diameter at most δ2 quotients into a set of diameter at
most δ1.

Let us now consider an arbitrary (not necessarily the quotient of a recur-
rent and inR1) point x ∈ X. Let y ∈W ss(x) satisfying d(y, x) ⩽ D. Choose
vectors θ ∈ χ−1(x) and η ∈ χ−1(y) and consider the minimal connected
subset of F s(θ) containing θ and η, denote it by F s(θ, η). Recall that, by
Theorem B(3), R1 is dense in T 1M . Also recall that the foliation F s is
continuous. Hence, there exist θ′ ∈ R1, dS(θ′, θ) < δ2, and η′ ∈ F s(θ′) such
that dS(η′, η) ⩽ δ2 and that F s(θ′, η′) is contained in a δ2-neighborhood
of F s(θ, η). Letting x′ def= χ(θ′) and y′ def= χ(η′), hence y′ ∈ W ss(x′) and
d(y′, y) ⩽ δ1 and d(x′, x) ⩽ δ1. In particular,

d(x′, y′) ⩽ d(x′, x) + d(y′, y) + d(x, y) ⩽ 2δ1 +D < 2D2 +D = 2D.

Hence, by our choice of T ,

d(ψt(y′), ψt(x′)) ⩽ a for every t ∈ [T, t0]
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Hence, by the triangle inequality

d(ψt(y), ψt(x)) ⩽ d(ψt(y), ψt(y′))+d(ψt(y′), ψt(x′))+d(ψt(x′), ψt(x)) ⩽ 3a

for every t ∈ [T, t0].
As t0 ⩾ T was arbitrary, this concludes the proof of the proposition. □

We conclude this section by stating a corollary which will be used below.

Corollary 4.10. — For every ε > 0 there exists δ > 0 such that for
every θ ∈ R1 forward recurrent (with respect to the geodesic flow), with
x

def= χ(θ) for every y ∈W ss(x) satisfying d(y, x) ⩽ δ and for every t ⩾ 0 it
holds

d(ψt(y), ψt(x)) ⩽ ε

and
lim

t→∞
d(ψt(y), ψt(x)) = 0.

The analogous statement holds for every z ∈W uu(x) with d(z, x) ⩽ δ and
t ⩽ 0.

Proof. — Lemma 4.8 together with Proposition 4.9 implies the claim. □

4.5. Local product structure

Let us investigate the local product structure of the quotient flow Ψ.
First recall some definitions. Given x ∈ X, define the strong stable set of
x (with respect to the quotient flow Ψ) by

W ss(Ψ, x) def= {y ∈ X : d(ψt(y), ψt(x))→ 0 as t→∞}

and for ε > 0 let

W ss
ε (Ψ, x) def= {y ∈ W s(Ψ, x) : d(ψt(y), ψt(x)) ⩽ ε for all t ⩾ 0}.

Analogously, define the strong unstable set W uu(Ψ, x) of x (with respect
to the quotient flow Ψ) as the strong stable set of x (with respect to the
quotient flow Ψ−1 defined by Ψ−1(t, ·) = Ψ(−t, ·)).

The flow Ψ has a local product structure if for every ε > 0 there is
δ > 0 such that for every x, y ∈ X with d(x, y) ⩽ δ there is a unique
τ = τ(x, y) ∈ R with |τ | ⩽ ε satisfying W ss

ε (Ψ, x) ∩W uu
ε (Ψ, ψτ (y)) ̸= ∅.

Proposition 4.11. — The quotient flow Ψ has a local product struc-
ture.
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Proof. — Given ε > 0, let δ = δ(ε) > 0 as provided by Corollary 4.10.
By Lemma 4.4, the collection (4.2) provides a basis for the quotient

topology of X. As X is compact and locally homeomorphic to X, there
exists a finite collection

A def= {Ak}k, Ak =
{
χ(Aθk

(τk, εk, δk, ξ
−
k , ξ

+
k , η

−
k , η

+
k ))

}
of open sets such that A def= {Ak}k, where Ak

def= Π(Ak) for every k, is an
open cover of X. Let κ > 0 be a Lebesgue number for this cover. Then
every pair of points x, y ∈ X satisfying d(y, x) ⩽ κ is contained in some
element A ∈ A. Without loss of generality, we can assume that κ is chosen
small enough such that indeed x, y ∈ A with diamA < 1

2δ.
Hence, using the notation in Section 4.2,

x, y ∈ χ(ϕ(−τ ′,τ ′)(U))

for some τ ′ > 0 and U ⊂ Σ = Σθ(ε′, δ′) for some positive numbers ε′

and δ′ and θ ∈ T 1M̃ . In particular, there are vectors ξ, η ∈ χ−1(A) such
that (Π ◦ χ)(ξ) = x and (Π ◦ χ)(η) = y, times r, s ∈ (−τ ′, τ ′) such that
ϕr(ξ), ϕs(η) ∈ Σθ(ε′, δ′) and

[ϕr(ξ), ϕs(η)] = W s
Σ(ϕr(ξ)) ∩W u

Σ(ϕs(η))

= ΠΣ
(
F̃ s(ϕr(ξ))

)
∩ F̃ cu(ϕs(η)) ⊂ Σ.

Hence, applying the quotient map, we can define

[x, y] def= (Π ◦ χ)(F̃ s(ξ) ∩ F̃ u(ϕr+s(η))) ⊂W ss(x) ∩W uu(ψr+s(y)).

Expansivity implies that [x, y] contains just one point. Moreover, as x,
ψr+s(y), [x, y] ∈ A and hence max{d([x, y], x), d([x, y], ψr+s(y))} ⩽ 1

2δ,
together with Corollary 4.10 it follows

• [x, y] ∈W ss(x) ∩W uu(ψr+s(y)),
• d([x, y], x) ⩽ δ, d([x, y], ψr+s(y)) ⩽ δ

• d(ψt([x, y]), ψt(x)) ⩽ ε and d(ψ−t([x, y]), ψ−t+r+s(y)) ⩽ ε for all
t ⩾ 0.

This concludes the proof of the local product structure of Ψ. □

4.6. Proof of Theorem 4.3

Together with Propositions 4.6 and 4.11, it only remains to show that
Ψ is topologically mixing, which is an immediate consequence of semi-
conjugacy (4.1) and the fact that Φ is mixing (recall Theorem 2.3). □
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5. Lyapunov exponents and the Riccati equation

One of the landmarks of the theory of manifolds without conjugate points
is the work of Eberlein [20] linking linear independence of Green sub-
spaces with hyperbolicity: Green subspaces are linearly independent at ev-
ery θ ∈ T 1M if and only if the geodesic flow is Anosov ([22, Theorem 3.2]).
Knieper [39, Chapter IV] for a compact surface without conjugate points
with genus greater than one shows that if the Green subspaces vary con-
tinuously then the metric entropy of the geodesic flow with respect to the
Liouville measure is positive. There are two main features of the dynamics
of the geodesic flow that are crucial in Knieper’s result: Katok’s proof of
the existence of a hyperbolic invariant measure for the geodesic flow [35]
and the Mañé–Freire formula for the metric entropy of the geodesic flow
in a compact manifold without conjugate points [26]. This formula is writ-
ten in terms of the Riccati equation associated to the Jacobi equation, we
explain briefly the main properties of this equation in the next subsection.

5.1. Riccati equation

Given a geodesic γ, let E : R → T 1M be (one of the two) continuous
orthogonal unit vector fields along γ. Then any orthogonal Jacobi field
along γ is given by J(t) = j(t)E(γ(t)), where j is a scalar function which
must satisfy the scalar differential equation

(5.1) d2

dt2 j(t) +K(γ(t))j(t) = 0,

where K is the Gaussian curvature. Assuming j ̸= 0, its logarithmic deriv-
ative u def= 1

j
d
dtj satisfies the Riccati equation

(5.2) d
dtu(t) + u(t)2 +K(γ(t)) = 0.

On the other hand, any global solution u : R→ R of (5.2) by

(5.3) j(t) = e
∫ t

0
u(s)ds

, hence d
dt j(t) = j(t)u(t) = u(t) e

∫ t

0
u(s)ds

,

defines a (normalized to ∥J(t)∥ = 1) solution for the scalar equation (5.1).
More precisely, denote by us

r(θ, t) and uu
r (θ, t) the solutions of the Riccati

equation (5.2) that satisfy us
r(, θ,−r) =∞ and uu

r (θ, r) = −∞, respectively.
Then those solutions are defined for all t > −r and all t < r, respectively.
Their limit solutions

u†
θ(t) def= lim

r→∞
u†

r(θ, t), † ∈ {s,u},
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are defined for all t ∈ R. It holds uu
θ − us

θ ⩾ 0. Moreover, any global
solution u(t) of (5.2) is bounded and tends to uu

θ(t) as t→∞ and to us
θ(t)

as t → −∞. The functions us
θ(t) and uu

θ(t)) are upper semi-continuous
and lower semi-continuous in θ, respectively. Clearly, both solutions are
invariant in the sense that

u†
ϕs(θ)(t) = u†

θ(t+ s), † ∈ {s,u}.

By (5.3), they define the stable and the unstable Green Jacobi fields, re-
spectively.

The following result summarizes properties of the solutions of the Riccati
equation (see [22, Lemma 2.8]) which we will use below.

Lemma 5.1. — Let (M, g) be a compact manifold. Given a geodesic
γ : R→M , let κ > 0 be a constant such that K > −κ2. Then any solution
u(t) of the Riccati equation (5.2) that is defined for every t ∈ (a, b) satisfies

−κ coth(κ(b− t)) ⩽ u(t) ⩽ κ coth(κ(t− a)).

In particular, the following holds:
(1) For any ε ∈ (0, b− a), there exists C(ε, k0) > 0 such that for every

t > a+ ε

|u(t)| ⩽ C(ε, κ).

(2) If u(t) is defined for every t ∈ R then

|u(t)| ⩽ κ.

Remark 5.2 (Canonical construction of Green subbundles). — The un-
/stable Green Jacobi fields (or, in the case of surfaces, equivalently as
explained above, the globally defined un-/stable solutions of the Riccati
equation) completely encode the stable (unstable) Green subbundles (re-
call [22, Proposition 1.7]).

The assumption that Green subbundles vary continuously is equivalent
to continuity (in θ) of the solutions (J s

θ(t), J s
θ

′(t)) and (Ju
θ (t), Ju

θ
′(t)) of

the Jacobi equation, which in turn is equivalent to the continuous (in θ)
dependence of the stable and unstable solutions of the Riccati equation
us

θ(t) and uu
θ(t).

Finally, by uniqueness of solutions of the equation (5.2), if uu
θ(t) = us

θ(t)
for some t then uu

θ ≡ us
θ. In particular, if there exist two distinct solu-

tions of (5.2) that are defined for all t ∈ R then they define two linearly
independent Green subbundles along γθ and hence θ ∈ R1.
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5.2. Lyapunov exponents and Green subspaces

The Lyapunov exponent for θ ∈ T 1M and v ∈ TθT
1M (with respect to

the geodesic flow Φ) is defined by

λ(θ, v) def= lim
t→±∞

1
t

log ∥Dϕt(v)∥,

provided both limits exist and coincide. In general, limits may not exist;
and if they do exist they may not coincide. By Oseledets’ theorem there is a
subset Λ ⊂ T 1M of total probability(3) such that for every θ ∈ Λ there exist
k(θ) ⩽ 2n − 1 and a decomposition TθT

1M = E1(θ) ⊕ . . . ⊕ Ek(θ)(θ) into
invariant subspaces and numbers λ1(θ) < · · · < λk(θ)(θ) such that λ(θ, ξ) =
λi(θ) for every ξ ∈ Ei(θ) \ {0}. Denote Es(θ) def= span{Ei(θ) : λi(θ) < 0},
Eu(θ) def= span{Ei(θ) : λi(θ) > 0}, and let Ec(θ) def= span{Ei(θ) : λi(θ) = 0}.
Note that the latter contains γ̇θ(0). Note that

(5.4) E†(θ) ⊂ G†(θ) ⊂ E†(θ)⊕ Ec(θ), † = s,u,

in a set of total probability (see, for example, [26]). We call the set Λ the
set of Oseledets regular points.

We call an ϕ1-ergodic Borel probability measure µ hyperbolic if at µ-
almost every point the only subspace in the Oseledets decomposition that
is associated to a zero Lyapunov exponent is the one generated by the
vector field of the flow.

The relationship between nonzero Lyapunov exponents and the linear
independence of Green subspaces goes back to Eberlein’s characterization
of Anosov geodesic flows in [21], later Freire–Mañé’s work [26] made an
important contribution that was subsequently explored by Knieper [39].
By (5.4), Oseledets subbundles are naturally related to the Green bundles.
It is natural to ask whether, as a sort of converse of Theorem B, the ex-
istence of positive Lyapunov exponents implies the linear independence of
Green subspaces. Arnaud [2] answers this type of question positively in
the context of Mather measures of Tonelli Hamiltonians. We would like
to extend this result to our context, starting by the following result. Note
that by (2.2), hypothesis (5.5) is equivalent to assuming the existence of a
positive (forward) Lyapunov exponents.

Proposition 5.3. — Let (M, g) be a compact surface without conju-
gate points. Suppose that there are a geodesic γθ and a orthogonal Jacobi

(3) A measurable subset Λ is of total probability if it has full measure with respect to
any invariant Borel probability measure.
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field J(t) of γθ that does not vanish for every t ⩾ 0 such that

(5.5) lim
t→∞

1
t

log ∥J(t)∥ = λ > 0.

Then
(1) There exists a orthogonal Jacobi field W (t) in γθ such that

lim
t→∞

1
t

log ∥W (t)∥ = −λ.

(2) The Jacobi field W (t) is a stable Green Jacobi field.
(3) Moreover, assuming also that (M, g) has continuous stable and un-

stable Green bundles, then these Green subspaces are linearly in-
dependent along the orbit of θ, that is, θ ∈ R1.

Proof. — Assuming that (1) holds true, Item (2) is straightforward from
Lemma 2.8. To see that Item (1) holds true, fix E : R→ T 1M an orthogonal
continuous unit vector field along γθ. Write the Jacobi field as J(t) =
j(t)E(t). By hypothesis, j(t) ̸= 0 for all t ⩾ 0. Observe that the function

z(t) def= j(t)
∫ t

0

1
j2(s)ds

is well defined for t ⩾ 0 and is a solution of (5.1) (apply a variation of
parameters-argument). By hypothesis (5.5),

lim
t→∞

1
t

log j(t) > 0

and hence the following limit exists

lim
t→∞

∫ t

0

1
j2(s)ds =

∫ ∞

0

1
j2(s)ds def= L

and we can write

z(t) = j(t)
∫ t

0

1
j2(s)ds = j(t)(L−

∫ ∞

t

1
j2(s)ds) = Lj(t)−j(t)

∫ ∞

t

1
j2(s)ds.

It follows that w : [0,∞)→ R defined by

w(t) def= j(t)
∫ ∞

t

1
j2(s)ds

also satisfies (5.1). It follows from (5.5) that for every ε > 0 there exists
T > 0 such that for every t > T

e(λ−ε)t ⩽ j(t) ⩽ e(λ+ε)t .

Let us take ε < λ/4. This implies that for every t > T

w(t) = j(t)
∫ ∞

t

1
j2(s)ds ⩽ e(λ+ε)t

(λ− ε) e2(λ−ε)t
= e(−λ+3ε)t

λ− ε
.
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Therefore,

lim
t→∞

1
t

logw(t) ⩽ −λ+ 3ε,

and since ε can be chosen arbitrarily small we conclude that

lim
t→∞

1
t

logw(t) ⩽ −λ.

A lower bound for this limit can be obtained similarly, to get

lim
t→∞

1
t

logw(t) = −λ.

Taking W (t) def= w(t)E(t) implies Item (1).
To show Item (3), assume now that stable and unstable Green subspaces

vary continuously. As before, write the given Jacobi field as J(t) = j(t)E(t).
In terms of the logarithmic derivative u : [0,∞) → R of j (also using that
j ̸= 0)

lim
t→∞

1
t

log j(t) = lim
t→∞

1
t

∫ t

0
u(s) ds, where u(t) = 1

j(t)
d
dt j(t).

Considering analogously the logarithmic derivative of w,

us(t) def= 1
w(t)

d
dtw(t),

it follows

2λ = lim
t→∞

1
t
(log j(t)− logw(t)) = lim

t→∞

1
t

∫ t

0
(u(s)− us(s)) ds.

Hence, there exists a sequence tn → ∞ such that u(tn) − us(tn) ⩾ 2λ
for every n. Note that u(t) and us(t) both are solutions of the Riccati
equation (5.2) for all t ⩾ 0.

If u and us would be defined already for all t ∈ R then by Remark 5.2
the claim would follow immediately. As this is not the case, we need the
following arguments. Consider the geodesics βn(t) def= γθ(t + tn) and the
solutions of the Riccati equations of βn given by un(t) def= u(t + tn) and
us

n(t) def= us(t+ tn). Let (ϕtnk
(θ))k be a convergent subsequence and denote

its limit by η.

Claim. — The Green subspaces Gs(η) and Gu(η) are linearly indepen-
dent.

Proof. — Since by hypothesis Green subspaces vary continuously, the
stable solutions us

nk
(t) = us(t+ tnk

) of the Riccati equation for t 7→ βnk
(t)

converge to the stable solution us
η : R→ R for γη (recall Remark 5.2).
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The sequence of solutions unk
(t) for βnk

has a subsequence converging
to some solution of the Riccati equation u(t) defined for every t ∈ R by
Lemma 5.1. Indeed, t 7→ unk

(t) are uniformly bounded for every t ⩾ −tnk
+

1 and equicontinuous in this interval since their derivatives are uniformly
bounded by the Riccati relation ü(t) = −u2 − K. Since u(tn) − us(tn) ⩾
2λ for every n > 0, the same inequality holds true in the limit, that is,
u(0)− us

η(0) ⩾ 2λ.
Hence the geodesic γη has two different solutions of the Riccati equation

that are defined for every t ∈ R: the stable solution us
η(t) and u(t). We have

that u(t) > us
η(t) for every t ∈ R by uniqueness of solutions of ordinary

differential equations. Therefore, the unstable solution uu
η(t), that is the

supremum of the solutions defined for every t ∈ R, is strictly greater than
us

η(t). This together with Remark 5.2 yields the Claim. □

Finally, notice that η is a limit point of the orbit of θ, and Green sub-
spaces at η are linearly independent. By continuity of Green bundles, there
exists an open set which contains η where Green subspaces are linearly
independent, so the orbit of θ meets this open set. By invariance of Green
subspaces, the Green subspaces are linearly independent along the entire
orbit of θ. This finishes the proof of Item (3). □

Remark 5.4. — Observe that Item (3) in Proposition 5.3 is false without
assuming the continuity of Green bundles. Indeed, [3] provides an example
of a compact surface without conjugate points where Green bundles are
not continuous and which exhibits a geodesic γθ where Gs(θ) = Gu(θ) and
the Lyapunov exponent in this (unique) Green subspace is positive.

6. Entropy

In this section we assume that (M, g) is a compact surface without conju-
gate points of genus greater than one with continuous stable and unstable
Green bundles.

The goal of this section is to show that the entropy of the geodesic flow
in any nontrivial strip vanishes and to prove Theorem C. We examine both
metric and topological entropies.

A Borel probability measure on a metric space is invariant under a con-
tinuous flow Ψ = (ψt)t∈R on X if it is ψt-invariant for every t ∈ R. We say
that A ⊂ X is invariant under the flow if ψt(A) = A for every t ∈ R. An
invariant measure is ergodic if every invariant set has either measure one
or measure zero.
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Recall that the topological entropy of a compact set Z ⊂ T 1M (with
respect to the time-1 map ϕ1) is defined by

h(ϕ1, Z) def= lim
ε→0

lim sup
n→∞

1
n

logM(n, ε, Z),

where M(n, ε, Z) denotes the maximal cardinality of any (n, ε)-separated
subset E ⊂ Z. A set E is (n, ε)-separated if θ, η ∈ E, θ ̸= η, implies
d(ϕk(θ), ϕk(η)) ⩾ ε for some k ∈ {0, . . . , n− 1}.

For Z compact ϕ1-invariant, by the variation principle [50, Theorem 9.10]

(6.1) h(ϕ1, Z) = sup
µ
hµ(ϕ1),

where the supremum is taken over all ϕ1-invariant Borel probability mea-
sures µ supported on Z and where hµ(ϕ1) denotes the metric entropy
of µ (with respect to the time-1 map ϕ1). The topological entropy of Z
(with respect to the flow Φ) is analogously defined and denoted by h(Φ, Z)
(see [10, Section 3]); it satisfies

h(Φ, Z) = h(ϕ1, Z).

A measure µ is a measure of maximal entropy (with respect to Φ) if its
entropy realizes the supremum in (6.1). By Ruelle’s inequality,

(6.2) hµ(ϕ1) ⩽
∫

T 1M

λ+(θ)dµ(θ),

where λ+(θ) is the nonnegative Lyapunov exponent of θ.

6.1. The entropy on strips

For the following compare also [41, Section 4].

Lemma 6.1. — For every θ ∈ T 1M it holds h(ϕ1,F s(θ) ∩F u(θ)) = 0.
In particular, h(ϕ1, χ

−1(χ(θ))) = 0.

Proof. — Note that the result is trivial if F s(θ) ∩F u(θ) = {θ}.
Let us consider now the general case. Let θ be any lift of θ. By Lemma 3.2

there exists Q = Q(M) > 0 such that the width of the strip S(θ) is at most
Q. In particular, the width of I(θ) def= F s(θ) ∩F u(θ) is at most Q.

Given ε > 0, by compactness of (M, g), there is δ1 > 0 so that for any
η′, ξ′ ∈ T 1M

(6.3) dg(ϕt(η′), ϕt(ξ′)) ⩾ ε for some t ∈ [0, 1).

implies
dg(ϕt(η′), ϕt(ξ′)) ⩾ δ1 for every t ∈ [0, 1).

ANNALES DE L’INSTITUT FOURIER



GEODESIC FLOWS MODELED BY EXPANSIVE FLOWS 2645

Denote by ds
g(η1, η2) the intrinsic distance of two points η1, η2 ∈ F s(η′).

To be more precise, consider a curve ζ : [0, 1]→ F s(η′) with ζ(0) = η1 and
ζ(1) = η2 and let ds

g(η1, η2) be the length of its canonical projection to M .
Now recall that the sets F s(η′) are smooth sub-manifolds with L-Lipschitz
first derivatives where L > 0 is uniform in T 1M (Remark 2.1). Hence, there
exists δ2 > 0 such that for every η′, ξ′ ∈ F s(θ′) satisfying (6.3)

ds
g(ϕt(η′), ϕt(ξ′)) ⩾ δ2 for every t ∈ [0, 1).

For n ⩾ 1, let E ⊂ I(θ) be an (n, ε)-separated set. For k ∈ {0, . . . , n−1}
denote by Ek ⊂ E the set of points such that for every η, ξ ∈ Ek with
η′ = ϕk(η), ξ′ = ϕk(ξ) it holds (6.3). Then E =

⋃n−1
k=0 Ek. Let us estimate

the cardinality of Ek, k ∈ {0, . . . , n − 1}. For every η, ξ ∈ Ek, the above
implies

ds
g(ϕt(η), ϕt(ξ)) ⩾ δ2 for every t ∈ [k, k + 1).

This together implies that δ2 cardEk ⩽ Q.
Thus,

cardE ⩽
n−1∑
k=0

cardEk ⩽
n−1∑
k=0

δ−1
2 Q = nδ−1

2 Q.

This immediately implies

h(ϕ1, I(θ)) ⩽ lim
ε→0

lim sup
n→∞

1
n

log(nδ−1
2 Q) = 0,

proving the lemma. □

Lemma 6.1 and [7, Theorem 17] together imply the following result.

Lemma 6.2. — For every compact invariant set Z ⊂ T 1M it holds
h(ϕ1, Z) = h(ψ1, χ(Z)).

Note that h-expansiveness stated in the proof of the following result was
shown in [41], for completeness we provide an independent proof.

Proposition 6.3. — The metric entropy (with respect to ϕ1) of any
invariant measure supported in the set T 1M \R1 is zero and the topological
entropy of T 1M \ R1 (with respect to ϕ1) is zero.

Moreover, the entropy map µ 7→ hµ(ϕ1) is upper semi-continuous.

Proof. — Let µ be an invariant measure supported in T 1M \ R1. Since
the set of Oseledets regular points of µ has probability one, it suffices to
evaluate the integral in (6.2) on the set of Lyapunov regular points, only.
Together with (6.2), it follows immediately from Proposition 5.3 Item (3),
that µ-almost every θ satisfies λ+(θ) = 0. This proves the first claim.
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The second claim is now an immediate consequence of (6.1) applied to
the closed invariant set T 1M \ R1.

By (4.1), the time-1 map ψ1 : X → X is a (topological) factor of the time-
1 map ϕ1 : T 1M → T 1M . To show upper semi-continuity of the entropy
map, first recall that by [40],

sup
µ : χ∗µ=ν

hµ(ϕ1) = hν(ψ1) +
∫
h(ϕ1, χ

−1(x))dν(x).

It follows from Lemma 6.1 and the definition of the factor map χ that the
latter integral is zero. Hence, for every µ ∈M(ϕ1) and ν = χ∗µ

hν(ψ1) = hµ(ϕ1).

Let (µn)n ⊂ M(ϕ1) be a sequence weak∗ converging to some measure µ.
Then by continuity of the factor map and hence of the push forward χ∗ it
follows that νn

def= χ∗µn weak∗ converges to ν def= χ∗µ. By Proposition 4.6,
the quotient flow Ψ is expansive. Hence, its time-1 map ψ1 is h-expansive,
that is, there exists ε > 0 so that for every x ∈ X the set

{y ∈ X : d(ψn(y), ψn(x)) ⩽ ε for all n ∈ Z}

has zero topological entropy (with respect to ψ1, compare for example [8,
Example 1.6]). The latter implies that its entropy map is upper semi-
continuous and hence hν(ψ1) ⩾ lim supn hνn

(ψ1). This implies hµ(ϕ1) ⩾
lim supn hµn

(ϕ1). □

Proposition 6.3 together with (6.1) guarantee the existence of an ergodic
measure of maximal entropy hµ(ϕ1) = h(ϕ1, T

1M). It remains to show that
it is unique. First, it follows from Theorem 4.3 together with Franco [25]
that there is a unique (hence ergodic) measure of maximal entropy with
respect to the quotient flow Ψ (see also [28, Corollary 6.6]).

Lemma 6.4. — The measure of maximal entropy ν (with respect to Ψ)
satisfies ν({χ(θ) : [θ] = {θ}}) = 1.

Proof. — By definition, {χ(θ) : [θ] = {θ}} = χ(R1). By Theorem B, R1
and its complement T 1M \ R1 both are invariant under the geodesic flow.
Hence, as Ψ is a factor, it follows that χ(R1) and its complement are both
invariant under the quotient flow Ψ. By ergodicity, only one of these sets
has full measure ν. The claim now follows from Proposition 6.3. □

Finally, we state a version of [13, Theorem 1.5] for flows (the original
in [13] is stated for discrete systems) whose proof is verbatim taking into
account that it suffices to study the time-1 map of the flow.
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Proposition 6.5. — Let Ψ: X ×R→ X be a continuous flow without
singular points such that it has a unique measure of maximal entropy ν.
Assume that Ψ is the time-preserving factor of a continuous flow Φ: Y ×
R → Y through a continuous surjective map χ : Y → X satisfying the
following conditions:

(1) h(ϕ1, χ
−1(χ(y))) = 0 for every y ∈ Y ;

(2) ν({χ(y) : χ−1(χ(y)) = {y}}) = 1.
Then Φ has a unique ergodic Borel probability measure of maximal entropy.

Proof of Theorem C. — The claim follows from Proposition 6.5. Indeed,
Lemma 6.1 implies that item (1) is satisfied and Lemma 6.4 implies that (2)
is satisfied. □
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