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GEODESIC FLOWS MODELED BY EXPANSIVE
FLOWS: COMPACT SURFACES WITHOUT

CONJUGATE POINTS AND CONTINUOUS GREEN
BUNDLES

by Katrin GELFERT & Rafael O. RUGGIERO (*)

Abstract. — We study the geodesic flow of a compact surface without conju-
gate points and genus greater than one and continuous Green bundles. Identify-
ing each strip of bi-asymptotic geodesics induces an equivalence relation on the
unit tangent bundle. Its quotient space is shown to carry the structure of a 3-
dimensional compact manifold. This manifold carries a canonically defined contin-
uous flow which is expansive, time-preserving semi-conjugate to the geodesic flow,
and has a local product structure. An essential step towards the proof of these
properties is to study regularity properties of the horospherical foliations and to
show that they are indeed tangent to the Green subbundles. As an application it
is shown that the geodesic flow has a unique measure of maximal entropy.
Résumé. — Nous considérons le flot géodésique d’une surface compacte sans

points conjugués, de genre supérieur à un et de fibrés de Green continus. L’iden-
tification de chaque bande de géodésiques bi-asymptotiques induit une relation
d’équivalence dans le fibré unitaire tangent. Nous montrons que son espace quo-
tient porte la structure d’une variété compacte tridimensionnelle. Cette variété
porte un flot continu défini canoniquement par la relation d’équivalence, le flot
quotient. Ce flot est expansif, semi-conjugué au flot géodésique de la surface en
préservant le paramétrage du flot géodésique, et muni d’une structure de produit
locale. Une étape essentielle de la preuve de ces propriétés est l’étude de la régu-
larité des feuilletages horosphériques, nous montrons qu’ils sont bien tangents aux
sous-fibrés de Green. En tant qu’application, il est montré que le flot géodésique a
une mesure unique d’entropie maximale.

1. Introduction

The geodesic flow of a compact surface without conjugate points whose
genus is greater than one belongs to the most challenging examples of
Keywords: Geodesic flows, conjugate points, expansive flow, Green bundles, measure of
maximal entropy.
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(*) This study was financed in part by CAPES – Finance Code 001 and partially by
CNPq grants (Brazil).
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nonuniformly hyperbolic dynamics. From the point of view of topological
dynamics, any such flow can be considered “hyperbolic in the large” after
Morse’s work [44] which shows that geodesics in the universal covering
space, endowed by the pullback of the metric of the surface by the covering
map, are “shadowed” by hyperbolic geodesics, that is, geodesics of the
hyperbolic space. To be more precise, a rectifiable curve c : I → N , I
an interval, of a complete Riemannian manifold (N, g) is a A,B-quasi-
geodesic if for every t, s ∈ I it holds `g(c[s, t]) 6 Adg(c(s), c(t)) +B, where
`g denotes curve length and dg the distance relative to the Riemannian
metric g. Morse shows that if (N, g) is the hyperbolic plane, then there
exists D > 0 such that the curve c is within a distance D from a hyperbolic
geodesic. The term “shadowing” is used to somehow draw a connection to
the Anosov-shadowing lemma in hyperbolic dynamics (see, for instance,
[36, Section 18]) which asserts that any ε-pseudo-orbit (for ε small enough)
is shadowed by some true orbit of the dynamics. In some sense quasi-
geodesics play a role analogous to pseudo-orbits of Anosov dynamics and
the constant D replaces ε in the Anosov-shadowing lemma.
Even though, by the above, geodesics behave similar to hyperbolic geo-

desics, there is a fundamental difference: there might exist infinitely many
geodesics in the universal covering of the compact surface shadowed by just
a single hyperbolic geodesic. These geodesics form “strips” of bi-asymptotic
geodesics which have been the object of study of dynamicists working in ge-
ometry. One of the most famous results is the so-called “flat strip theorem”
for surfaces without focal points (see [19, 46] and discussion in Section 3).

The similarities between the dynamics of the geodesic flow of a surface
without conjugate points and genus greater than one and the geodesic flow
of a hyperbolic surface have been inspiration in the fields of dynamical sys-
tems theory, geometry, and topology. Among the most studied problems is
the existence of conjugacies or semi-conjugacies between these flows, a prob-
lem which arises naturally from Morse’s work. It was shown in [29, 33] that
there exist such semi-conjugacies provided one allows for a reparametriza-
tion of the geodesic flow. On the other hand, after the works [17, 18, 45]
on rigidity of the marked length spectrum it is known that such semi-
conjugacies in general cannot be time-preserving. It is natural, although
somewhat naive, to ask whether there exists a sort of equivalence relation
in the class of orbits of the geodesic flow assigning any strip of geodesics
one common equivalence class such that the induced quotient space of the
unit tangent bundle still has some nice metric properties and carries a
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continuous flow. Without any further hypotheses, presumably the struc-
ture of strips is quite complicate. One partial result in this direction is
Coudène-Schapira [16] stating that in the universal covering of a compact
surface without focal points and genus greater than one the only nontrivial
strips project under the covering map on cylinders which are completely
foliated by closed geodesics. Even though, a priori there may be infinitely
many strips to “quotient” and the quotient space may be quite singular.
A general structure may be described by the equivalence relation in Gro-
mov hyperbolic spaces investigated by Gromov [32, Section 8.3] obtaining
a quotient with some very mild topological structure only.
Towards this direction, the following is our first main result. We recall

the definitions of the corresponding topological concepts in Section 4.

Theorem A. — Let (M, g) be a C∞ compact connected boundaryless
Riemannian surface without conjugate points of genus greater than one
and with continuous stable and unstable Green bundles. Then there exists
a continuous flow of a compact topological 3-manifold which is expansive,
topologically mixing, has a local product structure, and is time-preserving
semi-conjugate to the geodesic flow of (M, g).

Theorem A generalizes [28] which put the more restrictive assumption
that (M, g) is a compact surface without focal points and genus greater
than one. Let us in the following discuss our hypotheses and some of the
main ingredients for its proof.

Green bundles (bundles of stable (resp. unstable) Green Jacobi fields, see
definition in Section 2.3) are one of the main tools when studying smooth
aspects of the dynamics of geodesic flows. Their existence is a special fea-
ture of manifolds without conjugate points and more generally of globally
minimizing objects of Lagrangian dynamics (Aubry–Mather theory). One
immediate consequence of their definition is that Green bundles are mea-
surable and invariant under the action of the differential of the geodesic
flow. By Eberlein [20], their linear independence is equivalent to the prop-
erty that the geodesic flow is an Anosov flow. The hypothesis in Theorem A
about continuity of Green bundles is an additional restriction in the set-
ting of manifolds without conjugate points, and it does not grant a priori
their linear independence. In examples such as manifolds without focal
points (and hence in nonpositive or negative curvature) Green bundles are
continuous and in fact have an “expected” asymptotic behavior (the sta-
ble Green bundle is a counterpart of center stable dynamics, the unstable
Green bundle of the center unstable one). Anosov [1] shows that Green
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bundles coincide with the dynamical invariant bundles of hyperbolic dy-
namics if the compact manifold has negative curvature. Very much as in
the classification into regular or rank one vectors and singular or higher
rank vectors in compact manifolds of nonpositive curvature, here we con-
sider two distinguished sets of vectors of the unit tangent bundle:

R1
def= {θ ∈ T 1M has linear independent Green bundles}

the sets of generalized rank one vectors and

R0
def= {θ ∈ T 1M defines a trivial strip} ⊃ R1,

the set of expansive vectors. Note that both are invariant under the geodesic
flow.
A crucial issue in the theory of manifolds without conjugate points is

the regularity of the horospheres in the universal covering of the manifold.
It is not known whether horospheres give rise to continuous foliations of
the unit tangent bundle of the universal covering, invariant by the geodesic
flow, as it is the case in Anosov dynamics. The case of compact surfaces
without conjugate points is quite special since geodesic rays diverge in
the universal covering [30] and since this property is equivalent to the
existence and continuity of horospherical foliations [47]. In the more special
case of compact nonpositively curved surfaces this was shown by Eberlein
(see [34]), moreover, in this case Green bundles vary continuously and are
tangent to the horospherical foliations. However, in a more general setting
(even for compact surfaces without conjugate points) it is not known if the
latter remains true. What is known is that a “tame asymptotic behavior”
of Green bundles usually implies that horospherical foliations exist and are
tangent to Green bundles (see, for example, [46, Part II] and discussion in
Section 2.3).
As part of the proof of Theorem A, but interesting in itself, the following

result states that the continuity of Green bundles implies that the horo-
spherical foliations F s and F u (see Section 2.2 for definition) are continu-
ous foliations by C1 leaves, tangent to the Green bundles. It hence justifies
the terms stable and unstable foliations for F s and F u, respectively.

Theorem B. — Under the hypotheses of Theorem A:
(1) The families F s and F u are continuous foliations by C1 curves

which are tangent to the stable and the unstable Green bundles,
respectively.

(2) The set R1 coincides with the set of vectors θ ∈ T 1M such that
F s(θ) and F u(θ) intersect transversally at θ.
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(3) The set R1 is invariant, open, and dense in T 1M .
(4) Any vector θ ∈ T 1M with positive (forward or backward) Lyapunov

exponent belongs to R1.
Theorem B(3) extends previous results for compact surfaces with no fo-

cal points [46] and with bounded asymptote [49]. It is not known if the
continuous Green bundles-hypothesis alone implies any controlled asymp-
totic behavior of Green Jacobi fields as it does in those cases. Note that in
general (for example assuming that the surface has nonpositive curvature
and does not have an Anosov geodesic flow) there exist vectors in R1 with
Lyapunov exponent zero (see, for example, [27]).
Theorem B will play a crucial role in the proof of the existence of a

3-dimensional manifold carrying an expansive flow time-preserving, semi-
conjugate to the geodesic flow. Although the internal structure of strips
(classes of bi-asymptotic geodesics) may be quite complicated, nevertheless
we obtain – up to time-preserving semi-conjugacy – a model which describes
well the dynamics of the geodesic flow under consideration.

Returning to the term nonuniformly hyperbolic dynamics coined in the
beginning, we remark that the relevance of Green bundles was settled after
the work by Freire–Mañé [26]. It draws a connection between the Lya-
punov spectrum of the geodesic flow, Green bundles, and the calculation
of the metric entropy of the Liouville measure (see also Section 5.2). In-
deed, negative Lyapunov exponents are associated to stable Green bundles
while positive exponents are associated to unstable ones. It is unknown if
the converse is true. Even under the assumption of their continuity, Green
bundles have no a priori prescribed asymptotic behavior and its analysis
still remains one of the most subtle issues and challenges of the theory of
manifolds without conjugate points.
Under the hypotheses of Theorem A, a straightforward combination of

the variational principle for entropy (6.1) and Ruelle’s inequality (6.2) for
the positive topological entropy geodesic flow yields the existence of hy-
perbolic ergodic measures with large metric entropy. As an application,
also using Bowen’s work about thermodynamical formalism, we show the
following result.
Theorem C. — Under the hypotheses of Theorem A, the entropy map

for the geodesic flow is upper semi-continuous and there is a unique measure
of maximal entropy.
Existence and uniqueness of measures of maximal entropy for nonuni-

formly hyperbolic dynamical systems have been subject of interest in er-
godic theory and dynamical systems theory since the 1960s. Knieper [39]
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brought attention to the subject in the context of geodesic �ows proving
that for compact rank one manifolds of nonpositive curvature the geodesic
�ow has a unique measure of maximal entropy. His proof is based on the
construction and study of a Patterson�Sullivan measure and was extended
in [42] to compact rank one manifolds without focal points and in [6] to
compact manifolds without conjugate points and expansive geodesic �ow.
Recently, Climenhaga et al. [15] generalizes Knieper's work to compact sur-
faces without conjugate points. There, they essentially follow an extension
of Bowen's classical construction [9] of maximizing measures for expansive
homeomorphisms (see [25] in the case of expansive continuous �ows). The-
orem C for compact surfaces without focal points was shown in [28], and
here we largely will follow the strategy developed therein. Our approach,
in some essential points di�erent from [15], relies on a direct application
of Bowen�Franco's method for expansive dynamics. Once we have Theo-
rem A, the expansive model for the geodesic �ow of the surface satis�es the
assumptions required to conclude that the expansive model has a unique
measure of maximal entropy. Then we apply criteria for extensions of ex-
pansive dynamics in [13] to carry over the uniqueness of the measure of
maximal entropy to the extending �ow, proving Theorem C.

The paper is organized as follows. In Section 2 we recall some geometric
preliminaries, in particular, in Section 2.3 we de�ne Green bundles. In
Section 3 we properly de�ne the above somewhat vaguely introduced term
strip and investigate properties of the set of generalized rank one vectors.
We also study the set of generalized rank one vectors in this section and
prove Theorem B, except for item (4) whose proof we postpone to Section 5.
In Section 4 de�nes an equivalence relation between vectors of the unit
tangent bundle which correspondingly de�nes a quotient space and quotient
�ow. The proof of Theorem A will be consequence of Theorems 4.2 and 4.3
which are proved in Section 4. Section 5 discusses the relation between
Lyapunov exponents and Green bundles. In Section 6 we study the entropy
of the geodesic �ow on the set of generalized rank one vectors and prove
Theorem C.

2. Preliminaries

Standing Assumption. � Throughout the paper (M; g) is a compact con-
nected C1 Riemannian manifold without boundary and dimension n. We
shall always assume thatM has no conjugate points, that is, the exponen-
tial map is nonsingular at every point.
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Our main result concerns surfaces, though many statements hold in any
dimension.

Each vector � 2 TM in the tangent bundle of M determines a unique
geodesic
 � (�) such that _
 � (0) = � . The geodesic �ow � = ( � t )t 2 R acts
by � t (� ) = _
 � (t). We shall study its restriction to the unit tangent bun-
dle T1M , which is an invariant subset of TM . All the geodesics will be
parametrized by arc length.

We shall denote by fM the universal covering ofM and endow it with the
pullback eg of the metric g by the covering map� : fM ! M which gives the
Riemannian manifold ( fM; eg). We shall also consider the geodesic �ow of
this manifold which acts on T1 fM which we will also denote by� = ( � t )t 2 R

(the domain of the �ow is enough to specify the dynamical system under
consideration). We will consider the natural projection � : T1 fM ! T1M .
The distance associated to the Riemannian metricg will be denoted by dg

and the one associated toeg by d~g. We will omit the metric if there is no
danger of confusion.

Given � = ( p; v), we recall the natural isomorphism between the tangent
spaceTv TM and TpM � TpM via the isomorphism � 7! (D� (� ); C(� )) ,
where� : TM ! M is the canonical projection� (p; v) = p and C : TTM !
TM is the connection map de�ned by the Levi-Civita connection. One
refers to the orthogonal decomposition ofT� TM into the horizontal and the
vertical subspaceT� TM = H � � V� , respectively. The Riemannian metric
on M lifts to the Sasaki metric on TM induced by the scalar product
structure which we denote by dS and which is induced by the following
scalar product: for �; � 2 Tv TM

hh�; � ii v = hD� v (� ); D� v (� )i p + hCv (� ); Cv (� )i p:

2.1. Jacobi �elds

The notion of conjugate points has variational origin. Recall that the
Jacobi equation of a geodesic
 � of (M; g) is given by

(2.1) J 00(t) + R(J (t); _
 � (t)) _
 � (t) = 0 ;

whereR denotes the curvature tensor and0 denotes covariant di�erentiation
along 
 � . Solutions of equation (2.1) are calledJacobi �elds. The Jacobi
equation arises in the study of the second variation of the length function
of smooth curves [14]. IfJ is a Jacobi �eld along a geodesic
 so that J (t)
and J 0(t) are orthogonal to _
 (t) for somet (and hence for all t 2 R) then
it is called orthogonal.
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8 Katrin GELFERT & Rafael O. RUGGIERO

Let 
 � be a geodesic of(M; g). Two points 
 � (t), 
 � (s), r 6= s, are con-
jugate along 
 � if there exists a nontrivial Jacobi �eld J (r ) of 
 which
vanishes at r = t and at r = s. The geodesic
 � : (a; b) ! M has no con-
jugate points if every nontrivial Jacobi �eld of 
 � has at most one zero
in (a; b). The manifold (M; g) has no conjugate points if and only if no
geodesic has conjugate points.

Given � = ( p; v) and � 2 Tv TM , the Jacobi �eld J � along 
 � is uniquely
determined by its initial conditions (J � (0); J 0

� (0)) = ( d� (� ); Cv (� )) 2 TpM �
TpM . The above described isomorphism acts asD� t (� ) 7! (J � (t); J 0

� (t))
and, in particular,

kD� t (� )k2
v = kJ � (t)k2

p + kJ 0
� (t)k2

p:

As (M; g) is compact, the curvature is bounded from below by� � 2 6 K
for some� > 0. By [22, Proposition 2.11], it holds kJ 0

� (t)k 6 � kJ � (t)k and
hence

(2.2) kJ � (t)k 6
kD� t (� )kv

k� kv
6

p
1 + � 2kJ � (t)k:

By the above, there is an intimate relation between Lyapunov exponents
and the growth of nonradial Jacobi �elds. We will use this in Section 5.2.

In Section 2.3 we will introduce a distinguished family of Jacobi �elds
which de�ne the stable and unstable Green bundles. To do so, we need �rst
to discuss some further ingredients.

2.2. Horospheres and un-/stable submanifolds

A very special property of manifolds with no conjugate points is the
existence of the Busemann functions and horospheres (see, for example,
[46, Part II] or [24] for details). Given � = ( p; v) 2 T1 fM , the (forward and
backward) Busemann functionsb�

�
: fM ! R associated to� are de�ned by

b+
�

(x)
def
= lim

t ! + 1
d~g(x; 
 � (t)) � t and b�

�
(x)

def
= lim

t ! + 1
d~g(x; 
 � (� t)) � t ;

respectively. For every� , the Busemann functionsb�
�

are C1 functions with
L-Lipschitz continuous derivative (with L > 0 being a Lipschitz constant
depending on curvature bounds, see [24, Propositions 1 and 2] and also [39,
Satz 3.5]), the gradients r b�

�
are Lipschitz continuous unit vector �elds.

The level sets of the Busemann functions are the horospheres. We de�ne
the (level 0) (positive and negative) horospheresof � 2 T1 fM by

H + (� )
def
= ( b+

�
) � 1(0) and H � (� )

def
= ( b�

�
) � 1(0);
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respectively. Every horosphere is an embedded submanifold offM of dimen-
sion n � 1 tangent to a Lipschitz plane �eld.

Let us denote by � �
t : fM ! fM the integral �ow of the vector �eld �r b+

�
(also called Busemann �ow). The orbits of this �ow are the Busemann
asymptotes of 
 � . They are geodesics which are everywhere orthogonal to
the horosphereH + (� ). In particular, the geodesic
 � is an orbit of this �ow
and for every t 2 R we have

� �
t (H + (� )) = H + (
 � (t)) :

Geodesics� and 
 in fM are asymptotic (as t ! 1 ) if d~g(� (t); 
 (t)) is
bounded for t > 0, that is, there exists C > 0 such that d~g(� (t); 
 (t)) 6 C
for all t > 0, and bi-asymptotic if d~g(� (t); 
 (t)) is bounded ast ! �1 ,
that is, the previous inequality holds for all t 2 R. Being asymptotic is an
equivalence relation and we denote by@fM the set of equivalence classes (the
points at in�nity ). Given a geodesic� , we denote by� (1 ) its equivalence
class and by � (�1 ) the equivalence class of the geodesic
 (t) = � (� t).
By [37], for every pair of distinct points in @fM there exists a (not necessarily
unique) geodesic� such that � (1 ) and � (�1 ) are those points at in�nity,
respectively.

If � � fM is a geodesic such that� and 
 � are asymptotic, then �
is (up to reparametrization) a Busemann asymptote of 
 � . Moreover, if
inf t> 0 d~g(
 � (t); � (t)) = 0 , then � is a Busemann asymptote and� (0) 2
H + (� ).

Horospheres are equidistant in the sense that, given any pointp 2
H + (
 � (t)) , the distance d~g(p; H + (
 � (s))) is equal to jt � sj. In particular,
H + (
 � (t)) varies continuously with t 2 R, however it is not known whether
horospheres depend continuously (in the compact-open topology(1) ) on
their de�ning vector. The continuity of � 7! H � (� ) is equivalent to the
continuity in the C1 topology of the map � 7! b�

�
uniformly on compact

subsets of fM . By [47], for (M; g) a compact manifold without conjugate
points, the latter continuity is equivalent to uniform divergence of geodesic
rays in ( fM; eg).(2)

(1) The map � 7! H � (� ) is continuous (in the compact-open topology) if given a compact
ball B (q; r ) � eM centred at q and of radius r and " > 0, there exists � = � (r; q; " ) such
that k� � � k 6 � implies d~g

�
H � (� ) \ B (q; r ); H � (� ) \ B (q; r )

�
6 " .

(2) Geodesic rays diverge uniformly if for every " > 0, L > 0 there exist s = s("; L ) > 0
such that for every pair of vectors (p; v); (p; w) 2 T 1 eM such that \ (v; w) > " for every
t > s we have d~g

�

 p;v ; 
 p;w

�
> L .
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The case of compactsurfacesis special. The divergence of geodesic rays
in the universal covering of a compact surface without conjugate points was
shown by Green [30]. In higher dimensions the divergence of geodesic rays
in the universal covering of compact manifolds without conjugate points
still remains an open question.

The horospheres in fM lift naturally to T1 fM as follows. Consider the
gradient vector �elds r b�

�
and de�ne the positive horocycle fF s(� ) and the

negative horocycle fF u (� ) in T1 fM through � to be the restriction of r b�
�

to H � (� )

fF s(� )
def
=

�
(q;�r qb+

�
) : q 2 H + (� )

	

and

fF u (� )
def
=

�
(q;r qb�

�
) : q 2 H � (� )

	
;

respectively.

Remark 2.1. � As recalled above, Busemann functions areC1 with Lip-
schitz continuous derivative (with Lipschitz constant depending on curva-
ture bounds). Each fF s(� ) (each fF u (� )) is the union of the vectors of the
unit vector �eld being normal to the horosphere H + (� ) (to H � (� )), and
hence a continuous(n � 1)-dimensional submanifold ofT1 fM .

By de�nition, the families f fF s(� )g
� 2 eM and f fF s(� )g

� 2 eM both are in-

variant in the sense that for every � and every t 2 R it holds

� t ( fF s(� )) = fF s(� t (� )) and � t ( fF u (� )) = fF u (� t (� )) :

When M has nonpositive curvature this family provides a continuous
foliation of T1 fM [24]. In the particular case of a compact surface with-
out conjugate points each leaf of this foliation is a Lipschitz leaf (this is a
consequence of the divergence of geodesic rays in the universal cover due
to Green [30] and the so-called quasi-convexity of the universal cover due
to Morse [44]). Not assuming anything about curvatures, the Axiom of
Asymptoticity introduced in [46, De�nition 5.1] also guarantees the contin-
uous foliation-property (see [46, Theorem 6.1]). At the present state of the
art the most general result is the following. Note that the �rst claim in this
proposition holds true if (M; g) is a compact manifold without conjugate
points and has bounded asymptote (we recall its de�nition at the end of
Section 2.3) since this property implies uniform divergence of geodesic rays
(we refer to [30] and [39]).
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Proposition 2.2 ([47]). � Let (M; g) be a compact manifold without
conjugate points. Then geodesic rays diverge in( fM; eg) if and only if the
family fF s def

= f fF s(� )g� forms a continuous foliation ofT1 fM (and the latter

holds true if and only if fF u def
= f fF u (� )g� forms a continuous foliation).

Moreover, both foliations are invariant by the action of the geodesic �ow.
In particular, if (M; g) is a compact surface without conjugate points

then the above families form continuous foliations which are invariant by
the geodesic �ow.

The projections of the sets fF s(� ) and fF u (� ) by the natural covering map
� : T1 fM ! T1M give rise to setsF s(� ) and F u (� ) which we call stable
and unstable foliations, respectively (these adjectives will be justi�ed by
Theorem B). In particular, for every � 2 T1M and every t 2 R we have

(2.3) � t (F s(� )) = F s(� t (� )) and � t (F u (� )) = F u (� t (� )) :

The collections fF s, fF u are continuous foliations if and only if the families
of setsF s def

= f F s(� )g� and F u def
= f F u (� )g� de�ne continuous foliations,

respectively.
Finally, let us also de�ne the center stableand the center unstable setsby

fF cs(� )
def
=

[

t 2 R

� t ( fF s(� )) and fF cu (� )
def
=

[

t 2 R

� t ( fF u (� )) ;

respectively. The sets fF cs(� ) and fF cu (� ) project to analogously de�ned
setsF cs(� ) and F cs(� ), respectively.

One key concept to several topological properties is the following one
coined by Eberlein in [20]. A complete simply connected Riemannian man-
ifold (M; g) is a uniform visibility manifold if it has no conjugate points and
if for every " > 0 there exists r = r (" ) > 0 such that for every p; x; y 2 M ,
if the distance betweenp and the geodesic segment[x; y] is greater than r ,
then the angle at p formed by the geodesic segments[p; x] and [p; y] is less
than " .

Any compact manifold with negative sectional curvature is a uniform vis-
ibility manifold. Moreover, if (M; g) is a compact uniform visibility manifold
and h is any other metric on M without conjugate points, then (M; h ) is
also a uniform visibility manifold [20]. Hence, in particular, as every com-
pact surface of genus greater than one admits some metric with negative
sectional curvature, every compact surface(M; g) without conjugate points
is a uniform visibility manifold.
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Theorem 2.3. � Let (M; g) be a compact surface without conjugate
points.

(1) The foliations F s, F u are minimal.
(2) The geodesic �ow is topologically mixing.
(3) The geodesic �ow has a local product structure in the sense that

every two points (p; v); (q; w) 2 T1 fM , (q; w) 62F cs(p; � v), are het-
eroclinically related, that is, we have

fF cs(p; v) \ fF cu (q; w) 6= ; ; fF cs(q; w) \ fF cu (p; v) 6= ; :

Sketch of proof. � The proof of item (3) follows from the work of
Morse [44] about the shadowing of geodesics in the universal covering of a
compact surface of genus> 1 and without conjugate points, by geodesics in
the hyperbolic plane. Indeed, given(p; v); (q; w) 2 T1 fM , (q; w) 62F cs(p; � v),
there exists a geodesic� such that � (1 ) = 
 (p;v ) (1 ) and � (�1 ) =

 (q;w ) (�1 ). There is a unique real parametert such that � (t) 2 H + (p; v)

and hence _� (t) 2 fF s(p; v). Moreover, there is a unique real parameters
such that 
 (q;w ) (s) 2 H � (� (t)) and hence� (t) 2 fF cu (q; w), proving (3).

By [23, Theorem 4.5], for a compact uniform visibility surface the horo-
cyle �ow on T1M is minimal (every orbit is dense). This immediately im-
plies that the foliations F s; F u both are minimal (every leaf is dense),
proving (1).

Item (2) follow from the main results by Eberlein in [20, 21], where he
develops a theory relating the dynamics of the geodesic �ow and hyper-
bolic geometry of visibility manifolds in the large. The transitivity of the
geodesic �ow is proved in [20] under the assumptions of compactness and
visibility universal covering. Moreover, Eberlein points out on [21, page 69]
that Hedlund's ideas for the proof of the minimality of horocycle foliations
of hyperbolic compact surfaces can be pushed forward to show that the
geodesic �ow in any dimension is topologically mixing. Essentially, what
Eberlein shows is that Hedlund's work about horocycle foliations for hyper-
bolic surfaces can be extended to any compact Riemannian manifold(M; g)
without conjugate points assuming that the universal covering( fM; eg) sat-
is�es the following three properties:

(1) ( fM; eg) is a quasi-convex space, namely, there exist positive numbers
A; B such that for every set of points x; y; p; q 2 fM the Hausdor�
distance between the geodesics[x; y], [p; q] joining respectively, x to
y and p to q satis�es

dH ([x; y]; [p; q] 6 A supf d(x; p); d(y; q)g + B:

ANNALES DE L'INSTITUT FOURIER



GEODESIC FLOWS MODELED BY EXPANSIVE FLOWS 13

Quasi-convexity allows to de�ne equivalence classes of asymptotic
geodesics in( fM; eg) and to compactify the universal covering with
the cone topology (see [20] for details). LetfM (1 ) be this compacti-
�cation of the universal covering, and let @fM (1 ) be its ideal bound-
ary, whose elements precisely represent the equivalence classes of
geodesics.

(2) Given two di�erent asymptotic classes � , � , there exists at least one
geodesic in( fM; eg) such that its forward asymptotic class is � and
its backward asymptotic class is� . Eberlein [21] calls this condition
is called Axiom I .

(3) Geodesic rays diverge uniformly in( fM; eg).
[21, Theorem 6.3] states that if a manifold of nonpositive curvature is

such that the nonwandering set is the whole unit tangent bundle, then
the geodesic �ow is topologically mixing. It is straightforward to check
that, assuming the three properties listed above, that each step of the
proof of [21, Theorem 6.3] extends to visibility manifolds without conjugate
points. Finally note that the above three properties are satis�ed provided
the universal covering of a compact manifold without conjugate points
is a uniform visibility manifold (see [20]). By the above, this is true, in
particular, if M is a surface. �

2.3. Green subspaces

Let us �rst recall the concept of hyperbolicity.

Remark 2.4 (Hyperbolic subsets). � An invariant set Z � T1M is hy-
perbolic (with respect to the geodesic �ow� ) if there exist constants C > 0,
� > 0 and for every � 2 Z there exist subspacesE s(� ) and E u (� ) so that
E s(� ) � E u (� ) � X (� ) = T� T1M , where X (� ) here is the subspace tangent
to the �ow, for every t 2 R we haveD� t (E y(� )) = E y(� t (� )) , y 2 f s; ug,
and for every t > 0, � 2 E s(� ), � 2 E u (� ) we have

kD� t (� )k 6 C e� �t k� k; kD� � t (� )k 6 C e� �t k� k:

One key feature of a compact hyperbolic setZ is that for every � 2 Z
there exist invariant submanifolds W s(� ) and W u (� ) which are stable and
unstable sets and at� are tangent to the subspacesE s(� ) and E u (� ), re-
spectively. The geodesic �ow is anAnosov �ow if T1M is hyperbolic. It is
then an immediate consequence thatF s(� ) and F u (� ) coincide with the
stable and unstable submanifoldsW s(� ) and W u (� ), respectively, at every
point � 2 Z .
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When studying weaker types of hyperbolicity, it is natural to look for
subbundles which are invariant under the action of the linearization of the
�ow. Green [31] identi�es a distinguished family of Jacobi �elds de�ned in
any geodesic without conjugate points, which is de�ned as follows.

For � = ( p; v), let N � � TpM denote the set of vectors that are orthogonal
to v. Take � 2 N � , and let J �;T be the Jacobi �eld of 
 � given by the initial
conditions

J �;T (0) = �; J �;T (T) = 0 :

By [31], for every t 2 R the limit

J s
� (t)

def
= lim

T !1
J �;T (t)

exists (and is a Jacobi �eld satisfying J s
� (0) = � ). The limit is called stable

Green Jacobi �eld. Analogously the unstable Green Jacobi �eld is de�ned
as the limit

J u
� (t)

def
= lim

T !�1
J �;T (t):

Moreover, J s
� (t) and J u

� (t) are always orthogonal to _
 � (t) and never vanish.
The collection of initial conditions

Gs(� )
def
=

[

� 2 N �

f (J s
� (0); J s

�
0(0))g and Gu (� )

def
=

[

� 2 N �

f (J u
� (0); J u

�
0(0))g

are called the stable Green subspaceand the unstable Green subspaceat
� , respectively. Both subspaces are Lagrangian subspaces with respect to
the canonical two-form of the geodesic �ow restricted toN � and the hence
de�ned vector bundles are invariant under the action of the di�erential of
the geodesic �ow:

(2.4) D� t (Gy(� )) = Gy(� t (� )) ; y 2 f s; ug:

The above construction can be carried over to the universal coverfM
and its tangent space. In particular, for every � 2 T1 fM one can construct
stable and unstable Green subspaceseGs(� ) and eGu (� ), respectively.

Below, we will study the case when stable and unstable Green bundles
both are continuous. Note that when (M; g) has this property then in the
language of [24, 39] this manifold hascontinuous asymptote.

Remark 2.5. � Recall that Klingenberg [38] shows that, if the geodesic
�ow of a compact Riemannian manifold (M; g) is Anosov, then (M; g) has
no conjugate points. On the other hand, assuming that(M; g) has no con-
jugate points, by Eberlein [22, Theorem 3.2] the geodesic �ow is Anosov if
and only if Gs(� ) 6= Gu (� ) for every � 2 T1M .
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Remark 2.6 (Green subbundles for hyperbolic subsets). � Given a hy-
perbolic compact invariant set Z � T1M , for every � 2 Z the stable and
unstable Green subspaces at� coincide with the usual stable and unstable
subspaces of the dynamics, respectively. Moreover, in this case, for ev-
ery � 2 Z the stable and unstable submanifolds of the dynamics coincide
with the sets F s(� ) and F u (� ), respectively, and hence at every point of
these submanifolds the Green Jacobi �elds are tangent to them: For every
� 2 F s(� ) it holds that Gs(� ) is tangent to F s(� ). For every � 2 F u (� )
the spaceGu (� ) is tangent to F u (� ).

Remark 2.7. � In the general case, Green subspaces may not be tan-
gent to the un-/stable sets everywhere. Indeed, an example due to Ball-
mann et al. [3] shows that there exists compact surfaces without conjugate
points where un-/stable Green subspaces do not depend continuously on
� , whereas the collectionsf F s(� )g� and f F u (� )g� are always continuous
foliations.

Without any further assumption on the dynamics of the geodesic �ow, it
is di�cult to characterize un-/stable Green Jacobi �elds since they might
have unpredictable asymptotic behavior. When(M; g) has nonpositive cur-
vature, the norm of Jacobi �elds is convex and therefore a stable Green
Jacobi �eld J (t) is characterized by the existence of a constantC > 0
such that supt > 0kJ (t)k 6 C. The analogous property holds for an unstable
Green Jacobi �eld with t 6 0.

Perhaps the more general su�cient criterion to characterize an un-/stable
Green Jacobi �eld is the following (the proof follows essentially from the
divergence of radial Jacobi �eld). We call a Jacobi �eld radial if J (t) = 0
for some t. We say that radial Jacobi �elds diverge uniformly if for any
positive number a there exists T = T(a) > 0 such that every nontrivial
radial Jacobi �eld J with J (0) = 0 satis�es kJ (t)k > akJ 0(0)k for every
t > T. See also [22, Proposition 2.9] or [48, Chapter 3.2].

Lemma 2.8. � Let (M; g) be a compact manifold without conjugate
points.

(1) Any orthogonal Jacobi �eld J (t) which satis�es inf t> 0kJ (t)k = 0 is
a stable Green Jacobi �eld.

(2) Suppose that the radial Jacobi �elds of (M; g) diverge uniformly. If
a orthogonal Jacobi �eld J (t) satis�es inf t> 0kJ (t)k 6 C for some
C > 0 then it is a stable Green Jacobi �eld.

(3) If (M; g) is a compact surface without conjugate points then radial
Jacobi �elds diverge uniformly and therefore item (2) applies.
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The analogous statements hold true for unstable Green Jacobi �elds.

To �x notation, let us recall some further classi�cations of manifolds ac-
cording to their growth behavior of stable Green Jacobi �elds (for unstable
Green Jacobi �elds analogous conditions are put). A manifold without con-
jugate points hasbounded asymptoteif there exists C > 0 such that every
stable Green Jacobi �eld J satis�es supt > 0kJ (t)k 6 CkJ (0)k. A manifold
has no focal points if the norm of any stable Green Jacobi �eld is always
nonincreasing. Observe that ifM has nonpositive curvature then the norm
of any stable Green Jacobi �eld is always a nonincreasing convex function.
If M has negative curvature then any stable Green Jacobi �eld has a norm
which decays exponentially. The following implications hold true:

nonpositive curvature ) no focal points ) no conjugate points:

Note also (e.g. [39, 5.3 Satz]) that for a manifold without conjugate points

bounded asymptote ) continuous un-/stable Green bundles
(that is, continuous asymptote):

3. Strips and their relation with Green subspaces

In this section, in addition to our Standing Assumption, we assume that
(M; g) is a compact surface of genus greater than one.

We start by de�ning a strip in the universal covering.

Definition 3.1. � Given � � T1 fM the strip S(� ) � fM is the set of
all geodesics that are bi-asymptotic to
 � .

The following statement is essentially due to Morse [44] and recollects
properties of a strip. Recall the de�nition of the Busemann �ow � �

t in
Section 2.2.

Lemma 3.2. � For every � 2 T1 fM ,

S(� ) =
[

t 2 R

� �
t (I (� )) ; where I (� )

def
= H + (� ) \ H � (� ):

Moreover, I (� ) is the arc of a continuous simple curvec� : [a; b] ! I (� ) and
S(� ) is foliated by geodesics which all are bi-asymptotic to
 � .

If � 2 T1 fM is the lift of a periodic vector � 2 T1M , then S(� ) is foliated
by lifts of periodic geodesics which all are in the same homotopy class of

 � and which all have the same period.

There exists Q = Q(M ) > 0 such that the Hausdor� distance between
any two bi-asymptotic geodesics infM is bounded from above byQ.
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If the surface has no focal point and, in the notation in Lemma 3.2, if[a; b]
is not just one point then the curve I (� ) is a geodesic and the stripS(� ) is
�at , that is, isometric to [a; b] � R endowed with the Euclidean metric for
suitably chosen a < b (see the ��at strip theorem�, [19, Proposition 5.1]
or [46, Theorem 7.3]). In general, however, the geometry of a strip might be
quite di�erent from a �at object. There are examples of surfaces without
conjugate points and with non�at strips [12].

Lemma 3.2 justi�es the term strip to designate S(� ). Note that I (� ) can
contain just a single point, as it is, for example, in the case of negative
curvature for any � .

Definition 3.3. � We say that S(� ) is nontrivial if I (� ) is not a single
point, otherwise S(� ) is trivial and in this case we call� an expansivepoint.

Lemma 3.2 immediately implies the following.

Corollary 3.4. � It holds that

S(� )
def
=

[

t 2 R

� t (I (� )) ; where I (� )
def
= fF s(� ) \ fF u (� );

is a lift of I (� ) to T1 fM . Moreover, S(� ) nontrivial if and only if there exists
a continuous simple curvec� : [0; 1] ! T1 fM such that

c� ([0; 1]) = I (� ):

By Corollary 3.4, the existence of nontrivial strips is equivalent to the
existence of (topologically) nontransversal intersections between stable and
unstable leaves inT1 fM . Let S(� ) � T1M be the image ofS(� ) by the
natural projection from T1 fM to T1M . We shall as well refer toS(� ) as a
strip . Let I (� ) � T1M be the connected component containing� of the
image ofI (� ) by the natural projection from T1 fM to T1M or, equivalently,

I (� ) = F s(� ) \ F u (� ):

Definition 3.5. � We call � 2 T1M a generalized rank one vectorif
Gs(� ) 6= Gu (� ). We denote by

R 1
def
= f � 2 T1M : Gs(� ) 6= Gu (� )g

the set of all generalized rank one vectors. We denote by

R 0
def
= f � 2 T1M : S(� ) is trivial g = f � 2 T1M : F s(� ) \ F u (� ) = f � gg

the set of expansive vectors.
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The set of expansive points was also studied in [15, 2.1.4].
It holds R 1 � R 0. Note that, by invariance of the Green bundles (2.4)

and by (2.3), the sets R 1 and R 0 both are invariant under the geodesic
�ow. Moreover, assuming continuity of Green bundles, both sets are open.
Note that if (M; g) is a compact surface without focal points, thenR 1 is
just the set of rank one vectors.

Proof of Theorem B. � By Knieper [39, Theorem 3.8], the stable and
the unstable Green Jacobi �elds are integrable vector �elds, respectively.
Hence, there exist continuous foliationsGs and Gu of T1M by C1 curves
which, using invariance of the Green bundles (2.4), are invariant in the
sense that for every� 2 T1M and every t 2 R there hold

� t (Gy(� )) = Gy(� t (� ))

and

T� Gy(� ) = Gy(� ) for every � 2 Gy(� );

for y 2 f s; ug, respectively.
By [4, Theorem A], the center stable and the center unstable foliations

F cs and F cu are the only continuous invariant codimension-one foliations
of the geodesic �ow satisfying the hypotheses. Hence, letting

Gcs(� )
def
=

[

t 2 R

� t (Gs(� )) and Gcu (� )
def
=

[

t 2 R

� t (Gu (� )) ;

it holds either Gcs = F cs or Gcs = F cu , and analogously forGcu . Let � 2
T1M be a hyperbolic periodic vector. HenceGs(� ) is tangent to F s(� ) and
Gu (� ) is tangent to F u (� ) (Remark 2.6). Thus, it follows Gcs(� ) 6= F cu (� )
and henceGcs = F cs.

Hence, we have already shown that each leafF cs(� ) is sub-foliated by
the leaves ofGs. Given � 2 T1M , consider any of its lifts � to T1 fM and
consider the corresponding foliation eGcs which by analogous arguments
coincides with fF cs. Let Pr : T1 fM ! fM be the canonical projection. Re-
call that the projection Pr( fF cs(� )) = Pr(

S
t 2 R � t ( fF s(� ))) gives rise to the

Busemann �ow associated to� , and the leavesPr( � t ( fF s(� ))) are just the
horospheresH + (
 � (t)) . The projection Pr( � t ( eGs(� ))) gives rise to a folia-

tion of Pr( fF cs) which is everywhere orthogonal to the vector �eld of the
Busemann �ow. Recall that the Green subbundleGs is orthogonal to the
vector �eld de�ning the geodesic �ow (in fact, everywhere in T1 fM , not just
in fF cs(� )). Since the Busemann vector �eld �r b+

�
is a Lipschitz continu-

ous vector �eld, its orthogonal (�r b+
�

)? inherits this Lipschitz regularity.

Hence, the foliations f Pr( � t ( eGs(� ))) gt and f H + (
 � (t)gt , being tangent to
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(�r b+
�

)? , must coincide. This impliesF s(� ) = Gs(� ) for every � 2 F cs(� ),
which implies F s = Gs. This proves item (1) and item (2).

As we assume that both Green bundles vary continuously, given a peri-
odic hyperbolic vector � 2 T1M , there is an open setU � T1M containing
the orbit of � such that Gs(� ) and Gu (� ) are linearly independent for every
� 2 U. Again using transitivity, this proves item (3).

Item (4) will be a consequence of Proposition 5.3(3). �

Proposition 3.6. � For every � 2 R 1 that is forward recurrent (with
respect to the geodesic �ow), for every� 2 F s(� ) there exists a sequence
tn ! 1 such that � t n (� ) ! � as n ! 1 and

(3.1) lim
n !1

dS(� t n (� ); � t n (� )) = 0 :

The analogous statement holds true forF u as t ! �1 .

Property (3.1) was shown in [15, Lemma 6.7] for almost every vector
� 2 T1M (relative to any invariant probability measure giving full mea-
sure to R 1) using properties of generalized rank one vectors and ergodic
theory-arguments. Notice that, assuming additionally that (M; g) has no
focal points, property (3.1) is true for every � 2 R 1 and moreover it holds
convergence ast ! 1 .

Proof of Proposition 3.6. � As � is recurrent, there exists a sequence
tn ! 1 such that � t n (� ) ! � as n ! 1 . By contradiction, suppose that
there exist � 2 F s(� ) such that for every such sequencetn ! 1 satisfying
� t n (� ) ! � there is a > 0 such that for all n it holds

dS(� t n (� ); � t n (� )) > a:

Let � 2 T1 fM be a lift of � and let � 2 T1 fM be a lift of � satisfying
� 2 fF s(e� ). Then there is a0 > 0 such that the corresponding geodesic
curves in fM satisfy d~g(
 � (tn ); 
 � (tn )) > a0 for all n. On the other hand,

as � 2 fF s(e� ), it is a consequence of Morse's lemma thatdg(
 � (t); 
 � (t)) 6

D 0(� )
def
= dg(�; � ) + 2 D for all t > 0 and someD = D(M ) > 0. Moreover,

for every t 2 R the point 
 � (t) belongs to the horosphereH + (
 � (t)) .
Since, by hypothesis,� is accumulated by� t n (� ), we can choose covering

isometriesTn : fM ! fM such that

� n
def
=

�
Tn (
 � (tn )) ; DTn ( _
 � (tn ))

�
! �
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as n ! 1 . Up to considering some subsequence, we can assume that the
sequence

� n
def
=

�
Tn (
 � (tn )) ; DTn ( _
 � (tn ))

�

converges asn ! 1 , denote its limit by � 1 . The geodesics
 � n
and 
 � n

then satisfy:

� lim n !1 
 � n
(t) = 
 � (t) uniformly on compact intervals of t 2 R,

� d~g(
 � n
(t); 
 � n (t)) 6 D 0(� ) for all t 2 [� tn ; 1 ),

� d~g(
 � n
(0); 
 � n (0)) > a0 for all n,

The limiting geodesic 
 � 1 hence satis�es:

� d~g(
 � (t); 
 � 1 (t)) 6 D 0(� ) for all t 2 R,
� d~g(
 � (0); 
 � 1 (0)) > a0,

� � 1 2 fF s(� ).

Indeed, the latter property is a consequence of the continuity of the sta-
ble foliation and the fact that � n 2 fF s(� n ) for all n. Thus, 
 � 1 and 
 �
are bi-asymptotic and hence they bound a strip of geodesics all being bi-
asymptotic. But this contradicts that � is the lift of a vector in R 1. �

Note that if � is contained in a hyperbolic invariant set (recall Re-
mark 2.4; in particular this holds if � is a hyperbolic periodic point), then
the setsF s(� ) and F u (� ) are just the stable and unstable submanifolds at
� and hence at� they are transverse and tangent to the stable and unstable
Green subspaces, respectively. The following result states thatF s(� ) and
F u (� ) are also transverse as� varies alongF s(� ) (analogously for F u (� )).

Corollary 3.7. � For every � 2 R 1 that is forward recurrent (with
respect to the geodesic �ow) it holdsF s(� ) � R 1. In particular,

F s(� ) \ F u (� ) = f � g for all � 2 F s(� ):

The analogous statements hold true forF u (� ).

Proof. � Given � 2 R 1 forward recurrent, by Theorem B(3), there exists
an open setU � R 1 containing � . Since� is forward recurrent, by Proposi-
tion 3.6 for every � 2 F s(� ) there is a sequencetn ! 1 so that � t n (� ) 2 U.
As Green bundles are invariant and transversality is preserved under the
application of D� t , it follows that Gs(� ) and Gu (� ) are transverse. Hence,
� 2 R 1. This together with R 1 � R 0 implies the claim. �

In Section 4, we will use the above results to construct a basis for the
quotient topology.
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4. The quotient �ow: de�nition and properties

4.1. Quotient space and the model �ow

Analogously to [28, Section 4], we say that two points�; � 2 T1M are
related � � � if and only if

� � 2 F s(� ),
� if � is any lift of � and � is any lift of � to T1 fM satisfying � 2 fF s(� ),

then the geodesics
 � and 
 � are bi-asymptotic.

The above relation indeed de�nes an equivalence relation onT1M . Given
� 2 T1M , denote by [� ] the equivalence class containing� . Denote by
X

def
= T1M= � the set of all equivalence classes and equip it with the quotient

topology. Denote by � : T1M ! X , � (� )
def
= [ � ], the quotient map. We

consider the �ow 	 = (  t )t 2 R, 	 : R � X ! X de�ned by

 t = 	( t; �)

as

 t ([� ])
def
= [ � t (� )]:

This quotient �ow is continuous in the quotient topology generated by
the topology in T1M . By the very de�nition of the �ows and because the
geodesic �ow preserves the foliationsF s and F u (compare (2.3)), 	 is a
time-preserving factor of the geodesic �ow� by means of � , that is, for
every t 2 R

(4.1) � � � t =  t � �:

The above de�ned equivalence relation onT1M with quotient map �
naturally induces an equivalence relation inT1 fM . We denote by [� ] the
corresponding equivalence class of� 2 T1 fM , by X the set of all equiva-
lence classes, by� : T1 fM ! X the quotient map, and by 	 : R � X ! X
the corresponding quotient �ow. Denote by � : X ! X the corresponding
canonical projection.

The following result is immediate.

Lemma 4.1. � For every � 2 R 1 there exists an open setU � R 1 of �
such that � jU : U ! � (U) is a local homeomorphism.
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Notations

The following diagram summarizes our setting (compare (4.3) for the
de�nition of the stable and unstable sets for the �ows 	 and 	 ).

M � � fM; I (� )
def
= H + (� ) \ H � (� )

� = ( p; v) 2 T1M � � � = ( p; v) 2 T1 fM

F y(� ) � � fF y(� ); y = s; u; cs; cu

I (� ) = F s(� ) \ F u (� ) � � I (� )
def
= fF s(� ) \ fF u (� )

� t : T1M ! T1M � � � t : T1 fM ! T1 fM

# � # �

 t : X ! X � �  t : X ! X

W y([� ]) � � fW y([� ]); y = ss; uu; cs; cu

The following two results establish the essential properties of the quotient
space and of the dynamical properties of the quotient �ow.

Theorem 4.2. � Let (M; g) be a compact surface without conjugate
points and continuous stable and unstable Green bundles. Then the quo-
tient spaceX is a compact topological3-manifold. In particular, X admits
a smooth 3-dimensional structure where the quotient �ow 	 is continuous.

The proof of Theorem 4.2 will be sketched in Section 4.2. In the following,
let us �x some metric d on X which is induced by a Riemannian metric.
We will recall expansiveness and local product structure in Sections 4.3
and 4.5, respectively.

Theorem 4.3. � Let (M; g) be a compact surface without conjugate
points and continuous stable and unstable Green bundles. Then the quo-
tient �ow 	 is expansive, topologically mixing, and has a local product
structure.

The proof of Theorem 4.3 will be completed in Section 4.6.

4.2. Proof of Theorem 4.2

The proof is analogous to [28, Theorem 4.3]. We only sketch it, indicating
the di�erences.
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