[E-série des variétés de caractères des surfaces non-orientées]
Dans cet article nous nous intéressons à deux types de champs associés à une surface compacte non-orientable . (A) On considère simplement le champ quotient de l’espace des représentations du groupe fondamental de dans . (B) On choisit un ensemble de points de et un -uplet générique de classes de conjugaison semsimples de et on considère le champ des systèmes locaux anti-invariants sur le revêtement d’orientation de avec monodromies locales dans les classes de conjugaison choisies. On calcule le nombre de points de ces champs sur un corps fini et on en déduit une formule pour leur -série (une certaine spécialisation de la série de Poincaré mixte). Dans le cas (B), étonnamment (voir Remarque 1.9), lorsque la caractéristique d’Euler de est paire, nos formules sont très proches de celles provenant des variétés de caractères de surfaces compactes orientables épointées étudiées dans [13] et [14].
In this paper we are interested in two kinds of stacks associated to a compact non-orientable surface . (A) We consider simply the quotient stack of the space of representations of the fundamental group of to . (B) We choose a set of -punctures of and a generic -tuple of semisimple conjugacy classes of , and we consider the stack of anti-invariant local systems on the orientation cover of with local monodromies around the punctures given by the prescribed conjugacy classes. We compute the number of points of these spaces over finite fields from which we get a formula for their -series (a certain specialization of the mixed Poincaré series). In case (B), unexpectedly (see Remark 1.9), when the Euler characteristic of is even, our formulas turn out to be closely related to those arising from the character varieties of punctured compact orientable surfaces studied in [13] and [14].
Révisé le :
Accepté le :
Publié le :
Keywords: Character varieties, non-orientable surfaces.
Mot clés : Variétés de caractères, surfaces non-orientées.
Letellier, Emmanuel 1 ; Rodriguez-Villegas, Fernando 2
@article{AIF_2023__73_4_1385_0, author = {Letellier, Emmanuel and Rodriguez-Villegas, Fernando}, title = {E-series of character varieties of non-orientable surfaces}, journal = {Annales de l'Institut Fourier}, pages = {1385--1420}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {73}, number = {4}, year = {2023}, doi = {10.5802/aif.3540}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3540/} }
TY - JOUR AU - Letellier, Emmanuel AU - Rodriguez-Villegas, Fernando TI - E-series of character varieties of non-orientable surfaces JO - Annales de l'Institut Fourier PY - 2023 SP - 1385 EP - 1420 VL - 73 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3540/ DO - 10.5802/aif.3540 LA - en ID - AIF_2023__73_4_1385_0 ER -
%0 Journal Article %A Letellier, Emmanuel %A Rodriguez-Villegas, Fernando %T E-series of character varieties of non-orientable surfaces %J Annales de l'Institut Fourier %D 2023 %P 1385-1420 %V 73 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3540/ %R 10.5802/aif.3540 %G en %F AIF_2023__73_4_1385_0
Letellier, Emmanuel; Rodriguez-Villegas, Fernando. E-series of character varieties of non-orientable surfaces. Annales de l'Institut Fourier, Tome 73 (2023) no. 4, pp. 1385-1420. doi : 10.5802/aif.3540. https://aif.centre-mersenne.org/articles/10.5802/aif.3540/
[1] E-polynomials of character varieties for real curves (https://arxiv.org/abs/2006.01288)
[2] The Lefschetz trace formula for algebraic stacks, Invent. Math., Volume 112 (1993) no. 1, pp. 127-149 | DOI | MR | Zbl
[3] Representation varieties of the fundamental groups of compact non-orientable surfaces, Math. Sb., Volume 188 (1997), pp. 42-92
[4] La conjecture de Weil. I, Inst. Hautes Études Sci. Publ. Math. (1974) no. 43, pp. 273-307 | DOI | MR | Zbl
[5] Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974) no. 44, pp. 5-77 | DOI | MR | Zbl
[6] The number of direct-sum decompositions of a finite vector space (https://arxiv.org/abs/1603.07619)
[7] Quantum dilogarithm, Modern Phys. Lett. A, Volume 9 (1994) no. 5, pp. 427-434 | DOI | MR | Zbl
[8] Über die reellen Darstellungen der endlichen Gruppen., Berl. Ber., Volume 1906 (1906), pp. 186-208
[9] Conjugacy class properties of the extension of generated by the inverse transpose involution, J. Algebra, Volume 275 (2004) no. 1, pp. 356-396 | DOI | MR | Zbl
[10] On the divisibility of by , J. Algebra, Volume 350 (2012), pp. 300-307 | DOI | MR | Zbl
[11] Properties of the characters of the finite general linear group related to the transpose-inverse involution, Proc. London Math. Soc. (3), Volume 47 (1983) no. 3, pp. 493-506 | DOI | MR | Zbl
[12] Mirror symmetry in the character table of (in preparation)
[13] Arithmetic harmonic analysis on character and quiver varieties, Duke Math. J., Volume 160 (2011) no. 2, pp. 323-400 | DOI | MR
[14] Arithmetic harmonic analysis on character and quiver varieties II, Adv. Math., Volume 234 (2013), pp. 85-128 | DOI | MR | Zbl
[15] Mixed Hodge polynomials of character varieties, Invent. Math., Volume 174 (2008) no. 3, pp. 555-624 (With an appendix by Nicholas M. Katz) | DOI | MR | Zbl
[16] Sur le nombre d’éléments du groupe symétrique dont l’ordre est un nombre premier, Norske Vid. Selsk. Forh., Trondheim, Volume 21 (1949) no. 12, pp. 49-51 | MR
[17] The six operations for sheaves on Artin stacks. I. Finite coefficients, Publ. Math. Inst. Hautes Études Sci. (2008) no. 107, pp. 109-168 | DOI | MR | Zbl
[18] The six operations for sheaves on Artin stacks. II. Adic coefficients, Publ. Math. Inst. Hautes Études Sci. (2008) no. 107, pp. 169-210 | DOI | MR | Zbl
[19] Affine root systems and Dedekind’s -function, Invent. Math., Volume 15 (1972), pp. 91-143 | DOI | MR | Zbl
[20] Symmetric functions and Hall polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995, x+475 pages (With contributions by A. Zelevinsky, Oxford Science Publications) | MR
[21] Integrality of Hausel–Letellier–Villegas kernels, Duke Math. J., Volume 167 (2018) no. 17, pp. 3171-3205 | DOI | MR | Zbl
[22] A computational criterion for the Kac conjecture, J. Algebra, Volume 318 (2007) no. 2, pp. 669-679 | DOI | MR | Zbl
[23] Counting colorings on varieties, Publ. Mat., Volume 51 (2007), pp. 209-220 (Proceedings of the Primeras Jornadas de Teoría de Números) | DOI | MR | Zbl
[24] Lectures on Klein surfaces and their fundamental group, Geometry and quantization of moduli spaces (Adv. Courses Math. CRM Barcelona), Birkhäuser/Springer, Cham, 2016, pp. 67-108 | DOI | MR | Zbl
[25] Character varieties with non-connected structure groups (https://arxiv.org/abs/1912.04360)
[26] Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, xii+581 pages | DOI | MR | Zbl
[27] The number of congruence classes in , Finite Fields Appl., Volume 1 (1995) no. 1, pp. 57-63 | DOI | MR | Zbl
Cité par Sources :