Dans le contexte des groupes finiment engendrés à croissance polynomiale du volume, nous considérons une large classe de marches aléatoires à sauts de longue portée distribués suivant des lois puissances dans la direction de plusieurs sous-groupes. Pour de telles marches, nous déterminons la probabilité de retour au temps en fonction de la distribution des sauts et de la structure algébrique du groupe. Nous obtenons des estimations autour de la diagonale ainsi que la continuité Hölderienne des solutions de l’équation de la chaleur discrète associée. Dans chaque cas, ces estimations utilisent la géométrie associée à la marche.
In the context of countable groups of polynomial volume growth, we consider a large class of random walks that are allowed to take long jumps along multiple subgroups according to power law distributions. For such a random walk, we study the large time behavior of its probability of return at time in terms of the key parameters describing the driving measure and the structure of the underlying group. We obtain assorted estimates including near-diagonal two-sided estimates and the Hölder continuity of the solutions of the associated discrete parabolic difference equation. In each case, these estimates involve the construction of a geometry adapted to the walk.
Révisé le :
Accepté le :
Publié le :
Keywords: long range random walk, group, return probability, Pseudo-Poincaré inequality, Hölder continuity
Mot clés : Marches aléatoires à sauts non bornés, groupe, probabilité de retour, inégalité pseudo-Poincaré, continuité Hölderienne
Chen, Zhen-Qing 1 ; Kumagai, Takashi 2 ; Saloff-Coste, Laurent 3 ; Wang, Jian 4 ; Zheng, Tianyi 5
@article{AIF_2022__72_3_1249_0, author = {Chen, Zhen-Qing and Kumagai, Takashi and Saloff-Coste, Laurent and Wang, Jian and Zheng, Tianyi}, title = {Long range random walks and associated geometries on groups of polynomial growth}, journal = {Annales de l'Institut Fourier}, pages = {1249--1304}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {3}, year = {2022}, doi = {10.5802/aif.3515}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3515/} }
TY - JOUR AU - Chen, Zhen-Qing AU - Kumagai, Takashi AU - Saloff-Coste, Laurent AU - Wang, Jian AU - Zheng, Tianyi TI - Long range random walks and associated geometries on groups of polynomial growth JO - Annales de l'Institut Fourier PY - 2022 SP - 1249 EP - 1304 VL - 72 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3515/ DO - 10.5802/aif.3515 LA - en ID - AIF_2022__72_3_1249_0 ER -
%0 Journal Article %A Chen, Zhen-Qing %A Kumagai, Takashi %A Saloff-Coste, Laurent %A Wang, Jian %A Zheng, Tianyi %T Long range random walks and associated geometries on groups of polynomial growth %J Annales de l'Institut Fourier %D 2022 %P 1249-1304 %V 72 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3515/ %R 10.5802/aif.3515 %G en %F AIF_2022__72_3_1249_0
Chen, Zhen-Qing; Kumagai, Takashi; Saloff-Coste, Laurent; Wang, Jian; Zheng, Tianyi. Long range random walks and associated geometries on groups of polynomial growth. Annales de l'Institut Fourier, Tome 72 (2022) no. 3, pp. 1249-1304. doi : 10.5802/aif.3515. https://aif.centre-mersenne.org/articles/10.5802/aif.3515/
[1] Regularity of harmonic functions for a class of singular stable-like processes, Math. Z., Volume 266 (2010) no. 3, pp. 489-503 | DOI | MR | Zbl
[2] Symmetric Markov chains on with unbounded range, Trans. Am. Math. Soc., Volume 360 (2008) no. 4, pp. 2041-2075 | DOI | MR | Zbl
[3] Transition probabilities for symmetric jump processes, Trans. Am. Math. Soc., Volume 354 (2002) no. 7, pp. 2933-2953 | DOI | MR | Zbl
[4] Regular variation, Encyclopedia of Mathematics and Its Applications, 27, Cambridge University Press, 1987, xx+491 pages | DOI | MR
[5] Nonlocal operators with singular anisotropic kernels, Commun. Partial Differ. Equations, Volume 45 (2020) no. 1, pp. 1-31 | DOI | MR | Zbl
[6] Heat kernel estimates for stable-like processes on -sets, Stochastic Processes Appl., Volume 108 (2003) no. 1, pp. 27-62 | DOI | MR | Zbl
[7] Brownian motion on spaces with varying dimension, Ann. Probab., Volume 47 (2019) no. 1, pp. 213-269 | MR | Zbl
[8] Ultracontractivity and Nash type inequalities, J. Funct. Anal., Volume 141 (1996) no. 2, pp. 510-539 | DOI | MR | Zbl
[9] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoam., Volume 9 (1993) no. 2, pp. 293-314 | DOI | MR | Zbl
[10] Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoam., Volume 15 (1999) no. 1, pp. 181-232 | DOI | MR | Zbl
[11] Classical potential theory and its probabilistic counterpart, Classics in Mathematics, Springer, 2001, xxvi+846 pages (Reprint of the 1984 edition) | DOI | MR
[12] Random walk on groups with a finite number of generators, Dokl. Akad. Nauk SSSR, Volume 137 (1961), pp. 1042-1045 | MR | Zbl
[13] Growth of periodic Grigorchuck groups, Invent. Math., Volume 219 (2020) no. 3, pp. 1069-1155 | DOI | Zbl
[14] Milnor’s problem on the growth of groups and its consequences, Frontiers in complex dynamics (Princeton Mathematical Series), Volume 51, Princeton University Press, 2014, pp. 705-773 | DOI | MR | Zbl
[15] Gaussian estimates for Markov chains and random walks on groups, Ann. Probab., Volume 21 (1993) no. 2, pp. 673-709 | MR | Zbl
[16] Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983) no. 3, pp. 457-490 | MR | Zbl
[17] Symmetric random walks on groups, Trans. Am. Math. Soc., Volume 92 (1959) no. 2, pp. 336-354 | DOI | MR | Zbl
[18] Positive harmonic functions on nilpotent groups, Sov. Math., Dokl., Volume 7 (1966), pp. 241-244 | MR | Zbl
[19] On groups, slow heat kernel decay yields Liouville property and sharp entropy bounds, Int. Math. Res. Not. (2020) no. 3, pp. 722-750 | MR | Zbl
[20] On the stability of the behavior of random walks on groups, J. Geom. Anal., Volume 10 (2000) no. 4, pp. 713-737 | DOI | MR | Zbl
[21] Probability on groups: random walks and invariant diffusions, Notices Am. Math. Soc., Volume 48 (2001) no. 9, pp. 968-977 | MR | Zbl
[22] Random walks on nilpotent groups driven by measures supported on powers of generators, Groups Geom. Dyn., Volume 9 (2015) no. 4, pp. 1047-1129 | DOI | MR | Zbl
[23] Random walks and isoperimetric profiles under moment conditions, Ann. Probab., Volume 44 (2016) no. 6, pp. 4133-4183 | DOI | MR | Zbl
[24] On some random walks o driven by spread-out measures, Groups, graphs and random walks (London Mathematical Society Lecture Note Series), Volume 436, Cambridge University Press, 2017, pp. 444-474 | DOI | MR | Zbl
[25] Théorie du potentiel sur les groupes nilpotents, C. R. Math. Acad. Sci. Paris, Volume 301 (1985) no. 5, pp. 143-144 | MR | Zbl
[26] Analysis and geometry on groups, Cambridge Tracts in Mathematics, 100, Cambridge University Press, 1992, xii+156 pages | MR
[27] Random walks on infinite graphs and groups, Cambridge Tracts in Mathematics, 138, Cambridge University Press, 2000, xii+334 pages | DOI | MR
Cité par Sources :