We prove a decomposition formula for Verlinde sums (rational trigonometric sums), as a discrete counterpart to the Boysal–Vergne decomposition formula for Bernoulli series. Motivated by applications to fixed point formulas in Hamiltonian geometry, we develop differential form valued version of Bernoulli series and Verlinde sums, and extend the decomposition formula to this wider context.
Nous prouvons une formule de décomposition des sommes de Verlinde (sommes rationnelles trigonométriques), comme contrepartie discrète de la formule de décomposition de Boysal–Vergne pour les séries de Bernoulli. Motivés par des applications aux formules à point fixe en géométrie hamiltonienne, nous développons une version à valeur dans les formes différentielles des séries de Bernoulli et des sommes de Verlinde, et nous étendons la formule de décomposition à ce contexte plus général.
Revised:
Accepted:
Published online:
Keywords: Verlinde sums, rational trigonometric sums, Bernoulli series
Mot clés : sommes de Verlinde, sommes rationnelles trigonométriques, séries de Bernoulli
@article{AIF_2022__72_3_1207_0, author = {Loizides, Yiannis and Meinrenken, Eckhard}, title = {The decomposition formula for {Verlinde} {Sums}}, journal = {Annales de l'Institut Fourier}, pages = {1207--1248}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {3}, year = {2022}, doi = {10.5802/aif.3511}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3511/} }
TY - JOUR AU - Loizides, Yiannis AU - Meinrenken, Eckhard TI - The decomposition formula for Verlinde Sums JO - Annales de l'Institut Fourier PY - 2022 SP - 1207 EP - 1248 VL - 72 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3511/ DO - 10.5802/aif.3511 LA - en ID - AIF_2022__72_3_1207_0 ER -
%0 Journal Article %A Loizides, Yiannis %A Meinrenken, Eckhard %T The decomposition formula for Verlinde Sums %J Annales de l'Institut Fourier %D 2022 %P 1207-1248 %V 72 %N 3 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3511/ %R 10.5802/aif.3511 %G en %F AIF_2022__72_3_1207_0
Loizides, Yiannis; Meinrenken, Eckhard. The decomposition formula for Verlinde Sums. Annales de l'Institut Fourier, Volume 72 (2022) no. 3, pp. 1207-1248. doi : 10.5802/aif.3511. https://aif.centre-mersenne.org/articles/10.5802/aif.3511/
[1] The Verlinde formulas as fixed point formulas, J. Symplectic Geom., Volume 1 (2001) no. 1, pp. 1-46 | DOI | MR | Zbl
[2] Duistermaat–Heckman measures and moduli spaces of flat bundles over surfaces, Geom. Funct. Anal., Volume 12 (2002) no. 1, pp. 1-31 | DOI | MR | Zbl
[3] Volume computation for polytopes and partition functions for classical root systems, Discrete Comput. Geom., Volume 35 (2006) no. 4, pp. 551-595 | DOI | MR | Zbl
[4] Multiple Bernoulli series and volumes of moduli spaces of flat bundles over surfaces, J. Symb. Comput., Volume 68 (2015) no. 2, pp. 27-60 | DOI | MR | Zbl
[5] Paradan’s wall crossing formula for partition functions and Khovanski-Pukhlikov differential operator, Ann. Inst. Fourier, Volume 59 (2009) no. 5, pp. 1715-1752 | DOI | Numdam | MR | Zbl
[6] Multiple Bernoulli series, an Euler–MacLaurin formula, and wall crossings, Ann. Inst. Fourier, Volume 62 (2012) no. 2, pp. 821-858 | DOI | Numdam | MR | Zbl
[7] Arrangement of hyperplanes, I: Rational functions and Jeffrey–Kirwan residue, Ann. Sci. Éc. Norm. Supér., Volume 32 (1999) no. 5, pp. 715-741 | DOI | Numdam | MR | Zbl
[8] The number of solutions to linear Diophantine equations and multivariate splines, Trans. Am. Math. Soc., Volume 308 (1988) no. 2, pp. 509-532 | DOI | MR | Zbl
[9] Heckman, Kostant and Steinberg formulas for symplectic manifolds, Adv. Math., Volume 82 (1990) no. 2, pp. 160-179 | DOI | MR | Zbl
[10] On the Kostant multiplicity formula, J. Geom. Phys., Volume 5 (1988) no. 4, pp. 721-750 | DOI | MR | Zbl
[11] Norm-square localization for Hamiltonian LG-spaces, J. Geom. Phys., Volume 114 (2017), pp. 420-449 | DOI | MR | Zbl
[12] Twisted K-homology and group-valued moment maps, Int. Math. Res. Not., Volume 2012 (2012) no. 20, pp. 4563-4618 | DOI | MR
[13] Localization of the Riemann–Roch character, J. Funct. Anal., Volume 187 (2001) no. 2, pp. 442-509 | DOI | MR | Zbl
[14] Wall-crossing formulas in Hamiltonian geometry, Geometric Aspects of Analysis and Mechanics (Progress in Mathematics), Volume 292, Birkhäuser, 2011, pp. 295-343 | DOI | MR | Zbl
[15] Verification of Verlinde’s formulas for , Int. Math. Res. Not., Volume 1991 (1991) no. 7, pp. 93-98 | DOI | MR | Zbl
[16] The combinatorics of the Verlinde formula, Vector bundles in algebraic geometry (Durham, 1993) (London Mathematical Society Lecture Note Series), Volume 208, Cambridge University Press, 1995, pp. 241-253 | DOI | MR | Zbl
[17] Iterated residues and multiple Bernoulli polynomials, Int. Math. Res. Not., Volume 18 (1998), pp. 937-956 | DOI | MR | Zbl
[18] Residue theorem for rational trigonometric sums and Verlinde’s formula, Duke Math. J., Volume 118 (2003) no. 2, pp. 189-227 | MR | Zbl
[19] Residue formulae for vector partitions and Euler–Maclaurin sums, Adv. Appl. Math., Volume 30 (2003) no. 1-2, pp. 295-342 | DOI | MR | Zbl
[20] and Kostant partition functions, Enseign. Math., Volume 63 (2017) no. 3-4, pp. 471-516 | MR | Zbl
[21] Conformal field theory and the cohomology of the moduli space of stable bundles, J. Differ. Geom., Volume 35 (1992) no. 1, pp. 131-149 | MR | Zbl
[22] Multiple Bernoulli series and wall crossing (Slides for AMS meeting in San Francisco, 2010) | Numdam | Zbl
[23] Residue formulae for Verlinde sums, and for number of integral points in convex rational polytopes, European women in mathematics (Malta, 2001), World Scientific, 2003, pp. 225-285 | DOI | Zbl
[24] Poisson summation formula and box splines (2013) (https://arxiv.org/abs/1302.6599)
[25] Formal equivariant -class, splines and multiplicities of the index of transversally elliptic operators, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 80 (2016) no. 5, pp. 157-192 | MR | Zbl
[26] Fusion rules and modular transformations in 2D conformal field theory, Nucl. Phys., B, Volume 300 (1988), pp. 360-376 | DOI | Zbl
[27] On quantum gauge theories in two dimensions, Commun. Math. Phys., Volume 141 (1991) no. 1, pp. 153-209 | DOI | MR | Zbl
Cited by Sources: