Nous analysons quand certains quotients de l’espace compactifié des modules de courbes de genre marquées en points sont de type général, ou au contraire, uniruled, pour une classe assez large de sous-groupes du groupe symétrique agissant par permutation des points marqués. On montre que la propriété d’être de type général ne dépend que des transpositions contenues dans . Dans le cas où est le groupe symétrique ou un produit on trouve une bande étroite de transition où passe du type général au cas uniruled quand augmente. Comme application, on considère la variété de différences universelles .
We investigate when certain quotients of the compactified moduli space of -pointed genus curves are of general type or, on the contrary, uniruled, for a fairly broad class of subgroups of the symmetric group which act by permuting the marked points. We show that the property of being of general type only depends on the transpositions contained in . Furthermore, in the case that is the full symmetric group or a product , we find a narrow transitional band in which changes its behaviour from being of general type to its opposite, i.e. being uniruled, as increases. As an application we consider the universal difference variety .
Révisé le :
Accepté le :
Publié le :
Keywords: Moduli spaces, algebraic curves, Kodaira dimension
Mot clés : Espaces de modules, courbes algébriques, dimension de Kodaira
Schwarz, Irene 1
@article{AIF_2022__72_4_1417_0, author = {Schwarz, Irene}, title = {On quotients of $\protect \,\hspace{1.111pt}\protect \overline{\protect \!\hspace{-1.111pt}\protect \mathcal{M}}_{g,n}$ by certain subgroups of $S_n$}, journal = {Annales de l'Institut Fourier}, pages = {1417--1435}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {4}, year = {2022}, doi = {10.5802/aif.3496}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3496/} }
TY - JOUR AU - Schwarz, Irene TI - On quotients of $\protect \,\hspace{1.111pt}\protect \overline{\protect \!\hspace{-1.111pt}\protect \mathcal{M}}_{g,n}$ by certain subgroups of $S_n$ JO - Annales de l'Institut Fourier PY - 2022 SP - 1417 EP - 1435 VL - 72 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3496/ DO - 10.5802/aif.3496 LA - en ID - AIF_2022__72_4_1417_0 ER -
%0 Journal Article %A Schwarz, Irene %T On quotients of $\protect \,\hspace{1.111pt}\protect \overline{\protect \!\hspace{-1.111pt}\protect \mathcal{M}}_{g,n}$ by certain subgroups of $S_n$ %J Annales de l'Institut Fourier %D 2022 %P 1417-1435 %V 72 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3496/ %R 10.5802/aif.3496 %G en %F AIF_2022__72_4_1417_0
Schwarz, Irene. On quotients of $\protect \,\hspace{1.111pt}\protect \overline{\protect \!\hspace{-1.111pt}\protect \mathcal{M}}_{g,n}$ by certain subgroups of $S_n$. Annales de l'Institut Fourier, Tome 72 (2022) no. 4, pp. 1417-1435. doi : 10.5802/aif.3496. https://aif.centre-mersenne.org/articles/10.5802/aif.3496/
[1] The Picard groups of the moduli spaces of curves, Topology, Volume 26 (1987) no. 2, pp. 153-171 | DOI | MR | Zbl
[2] Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Publ. Math., Inst. Hautes Étud. Sci., Volume 88 (1998) no. 1, pp. 97-127 | DOI | Numdam | Zbl
[3] Geometry of algebraic curves: Volume II. With a contribution by Joseph Daniel Harris, Grundlehren der Mathematischen Wissenschaften, 268, Springer, 2011
[4] Geometry of algebraic curves: Volume I, Grundlehren der Mathematischen Wissenschaften, 267, Springer, 1985 | DOI
[5] On the rationality of moduli spaces of pointed curves, J. Lond. Math. Soc., Volume 75 (2007) no. 3, pp. 582-596 | DOI | MR | Zbl
[6] The Kodaira dimension of the moduli space of curves of genus23, Invent. Math., Volume 90 (1987) no. 2, pp. 359-387 | DOI | MR | Zbl
[7] Koszul divisors on moduli spaces of curves, Am. J. Math., Volume 131 (2009) no. 3, pp. 819-867 | DOI | MR | Zbl
[8] The Kodaira dimensions of M22 and M23 (2020) (https://arxiv.org/abs/2005.00622)
[9] The classification of universal Jacobians over the moduli space of curves, Comment. Math. Helv., Volume 88 (2013) no. 3, pp. 587-611 | DOI | MR | Zbl
[10] The universal difference variety over , Rend. Circ. Mat. Palermo, Volume 62 (2013) no. 1, pp. 97-110 | DOI | MR | Zbl
[11] The universal theta divisor over the moduli space of curves, J. Math. Pures Appl., Volume 100 (2013) no. 4, pp. 591-605 | DOI | MR | Zbl
[12] The geometry of the moduli space of odd spin curves, Ann. Math., Volume 180 (2014) no. 3, pp. 927-970 | DOI | MR | Zbl
[13] On the Kodaira dimension of the moduli space of curves, Invent. Math., Volume 67 (1982) no. 1, pp. 23-86 | DOI | MR | Zbl
[14] On some results of Morita and their application to questions of ampleness, Math. Z., Volume 241 (2002) no. 1, pp. 17-33 | DOI | MR | Zbl
[15] The Kodaira dimension of moduli spaces of curves with marked points, Am. J. Math., Volume 125 (2003) no. 1, pp. 105-138 | DOI | MR | Zbl
[16] The automorphism group of , J. Lond. Math. Soc., Volume 89 (2014) no. 1, pp. 131-150 | DOI | Zbl
[17] On the Kodaira dimension of the moduli space of nodal curves (2018) (https://arxiv.org/abs/1811.01193)
Cité par Sources :