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ON QUOTIENTS OF Mg,n BY
CERTAIN SUBGROUPS OF Sn

by Irene SCHWARZ

Abstract. — We investigate when certain quotients of the compactified moduli
space of n-pointed genus g curvesMG :=Mg,n/G are of general type or, on the
contrary, uniruled, for a fairly broad class of subgroups G of the symmetric group
Sn which act by permuting the n marked points. We show that the property of be-
ing of general type only depends on the transpositions contained in G. Furthermore,
in the case that G is the full symmetric group Sn or a product Sn1 ×· · ·×Snm , we
find a narrow transitional band in whichMG changes its behaviour from being of
general type to its opposite, i.e. being uniruled, as n increases. As an application
we consider the universal difference varietyMg,2n/Sn × Sn.
Résumé. — Nous analysons quand certains quotients de l’espace compactifié

des modules MG := Mg,n/G de courbes de genre g marquées en n points sont
de type général, ou au contraire, uniruled, pour une classe assez large de sous-
groupes G du groupe symétrique Sn agissant par permutation des points marqués.
On montre que la propriété d’être de type général ne dépend que des transpositions
contenues dans G. Dans le cas où G est le groupe symétrique Sn ou un produit
Sn1 × · · · × Snm on trouve une bande étroite de transition oùMG passe du type
général au cas uniruled quand n augmente. Comme application, on considère la
variété de différences universellesMg,2n/Sn × Sn.

1. Introduction

In this paper we shall consider a class of quotients of Mg,n, the com-
pactified moduli space of n-pointed genus g complex curves, by certain
subgroups of the symmetric group Sn which act by permuting the marked
points. We recall from [16] that (for 2g − 2 + n > 3) Sn is the group of
automorphisms both for the coarse moduli spaceMg,n and its associated
Deligne Mumford stack. This generalizes recent work of Bruno and Mella
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1418 Irene SCHWARZ

and older work of Earl, Kra and Korkmaz, see the references given in [16].
Our aim is to analyse under which conditions such quotients are of general
type or, in a complementary case, uniruled or even unirational. As usual,
we do this by using the Kodaira dimension.
We were led to investigating the questions addressed in the present paper

by analysing an analogous problem for the compactified moduli space N g,n

of n-nodal genus g curves in [17]. Here N g,n =Mg,2n/G where the special
group G is also a subgroup of S2n, namely the semidirect product G :=
(Z2)n o Sn. In view of the great importance of n-nodal curves, e.g. in the
deformation type arguments used in the proof of the Brill–Noether theorem,
this problem was directly motivated by geometry.
Our proof in [17], however, let us realize that there are some related

results for general quotients of Mg,n which in some aspects are different
from the special case of N g,n. In particular, it is important that G :=
(Z2)n o Sn is a semidirect product and not a product of subgroups. The
main point of this paper is to prove first results in this direction for a class
of general quotients.
For G ⊂ Sn, we denote the quotient by this action asMG

g,n :=Mg,n/G

and we suppress the subscript (g, n) if we feel it unnecessary within a
given context. Then the natural quotients induce the chain of surjective
morphisms of schemes

(1.1) Mg,n −→MG
g,n −→MSn

g,n

which gives the following ordering for the Kodaira dimension

(1.2) κ(Mg,n) > κ(MG
g,n) > κ(MSn

g,n).

In fact, this is a trivial version of the subadditivity of the Kodaira dimen-
sion. We will show in Theorem 2.1 that the singularities of these moduli
spaces do not impose adjunction conditions and therefore their Kodaira
dimension is the Kodaira–Iitaka dimension of their canonical class. How-
ever, for any surjective morphism of schemes f : X → Y and any line
bundle L on Y we get an inclusion H0(Y,L) → H0(X, f∗L) implying
κ(X, f∗L) > κ(Y, L). Choosing L = KY and observing that KX > f∗KY

we get equation (1.2).
Since all algebraic varieties in (1.1) have the same dimension, one gets

(1.3) MSn
g,n of general type =⇒ MG

g,n of general type

=⇒ Mg,n of general type.

By the same argument, one gets
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Remark 1.1. — For any subgroup H of G one has

(1.4) MG of general type =⇒MH of general type.

We also remark that it follows from equation (1.2) that, if the Kodaira
dimension ofMg,n is already minimal, it stays minimal when quotienting
by a subgroup G of Sn. In particular, this holds for the special cases ana-
lysed in [5] whereMg,n is actually rational. In this paper we focus on the
complementary case.
For explicit calculation we shall need the canonical class KMG of MG

which we calculate by pullback to the well known moduli spaceMg,n. For
this purpose we need the ramification divisor of the quotient map.

Proposition 1.2. — Denoting by (i j) the transposition in Sn inter-
changing i and j the ramification divisor R of the quotient map π :Mg,n →
MG is given by

(1.5) R =
∑

(i j)∈G

δ0,{i,j}.

Here the (standard) definition of the boundary divisor δ0,{i,j} is given in
Section 2 below, which in particular introduces all divisors needed in this
paper. The proposition is shown in equation (2.2).
Now the well known explicit formula for the canonical divisor KMg,n

gives

Corollary 1.3. — The pullback KG := π∗(KMG) toMg,n is given by

(1.6) KG = KMg,n
−R = 13λ+ ψ − 2δ −

∑
(i j)∈G

δ0,{i,j}

As we can see the canonical class ofMG depends only on the transposi-
tions in G. This allows us to conclude

Theorem 1.4. — Let G and H be two subgroups of Sn containing the
same transpositions, i.e. (i j) ∈ G⇔ (i j) ∈ H for any transposition (i j).
ThenMG is of general type if and only ifMH is of general type.

Proof. — We will show in Section 2, Proposition 2.2, that a quotient
MG is of general type if and only if we can write KG, the pullback of the
canonical class along the quotient map, as the sum of an ample and an
effective G-invariant divisor. Assume that KG = A+E is such a decompo-
sition and that the subgroup H has the same transpositions as G. Then,
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1420 Irene SCHWARZ

by Corollary 1.3, KG = KH is both G- and H-invariant and therefore

KH = 1
|H|

∑
h∈H

h(KG) = 1
|H|

∑
h∈H

h(A) + 1
|H|

∑
h∈H

h(E)

is a decomposition of KH into H-invariant divisors. �

This theorem is especially useful, when the group G contains no trans-
positions at all, allowing us to relate the quotient MG to the well known
moduli spaceMg,n. For the sake of the reader we recall:

Proposition 1.5. — The moduli space Mg,n is of general type for
g > 22 or for n > nmin(g) given in the following table:

Table 1.1.

g 4 5 6 7 8 9 10 11 12
nmin 16 15 16 15 14 13 11 12 11
g 13 14 15 16 17 18 19 20 21

nmin 11 10 10 9 9 9 7 6 4

This collects results from [7, 8, 12, 15] and covers all cases known up to
now. As a corollary to Theorem 1.4 we now obtain:

Corollary 1.6. — If G has no transpositions then the quotient MG

is of general type if and only ifMg,n is of general type.

In particular, this covers the case whereG is cyclic (and different from Z2)
or the cardinality |G| is odd. It also covers the largest non-trivial subgroup
of Sn, the alternating group An (in fact G contains no transpositions, if
and only if it is a subgroup of An). This has a geometric interpretation:
The set of n-tuples of n fixed different points on a genus g curve carries
a notion of orientation: Two n-tuples have the same orientation, if they
are mapped one to another by an even permutation. Taking the quotient
by Sn corresponds to passing from n-pointed curves to n-marked curves,
while taking the quotient by An means passing to curves marked in n

points with orientation. Under the first action the property of being of
general type might change, but it is invariant under the second.
If the subgroup G does contain transpositions, the situation is more

complicated.
We can see this by studying the quotient of Mg,n by the entire sym-

metric group Sn. This quotient is of special interest, both because it is
comparatively easy to understand and because it has two important mod-
ular interpretations. It can be interpreted as the moduli space M̃g,n of
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n-marked curves of genus g, i.e. stable curves with an unordered set of
n marked points. Furthermore, it is birational to the moduli space Cg,n
parametrizing effective divisors of degree n on stable curves of genus g.
This space is usually called the universal symmetric product of degree n.

These modular interpretations allow us to study the Kodaira dimen-
sion of this moduli space. First let us consider the forgetful map MSn =
M̃g,n →Mg forgetting the marked points. The fibre over a curve C is bi-
rational to Cn := Symn(C) := Cn/Sn which is well known to be of general
type for n < g (see e.g. [14]). Now, whenever the base Mg is of general
type (which it is at least for g > 22), then it follows from the subadditivity
of the Kodaira dimension that the moduli spaceMSn = M̃g,n (and thus,
by Remark 1.1, the quotientMG for any subgroup G of Sn) is of general
type for all n < g.
On the other hand the fibres Cn of the forgetful map Cg,n → Mg are

effective divisors of degree n on the curve C. Since the Riemann–Roch
theorem implies that any effective divisor of degree d > g lies in some
g1
d, the moduli space Cg,n is trivially uniruled for all n > g. Since being

uniruled is a birationally invariant property the same must be true for the
quotientMSn .

There are also some known results for n = g or for n < g when g is too
small forMg to be of general type. Let us summarize these results.

Proposition 1.7. — The spaceMSn is of general type if
(i) g > 22, n < g, or
(ii) 13 6 g 6 21, and nmin(g) 6 n < g, where nmin(g) is given in the

following table

Table 1.2.

g 12 13 14 15 16 17 18 19 20 21
nmin 10 11 10 10 9 9 9 7 6 4

Furthermore,MSn is
(1) uniruled, if n > g (for any g) or g ∈ {10, 11} with n 6= g

(2) unirational, if g < 10, n 6 g.
(3) For g > 12 the Kodaira dimension κ(Mg,g) = 3g−3 is intermediary.

Here the result of (i) and the first assertion in (1) follow as explained
above. The table in (ii) is proven in [11] by explicit computation. The
second assertion of (1) is proved in [9] which also contains (2) and (3).
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1422 Irene SCHWARZ

Here we see an interesting phenomenon: While the Kodaira dimension of
Mg,n (the moduli space of n-pointed curves) increases monotonically with
n, this is not true for M̃g,n (the moduli space of n-marked curves). Here
in fact the Kodaira dimension first increases and then (for n > g) sharply
drops to −∞.
For a subgroup G ⊂ Sn the Kodaira dimension of the quotient MG

must always lie between these two extremes. In particular, MG is always
of general type for g large enough and n < g. For n > g the Kodaira
dimension ofMG depends very much on the group G.

In the following theorems we shall analyse, for a large class of groups
G, when MG is of general type or, on the contrary, uniruled. We remark
that the transition point for switching from general type to uniruled will
depend on the group G. This allows for n being arbitrarily large for fixed
g. First, considerations similar to those preceding Proposition 1.7 give us
the following result.

Theorem 1.8. — Fix a partition n = n1 + · · ·+ nm and set G = Sn1 ×
· · · × Snm . ThenM

G

g,n is
(1) of general type for g > 22, max{n1, . . . , nm} < g and
(2) uniruled for max{n1, . . . , nm} > g.

When g is so small thatMg is not of general type and max{n1, . . . , nm} 6
g we need explicit computations with the canonical class. From a technical
point of view, this is the most ambitious result of this paper. We remark
that by Remark 1.1 any result on being of general type also holds for any
subgroup H ⊂ G.

Theorem 1.9. — Fix a partition n = n1 + · · ·+nm, set G = Sn1×· · ·×
Snm and let g 6 21. ThenMG

g,n is of general type if
(1) max{n1, . . . , nm} 6 g − 2 and fm(g;n1, . . . , nm) 6 13, where fm is

the function defined in equation (4.7) of Section 4 below.
(2) max{n1, . . . , nm} 6 g − 1 and fm(g;n1, . . . , nm, L1, . . . , Lm) 6 13,

where fm is the function defined in equation (4.12) of Section 4
below (depending on a choice of divisor classes L1, . . . , Lm as de-
scribed at the end of Section 4.

Furthermore, MG still has non-negative Kodaira dimension if
max{n1, . . . , nm} 6 g and fm(g;n1, . . . , nm) 6 13.

A geometric interpretation of this result is similar to the interpretation
for An: the partition P : n = n1 + · · · + nm induces the group G = GP =
Sn1 × · · · × Snm , and the action of GP maps an n-pointed genus g curve
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to a curve with markings in the m sets of n1, . . . , nm unordered points
(considered as an ordered m-tuple of sets) which we may call a P -marked
curve. Thus Theorem 1.8 and Theorem 1.9 state when the moduli space of
P -marked genus g curves is of general type or on the contrary is uniruled.

Since there is no upper bound on the number of summandsm in the parti-
tion of n, an inspection of the defining equation for fm shows that the values
of n may tend to infinity, provided the subgroup G is chosen appropriately.
As in the above case for m = 2, Riemann–Roch establishes a (small) tran-
sitional band beyond which MG

g,n becomes uniruled. We emphasize that
the existence of this transitional band (for any fixed subgroup G) is differ-
ent from the result for N g,n proved in [17]: N g,n = Mg,2n/(Z2)n o Sn is
of general type for all values of n, if g > 22. This is perfectly compatible
with Theorem 1.8, since G := (Z2)noSn with its action on the 2n marked
points is not given by a direct product subgroup of S2n, as required in
Theorem 1.8. To understand this from a more conceptual point of view,
however, is wide open at present. We emphasize that it is not merely the
size of the group which is relevant: The alternating group G = An might
be taken arbitrarily large and still MG will preserve general type, while
taking the quotient by much smaller groups, e.g. G = Sg+1 will turnMG

into being uniruled.
As an application we consider m = 2 and the special case G = Sn × Sn.

This quotient has a geometric interpretation as the universal difference
variety, i.e. the fibre of the map MG → Mg over a smooth curve C is
birational to the image of the difference map Cn ×Cn → J0(C), (D,E) 7→
D − E, see e.g. [4].
Then Theorem 1.8 combined with Theorem 1.9 (for a proper choice of

divisors) gives the following.

Proposition 1.10. — The universal difference varietyMg,2n/Sn×Sn is
of general type for g > 22, n < g, or, in the low-genus case, if 10 6 g 6 21
and nmin(g) 6 n < g where nmin(g) is specified in the following table

Table 1.3.

g 10 11 12 13 14 15 16 17 18 19 20 21
nmin 7 8 8 7 7 7 6 6 7 5 4 3

Furthermore the universal difference variety is uniruled for n > g and
has non-negative Kodaira dimension for nmin(g) 6 n 6 g.

This proposition amplifies the results of [10], which considers the univer-
sal difference variety in the special case n = d g2e. We emphasize that the
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1424 Irene SCHWARZ

result in Table 1.3 for g = 13 and n = 7 is taken from [10]; in view of the
sharp coupling between g and n the authors are able to use in this special
case an additional divisor, which is not applicable in the other cases and
which is not contained in our Section 3. All other cases in Table 1.3 follow
from our Theorem 1.9.
The outline of the paper is as follows. In Section 2 we introduce notation

and some preliminary results, in Section 3 we introduce the class of divisors
used in our proof. Here we basically recall, for the sake of the reader,
some material from [17]. In Section 4 we prove Theorem 1.8, Theorem 1.9
and Proposition 1.10. The use of a small program in computer algebra is
appropriate to check our calculations.

2. Preliminaries and Notation

The aim of this section is to develop a criterion forMG being of general
type. This requires a basic understanding of the Picard group Pic(MG) and
an explicit description of the boundary divisors and tautological classes
on MG which we shall always consider as G-invariant divisors on Mg,n

(any such divisor descends to a divisor on MG). For results on Mg,n we
refer to the book [3] (containing in particular the relevant results from the
papers [1] and [2]). All Picard groups are taken with rational coefficients
and, in particular, we identify the Picard group on the moduli stack with
that of the corresponding coarse moduli space.
In particular, we recall the notion of the Hodge class λ onMg,n, which

automatically is Sn- (and therefore G-)invariant and thus gives the Hodge
class λ on MG (where, by the usual abuse of notation, we denote both
classes by the same symbol; this abuse of notation is continued throughout
the paper).
In order to describe the relevant boundary divisors on Mg,n, we recall

that ∆0 (sometimes also called ∆irr) on Mg is the boundary component
consisting of all (classes of) stable curves of arithmetical genus g, having
at least one nodal point of order 0, i.e. with the property that ungluing
the curve at this node preserves connectedness. Furthermore, ∆i, for 1 6
i 6 b g2c, denotes the boundary component of curves possessing a node of
order i (i.e. ungluing at this point decomposes the curve in two connected
components of arithmetical genus i and g − i respectively). Similarly, on
Mg,n and for any subset S ⊂ {1, . . . , n}, we denote by ∆i,S , 0 6 i 6 b g2c,
the boundary component consisting of curves possessing a node of order
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i such that after ungluing the connected component of genus i contains
precisely the marked points labeled by S. Note that, if S contains at most
1 point, one has ∆0,S = ∅ (the existence of infinitely many automorphisms
on the projective line technically violates stability). Thus, in that case, we
shall henceforth consider ∆0,S as the zero divisor.
We shall denote by δi, δi,S the rational divisor classes of ∆i,∆i,S in

Pic(Mg) and Pic(Mg,n), respectively. Note that δ0 is also called δirr in
the literature, but we shall reserve the notation δirr for the pull-back of δ0
under the forgetful map π :Mg,n →Mg.
We write δ for the sum of all boundary divisors and set δi,s =

∑
|S|=s δi,S .

We remark that a single δi,S is not G-invariant (for a subgroup G of Sn),
but the divisor

∑
g∈G δi,g(S), averaged by the action of G, obviously is. In

particular δ and δi,s are always Sn-invariant. We shall use such an averaging
in the proof of Theorem 1.9.
Next we recall the notion of the point bundles ψi, 1 6 i 6 n, on Mg,n.

Informally, the line bundle ψi (sometimes called the cotangent class cor-
responding to the label i) is given by choosing as fibre of ψi over a point
[C;x1, . . . , xn] ofMg,n the cotangent line T vxi(C). For later use we also set

(2.1) ωi := ψi −
∑

S⊂{1,...,n},S3i

δ0,S ,

and introduce ψ =
∑n
i=1 ψi. Clearly, the class ψ is Sn-invariant.

Now observe that the ramification divisor (class) of the quotient map
π :Mg,n →M

G is precisely

(2.2) R =
∑

(i,j)∈G

δ0,{i,j},

which is the statement of 1.2. In fact, ramification requires existence of a
non-trivial automorphism belonging to G, and by standard results this only
occurs in the presence of the projective line with 2 marked points that are
swapped by this automorphism. The non-trivial automorphism is then the
transposition (of the labels) of these two marked points.
Furthermore, the Hurwitz formula for the quotient map π gives

(2.3) K := π∗(KMG) = KMg,n
−R = 13λ+ ψ − 2δ −

∑
(i,j)∈G

δ0,{i,j}.

As a first step in the direction of our criterion we need the following
result on the geometry of the moduli spaceMG

.

Theorem 2.1. — For any subgroup G of Sn, the singularities of MG

do not impose adjunction conditions, i.e. if ρ : M̃G →MG is a resolution
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of singularities, then for any ` ∈ N there is an isomorphism

(2.4) ρ∗ : H0
(

(MG)reg,K
⊗`
(MG)reg

)
−→ H0(M̃G,K⊗`M̃G).

Here (MG)reg denotes the set of regular points of MG, considered as a
projective variety and KM̃G ,K(MG)reg

denote the canonical classes on M̃G

and (MG)reg.

The proof follows the lines of the proof of Theorem 1.1 in [9]. We shall
briefly review the argument. A crucial input is Theorem 2 of the seminal
paper [13] which proves that the moduli spaceMg has only canonical sin-
gularities. The proof relies on the Reid–Tai criterion: Pluricanonical forms
(i.e. sections of K⊗`) extend to the resolution of singularities, if for any
automorphism σ of an object of the moduli space the so-called age satisfies
age(σ) > 1. The proof in [9] then proceeds to verify the Reid–Tai criterion
for the quotient ofMg,n by the full symmetric group Sn. Here one specifi-
cally has to consider those automorphisms of a given curve which act as a
permutation of the marked points. For all those automorphisms the proof
in [9] verifies the Reid–Tai criterion. Thus, in particular, the criterion is
verified for all automorphisms which act on the marked points as an ele-
ment of some subgroup of Sn. Thus, the proof in [9] actually establishes the
existence of only canonical singularities for any quotientMg,n/G where G
is a subgroup of Sn. Clearly, this is our theorem.
With this result we can show the following criterion for the quotientMG

to be of general type.

Proposition 2.2. — Let π : Mg,n → M
G be the quotient map and

KMG be the canonical class on MG. Then MG is of general type if and
only if

(2.5) KG := π∗KMG = A+ E,

where A and E are rational G-invariant divisor classes onMg,n, A is ample
and E is effective.

Proof. — Theorem 2.1 implies that the Kodaira dimension ofMG equals
the Iitaka dimension of the canonical class KMG . In particular,MG is of
general type if and only if KMG is big, i.e. a positive linear combination
of an ample and an effective rational class on MG. In order to pull this
criterion back to Mg,n we recall the following exercise from Hartshorne’s
book: If f : X → Y is a finite surjective morphism of proper schemes over a
Noetherian ring, then a divisor A on Y is ample if and only if f∗A is ample
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on X. We use this for f = π and recall that a divisor onMg,n descends to
MG if and only if it is G-invariant. A G-invariant effective divisor onMg,n

corresponds to an effective divisor onMG. Thus equation (2.5) decomposes
the canonical class equivalently on eitherMg,n or onMG. Identifying the
Kodaira dimension with the Iitaka dimension of the canonical class finishes
the proof. �

We remark that it suffices to replace the ample divisor A by any big
divisor since this is itself the sum of an ample and an effective divisor.
Thus we will use Proposition 2.2 mostly for the big divisor A = εψ for
some ε > 0.

Proposition 2.3. — The class ψ onMg,n is the pull-back of a divisor
class onMG which is big and nef.

Proof. — Farkas and Verra have proven in Proposition 1.2 of [11] that
the Sn-invariant class ψ descends to a big and nef divisor class Ng,n on
the quotient spaceMg,n/Sn. Consider the sequence of natural projections
Mg,n

π−→ MG ν−→ MSn
. Then ν∗(Ng,n) is a big and nef divisor on MG =

Mg,n/G and π∗(ν∗(Ng,n) = ψ. �

We thus obtain a sufficient condition: If K is a positive multiple of ψ
+ some effective G-invariant divisor class onMg,n, thenM

G is of general
type.

3. Divisors

In this section we introduce the relevant Sn-invariant effective divisors
onMg,n. First we recall the following standard result.

Proposition 3.1. — Let f : X → Y be a morphism of projective
schemes, D ⊂ Y be an effective divisor and assume that f(X) is not con-
tained in D. Then f∗(D) is an effective divisor on X.

In our case the assumption of this proposition is fulfilled automatically
since we only consider surjective maps.

We shall need invariant divisors onMg,n. Rather than exhibiting them
directly by explicit definitions, we shall simply recall from the literature
the existence of special divisors with small slope: If g+1 is not prime, then
there is an effective Sn-invariant divisor class D onMg (of Brill–Noether
type) of slope

(3.1) s(D) = 6 + 12
g + 1 ,
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while for g + 1 odd (which trivially includes the case g + 1 being prime)
there is an effective Sn-invariant divisor class D onMg (of Giesecker–Petri
type) of slope

(3.2) s(D) = 6 + 14g + 4
g2 + 2g ,

see [6]. For a few cases (g = 10, 12, 16, 21) it has been shown in [12] (for
g = 12) and [7] (for the other 3 cases) that there exist special effective
invariant divisors D = Dg with even smaller slope, i.e.

(3.3) s(Dg) =


7 g = 10
6 + 563

642 g = 12
6 + 41

61 g = 16
6 + 197

377 g = 21.

We shall need them in the proof of Theorem 1.9.
Finally, we need divisors of Weierstrass-type, and these we have to intro-

duce explicitly. We recall from [15, Section 5], the divisorsW (g; a1, . . . , am)
onMg,m, where ai > 1 and

∑
ai = g. They are given by the locus of curves

C with marked points p1, . . . , pm such that there exists a g1
g on C contain-

ing
∑

16i6m aipi. We want to minimize the distance between the weights
ai. Thus we decompose g = km+ r, with r < m, and set

(3.4) W̃ g,m = W (g; a1, . . . , am),
aj = k + 1 (1 6 j 6 r), aj = k (r + 1 6 j 6 m).

This gives, in view of [15, Theorem 5.4],

(3.5) W̃ g,m = −λ+
r∑
i=1

(k + 1)(k + 2)
2 ωi +

m∑
i=r+1

k(k + 1)
2 ωi − 0 · δirr

−
∑
i,j6r

(k + 1)2δ0,{i,j} −
∑

i6r,j>r

k(k + 1)δ0,{i,j} −
∑
i,j>r

k2δ0,{i,j}

− higher order boundary terms,

where higher order means a positive linear combination of δi,S where either
i > 0 or |S| > 2.
From W̃ g,m we want to generate a G-invariant divisor class W̃ g,n,m on

Mg,n, by summing over appropriate pullbacks. Thus we let S, T be disjoint
subsets of {1, . . . , n} with |S| = r and |T | = m− r (recall that r is fixed by
the decomposition g = mk + r) and let

(3.6) πS,T :Mg,n −→Mg,m
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be a projection (i.e. a surjective morphism of projective varieties) mapping
the class [C; q1, . . . , qn] to [C; p1, . . . , pm], where the points qi labeled by S
are sent to the points p1, . . . , pr (all with weights ai = k+1) and the points
labeled by T are sent to the points pr+1, . . . , pm (all with weights equal
to k). Clearly, for fixed g, there are precisely

(
n
r

)(
n−r
m−r

)
such projections.

With this notation, we introduce

(3.7) W̃ g,n,m :=
∑
S,T

π∗S,T W̃ g,m = −wλλ+ wψψ + 0 · δirr −
∑
s>2

wsδ0,s

− higher order boundary terms,

where higher order denotes a positive linear combination of boundary di-
visors δi,S with i > 1 and

(3.8) ws > swψ > 3wψ for s > 3,

(3.9) wλ =
(
n

r

)(
n− r
m− r

)
,

(3.10) wψ =
(
n− 1
r − 1

)(
n− r
m− r

)
(k + 1)(k + 2)

2

+
(
n− 1
r

)(
n− r − 1
m− r − 1

)
k(k + 1)

2 ,

(3.11) w2 = 2wψ +
(
n− 2
r − 2

)(
n− r
m− r

)
(k + 1)2

+ 2
(
n− 2
r − 1

)(
n− r − 1
m− r − 1

)
k(k + 1) +

(
n− 2
r

)(
n− r − 2
m− r − 2

)
k2.

Equation (3.10) is proved by applying pullback to (3.5), using ω :=∑n
i=1 ωi,

(3.12)
∑
S,T

r∑
i=1

π∗S,Tωi =
(
n

r

)(
n− r
m− r

)
r

n
ω =

(
n− 1
r − 1

)(
n− r
m− r

)
ω

and

(3.13)
∑
S,T

m∑
i=r+1

π∗S,Tωi =
(
n

r

)(
n− r
m− r

)
m− r
n

ω =
(
n− 1
r

)(
n− r − 1
m− r − 1

)
ω,

noting that equation (2.1) implies

(3.14) ω = ψ −
∑
S

|S|δ0,S .
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The sums over the pullbacks of the boundary divisors are computed by
similar combinatorial considerations which we leave to the reader. Note that
both the summand 2wψ on the right hand side of (3.11) and the bound
in (3.8) are generated by the change of basis given in (2.1).
Next, for the proof of Theorem 1.9 it will be convenient to renormalize

the divisor W̃ g,n,m in such a way that the coefficient of ψ is equal to 1. We
thus introduce Wg,n = 1

wψ
W̃ g,m and find, setting m = min{g, n},

(3.15)
Wg,n = a(g, n)λ+ ψ + 0 · δirr −

∑
s>2

bsδ0,s − higher order boundary terms,

where higher order denotes a positive linear combination of boundary di-
visors δi,S with i > 1,

(3.16) a(g, n) =
{

2n
(k+1)(g+r) g = kn+ r, r < n
n
g n > g

b2 = b(g, n) with

(3.17) b(g, n) =


2 + 2

n−1
r(r−1)(k+1)2+2r(n−r)k(k−r)+(n−r)(n−r−1)k2

r(k+1)(k+2)+(n−r)k(k+1)

g = kn+ r, r < n

2 + g−1
n−1 n > g

and bs > b2 for all s > 2.
In addition, we shall use the anti ramification divisor classes from [11,

Section 2], to obtain (by straightforward though somewhat lenghty alge-
braic computation) the existence of effective divisor classes Tg onMg,g−1
satisfying

(3.18) Tg = −g − 7
g − 2λ+ ψ − 1

2g − 4δirr −
(

3 + 1
2g − 4

)
δ0,2 + h.t.

where the higher order terms h.t. denote a linear combination of all other
boundary divisors with coefficients 6 −2.
Furthermore, normalizing the divisor classes in [11, Theorem 3.1], one

obtains for g > 1 and any 1 6 m 6 g/2 effective divisor classes Fg,m on
Mg,n (with n = g − 2m) satisfying

(3.19) Fg,m = aλ+ ψ − birrδirr − b0,2δ0,2 + h.t.,

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS OF Mg,n BY SUBGROUPS OF Sn 1431

where, as above, the higher order terms h.t. denote a linear combination of
all other boundary divisors with coefficients 6 −2 and

(3.20) a = n

n− 1

(
10m
g − 2 + 1− g

g −m

)
,

b0,2 = 3 + (g − n)(n+ 1)
(g + n)(n− 1) , birr = nm

(g − 2)(n− 1)

Finally, to cover the case where g and n have different parity, we set n =
g− 2m+ 1 and pull back Fg,m given in eqution 3.19 in all possible ways to
Mg,n (via a forgetful map forgetting one of the marked points). Summing
all these divisor classes and then normalizing gives an effective divisor class
F̃ g,m onMg,n satisfying

(3.21) F̃ g,m = aλ+ ψ − birrδirr − b0,2δ0,2 + h.t.,

where, as above, the higher order terms h.t. denote a linear combination of
all other boundary divisors with coefficients 6 −2 and

(3.22) a = n

n− 2

(
10m
g − 2 + 1− g

g −m

)
,

b0,2 = 3 + g − n− 1
g + n− 1 , birr = nm

(g − 2)(n− 2) .

4. Proofs

Proof of Theorem 1.8. — This proof proceeds along similar lines as the
results forMSn explained in the introduction.
Let us set G = Sn1×· · ·×Snm and consider the forgetful mapMG →Mg

forgetting all marked points. We recall thatMG will be uniruled when the
general fibre of this morphism is. Likewise, when both the base Mg and
the general fibre are of general type, then by subadditivity of the Kodaira
dimension the same must hold forMG.

Now note that the general fibre of this morphism is birational to

Cn/G ' (Cn1/Sn1)× · · · × (Cnm/Snm).

For max{n1, . . . , nm} > g at least one factor Cni/Sni is uniruled and thus
the product Cn/G must be uniruled as well. Likewise max{n1, . . . , nm} < g

implies that each factor Cni/Sni is of general type, and thus is the product.
It remains to recall that the baseMg is of general type for g > 22. �

TOME 72 (2022), FASCICULE 4



1432 Irene SCHWARZ

Proof Theorem 1.9. — This is more technical and more challenging.
Since g is so small that the base Mg is no longer of general type we re-
quire explicit computations. We will decompose the canonical class into the
sum of an ample and an effective divisor class and use Proposition 2.2 to
conclude that MG is of general type. As the ample divisor A from equa-
tion (2.5) we will use a positive multiple of the Sn-invariant divisor ψ. So
the difficulty will lie in finding a suitable G-invariant effective divisor class
E.
For assertion (1) we take Weierstrass divisors Wk = Wg,nk on each

Mg,nk and W = Wg,n on Mg,n, with coefficients a(g, nk), b(g, nk) and
a(g, n), b(g, n) respectively, see Section 3 equation (3.15). For each sum-
mand nk in the partition n =

∑
16k6m nk we denote by Ak ⊂ {1, . . . , n}

the set of nk labels on which the corresponding factor Snk from the direct
product G = Sn1 × · · · × Snm acts; these sets are fixed by the embedding
of G into Sn. We denote by πk :Mg,n →Mg,nk the forgetful map forget-
ting all points except those labelled by Ak. In order to calculate π∗kWk we
introduce some notation.
For any sets S ⊂ {1, . . . , n} we define

(4.1) δS,`i,s :=
∑

|T∩S|=`,|T |=s

δi,T

and denote by πS : Mg,n → Mg,|S| the natural forgetful map, forgetting
all points except for those labelled by S. With this notation, by the usual
abuse of notation explained in Section 2, one easily finds

Proposition 4.1. — The pull-back divisors are π∗S(λ) = λ, π∗S(δirr) =
δirr and

(4.2) π∗S(ψ) =
∑
i∈S

ψi −
n−nk+1∑
s=2

δS,10,s , π∗S(δi,s) =
∑
`>0

δS,si,s+`.

Now let us observe that in the notation above the labels i, j belong
to different sets Ak, A` if and only if the transposition (i j) is not in G.
Therefore the divisor L :=

∑
16k6m π

∗
kWk has the decomposition

(4.3) L = −
∑

16k6m
a(g, nk)λ+ ψ − 2

∑
(i j)/∈G

δ0,{i,j} + 0δirr

−
∑

16k6m
b(g, nk)

∑
i,j∈Sk

δ0,{i,j} + h.t,

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS OF Mg,n BY SUBGROUPS OF Sn 1433

where h.t. denotes a (higher order) sum of boundary divisors, each multi-
plied with coefficients < −2. In addition we consider

(4.4) W = −a(g, n)λ+ψ− b(g, n)
∑
i,j

δ0,{i,j}+h.t, D = sλ− δirr +h.t.,

where D = Dg is chosen with minimal slope s = s(g) (see the list of divisors
with small slope in (3.1)–(3.3)) and set

(4.5) ε := min{b(g, nk)− 3 | k ∈ {1, . . . ,m} with nk > 2}.

Clearly, ε > 0 if and only if max{n1, . . . , nm} 6 g − 2. Combining equa-
tions (4.3), (4.4), (4.5) (see also 3.15) one obtains the decompositions

(4.6) KG > 2D + 1
1 + ε

L+ 2ε
b(g, n)(1 + ε)W + ηψ,

η := ε

1 + ε
(1− 2

b(g, n) ) > 0,

provided one has the inequality

(4.7) fm(g, n1, . . . , nm)

:= 2s(g)− 1
1 + ε

∑
16k6m

a(g, nk)− 2ε
b(g, n)(1 + ε)a(g, n) 6 13.

Since the divisor class ψ is ample and all divisors in equation (4.6) are
effective and Sn-invariant, the proof boils down to checking the inequal-
ity (4.7).
Note that for max{n1, . . . , nm} ∈ {g − 1, g} we get ε = η = 0, which

proves that KG is at least effective and thus gives non-negative Kodaira
dimension.
To treat the additional case max{n1, . . . , nm} = g−1 in case (2) we need

more general divisors L1, . . . , Lm. The function fm in equation (4.7) will
then depend on these divisors, destroying the explicit form of fm given in
equation (4.7).
Instead of the family of (generalized) Weierstrass divisors Wk onMg,nk ,

for 1 6 k 6 m, we use divisors Lk on Mg,nk , for 1 6 k 6 m, having a
decomposition

(4.8) Lk = akλ+ ψ − bk,irrδirr − bkδ0,2 + h.t.

where bk > 3 and the higher order terms h.t. denote a linear combination
of all other boundary divisors with coefficients 6 −2. Setting (analog to
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the above) L :=
∑

16k6m π
∗
kLk we obtain

(4.9) L = −
∑

16k6m
akλ+ ψ − 2

∑
(i j)/∈G

δ0,{i,j} −
∑

16k6m
bk,irrδirr

−
∑

16k6m
bk
∑
i,j∈Sk

δ0,{i,j} + h.t,

with h.t. as above. This is analog to (4.3).
In this notation, we already have for shortness’s sake suppressed depen-

dence on g, n. Using the same convention in equation (4.4) (thus simply
writing a, b in the decomposition of W ) and introducing

(4.10) ε := min{bk − 3 | k ∈ {1, . . . ,m} with nk > 2},

which is (4.5) with b(g, nk) replaced by bk and writing α+ := max{α, 0},
we obtain the decomposition

(4.11) KG >

(
2− 1

1 + ε

∑
k

bk,irr

)
+

D + 1
1 + ε

L+ 2ε
b(1 + ε)W + ηψ,

where η := ε

1 + ε

(
1− 2

b

)
> 0,

provided one has the inequality

(4.12) fm(g, n1, . . . , nm, L1, . . . , Lm)

:=
(

2− 1
1 + ε

∑
k

bk,irr

)
+

s+ 1
1 + ε

∑
16k6m

ak −
2ε

b(1− ε)a 6 13.

This finishes the proof of Theorem 1.9. �

Proof of Proposition 1.10. — The assertion on uniruledness and on being
of general type for g > 22 are a direct application of Theorem 1.8.

When n 6 g − 2 and (g, n) 6= (20, 4) we can apply Theorem 1.9(1).
To cover the remaining cases, we shall use Theorem 1.9(2) with the

following choice of divisors Lk for k ∈ {1, 2} (clearlym = 2 for the difference
variety) in equation (4.12).
In case n = g − 1, we choose L1 = L2 = Tg, defined in equation (3.18).

It is straightforward to check that fm 6 13 in this case.
Finally, in case g = 20 and n = 4, we choose L1 = L2 = F20,8. Again,

since now all divisor classes are explicit, it is straightforward to check
fm 6 13. �
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