Pour une courbe lisse sur un corps de caractéristique positive , pour chaque intersection complète dans de type , nour prouvons l’approximation faible des points adeliques de par des -points sur toutes les places de forte réduction potentiellement bonne, si l’indice de Fano est au moins deux et si . Cela s’applique également aux spécialisations des variétés de Fano complexes de nombre de Picard de rang et d’indice de Fano en dehors de l’ensemble des mauvais nombres premiers.
For a smooth curve over a field with , for every complete intersection in of type , we prove weak approximation of adelic points of by -points at all places of (strong) potentially good reduction, if the Fano index is and if . This also applies to specializations of complex Fano manifolds with Picard rank and Fano index away from “bad primes”.
Révisé le :
Accepté le :
Publié le :
Keywords: weak approximation, separably rationally connected, stability
Mot clés : approximation faible, séparablement rationnellement connexe, stabilité
Starr, Jason M. 1 ; Tian, Zhiyu 2 ; Zong, Runhong 3
@article{AIF_2022__72_4_1503_0, author = {Starr, Jason M. and Tian, Zhiyu and Zong, Runhong}, title = {Weak {Approximation} for {Fano} {Complete} {Intersections} in {Positive} {Characteristic}}, journal = {Annales de l'Institut Fourier}, pages = {1503--1534}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {4}, year = {2022}, doi = {10.5802/aif.3495}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3495/} }
TY - JOUR AU - Starr, Jason M. AU - Tian, Zhiyu AU - Zong, Runhong TI - Weak Approximation for Fano Complete Intersections in Positive Characteristic JO - Annales de l'Institut Fourier PY - 2022 SP - 1503 EP - 1534 VL - 72 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3495/ DO - 10.5802/aif.3495 LA - en ID - AIF_2022__72_4_1503_0 ER -
%0 Journal Article %A Starr, Jason M. %A Tian, Zhiyu %A Zong, Runhong %T Weak Approximation for Fano Complete Intersections in Positive Characteristic %J Annales de l'Institut Fourier %D 2022 %P 1503-1534 %V 72 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3495/ %R 10.5802/aif.3495 %G en %F AIF_2022__72_4_1503_0
Starr, Jason M.; Tian, Zhiyu; Zong, Runhong. Weak Approximation for Fano Complete Intersections in Positive Characteristic. Annales de l'Institut Fourier, Tome 72 (2022) no. 4, pp. 1503-1534. doi : 10.5802/aif.3495. https://aif.centre-mersenne.org/articles/10.5802/aif.3495/
[1] Stable maps and Hurwitz schemes in mixed characteristics, Advances in algebraic geometry motivated by physics (Lowell, MA, 2000) (Contemporary Mathematics), Volume 276, American Mathematical Society, 2001, pp. 89-100 | DOI | MR | Zbl
[2] Remarks on correspondences and algebraic cycles, Am. J. Math., Volume 105 (1983) no. 5, pp. 1235-1253 | DOI | MR | Zbl
[3] Counting conics in complete intersections, Acta Math. Vietnam., Volume 35 (2010) no. 1, pp. 23-30 | MR | Zbl
[4] Torsion orders of complete intersections (2016) (https://arxiv.org/abs/1605.01913)
[5] Relèvements modulo et décomposition du complexe de de Rham, Invent. Math., Volume 89 (1987) no. 2, pp. 247-270 | DOI | MR | Zbl
[6] Invariants of Fano varieties in families, Mosc. Math. J., Volume 18 (2018) no. 2, pp. 305-319 | DOI | MR | Zbl
[7] Families of rationally connected varieties, J. Am. Math. Soc., Volume 16 (2003) no. 1, pp. 57-67 | DOI | MR | Zbl
[8] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas., Publ. Math., Inst. Hautes Étud. Sci., Volume 20 (1964), pp. 101-355 ibid. 24 (1965), p. 5-231; ibid. 28 (1966), p. 5-255; ibid. 32 (1967), p. 5-361 | Numdam | MR | Zbl
[9] Hwang–Mok rigidity of cominuscule homogeneous varieties in positive characteristic, Ph. D. Thesis, State University of New York at Stony Brook (2013) | MR
[10] Weak approximation over function fields, Invent. Math., Volume 163 (2006) no. 1, pp. 171-190 | DOI | MR | Zbl
[11] Every rationally connected variety over the function field of a curve has a rational point, Am. J. Math., Volume 125 (2003) no. 3, pp. 567-580 | MR | Zbl
[12] Rational curves on algebraic varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 32, Springer, 1996, viii+320 pages | DOI | MR
[13] Rational and nearly rational varieties, Cambridge Studies in Advanced Mathematics, 92, Cambridge University Press, 2004, vi+235 pages | DOI | MR
[14] Bogomolov’s theorem , Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977) (1978), pp. 623-642 | MR
[15] The torsion of the group of -cycles modulo rational equivalence, Ann. Math., Volume 111 (1980) no. 3, pp. 553-569 | DOI | MR | Zbl
[16] Separable rational connectedness and weak approximation in positive characteristic (https://arxiv.org/abs/1907.07041)
[17] Weak approximation for Fano complete intersections in positive characteristic (https://arxiv.org/abs/1811.02466)
[18] Separable rational connectedness and stability, Rational points, rational curves, and entire holomorphic curves on projective varieties (Contemporary Mathematics), Volume 654, American Mathematical Society, 2015, pp. 155-159 | DOI | MR | Zbl
[19] Weak approximation for isotrivial families, J. Reine Angew. Math., Volume 752 (2019), pp. 1-23 | DOI | MR | Zbl
[20] Hypersurfaces that are not stably rational, J. Am. Math. Soc., Volume 29 (2016) no. 3, pp. 883-891 | DOI | MR | Zbl
[21] Zur Stufentheorie der Quasialgebraisch-Abgeschlossenheit kommutativer Körper, J. Chin. Math. Soc., Volume 1 (1936), pp. 81-92 | Zbl
[22] Abel-Jacobi map, integral Hodge classes and decomposition of the diagonal, J. Algebr. Geom., Volume 22 (2013) no. 1, pp. 141-174 | DOI | MR | Zbl
Cité par Sources :