Soit l’ensemble des points de module un de l’espace numérique réel de dimension quatre ; et soit l’espace des champs de vecteurs non singuliers définis sur avec la topologie . Quelles conditions sont suffisantes pour que deux éléments dans soient homotopes ? Il y a plusieurs exemples de champs de vecteurs non singuliers définis sur . Cependant ils sont tous homotopes aux champs de vecteurs tangents aux fibrés de H. Hopf (il y a deux telles classes).
Nous construirons des exemples nouveaux de champs qui admettent une classification géométrique. Ces exemples ont un nombre fini de courbes intégrales fermées. Nous obtenons une classe dénombrable de champs qui ont seulement une courbe intégrale fermée, et une classe dénombrable de champs qui ont exactement deux courbes intégrales fermées. Parmi celles-ci, il y a des exemples de toutes les classes d’homotopie.
Let denote the set of points with modulus one in euclidean 4-space ; and let denote the space of nonsingular vector fields on with the topology. Under what conditions are two elements from homotopic ? There are several examples of nonsingular vector fields on . However, they are all homotopic to the tangent fields of the fibrations of due to H. Hopf (there are two such classes).
We construct some new examples of vector fields which can be classified geometrically. Each of these examples has a finite number of closed integral curves. There is one denumerable class of examples which have exactly one closed integral curve and there is a denumerable class of examples which have exactly two closed integral curves. Among the latter, there are examples of all homotopy classes.
@article{AIF_1970__20_2_1_0, author = {Wilson, F. Wesley}, title = {Some examples of vector fields on the 3-sphere}, journal = {Annales de l'Institut Fourier}, pages = {1--20}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {20}, number = {2}, year = {1970}, doi = {10.5802/aif.349}, zbl = {0195.25403}, mrnumber = {44 #3340}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.349/} }
TY - JOUR AU - Wilson, F. Wesley TI - Some examples of vector fields on the 3-sphere JO - Annales de l'Institut Fourier PY - 1970 SP - 1 EP - 20 VL - 20 IS - 2 PB - Institut Fourier PP - Grenoble UR - https://aif.centre-mersenne.org/articles/10.5802/aif.349/ DO - 10.5802/aif.349 LA - en ID - AIF_1970__20_2_1_0 ER -
Wilson, F. Wesley. Some examples of vector fields on the 3-sphere. Annales de l'Institut Fourier, Tome 20 (1970) no. 2, pp. 1-20. doi : 10.5802/aif.349. https://aif.centre-mersenne.org/articles/10.5802/aif.349/
[1] Uber die abbildungen von sphären auf sphären neidrigerer dimension. Fund. Math., 25 (1935), 427-440. | JFM | Zbl
,[2] Qualitative Theory of Differential Equations. Princeton, 1963. | Zbl
and ,[3] Variétés Feuilletées. Actualités Sci. Ind., No. 1183 (Publ. Inst. Math. Univ. Strasbourg, 11) Hermann and Cie, Paris, 1952.
,[4] The Topology of Fiber Bundles. Princeton, 1951. | Zbl
,[5] Smoothing derivatives of functions and applications, Trans. A.M.S. 139 (1969), 413-428. | MR | Zbl
,[6] The structure of the level surfaces of a Lyapunov function, J. Diff. Eq. 3 (1967), 323-329. | MR | Zbl
,[7] Elliptic flows are trajectory equivalent, to appear, Am. J. Math. | Zbl
,Cité par Sources :