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SOME EXAMPLES OF VECTOR FIELDS
ON THE 3-SPHERE

by F. Wesley WILSON, Jr. *

1. Homotopy theory of vector fields on S3.

The n-sphere Sn will denote the set of points with unit
modulus in Euclidean (n + l)-space. A vector field on S"
is a cross section in the tangent bundle TS". Since changing
the lengths of these vectors does not alter the geometry of the
integral curves, only the speed with which they are transversed,
we will always consider a nonsingular vector field as a C1

cross section in the tangent (n — l)-sphere bundle TS".
We shall be investigating homotopy properties of nonsingular
vector fields on S3. Nonsingular homotopies of these vector
fields are just homotopies of cross sections in TS3. By diffe-
rential approximation techniques [4; page 25] it suffices to
consider homotopies in which the intermediate stages may
fail to be differentiable.

A parallelization of S3 is the choice of three pointwise
linearly independent vector fields on S3, indexed so that
they form a right handed 3-frame at each point. Since every
parallelization can be made orthonormal by a homotopy,
only orthonormal parallelizations will be considered. In this
case, homotopies between parallelizations can always be
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achieved by a rigid motion of the 3-frame at each point.
Since S3 is parallelizable, the set of homotopy classes of

nonsingular vector fields on S3 can be identified with ^(S2)
and the set of homotopy classes of parallelizations of S3

can be identified with TC3(SO(3)) where S0(3) denotes the
group of rotations of 3-space. We can describe these identifi-
cations explicitly: let II denote some fixed parallelization
of S3; then expressing any nonsingular vector field F in
terms of its II-coordinates yields a mapping (F : II) : S3 -> S2

(homotopies of F correspond to homotopies of the mapping);
if S is another similarly oriented parallelization of S3, then
at each point of S3, there is a unique element of S0(3)
which carries II onto S, and so we have a mapping
[S : II] : S3 -> (S0(3). (homotopies of 2 correspond to
homotopies of the mapping).

Let F be a nonsingular vector field on S3. We say that
a parallelization 2 is an extension of F if the first coordinate
direction of S coincides with F. The following is an easy
consequence of elementary obstruction theory.

PROPOSITION 1.1. — E^ery nonsingular sector field on S3

has an extension to a parallelization. Any two extensions of F
are homotopic through parallelizations which extend F.

COROLLARY 1.2. — The one-to-one correspondence between
homotopy classes of sector fields and homotopy classes of paralle-
lizations determines an isomorphism between ^(S2) and
n. ,(SO(3)).

The primary (and only) obstruction to a homotopy between
nonsingular vector fields F and G on S3 is the difference
element rf(F, G) e H^S3 : ^(S2)). This difference element
has the following geometric interpretation: let II be an
extension of F to a parallelization; then rf(F, G) is repre-
sented by { ( G : II)} eT^S2). Identifying ^(S2) with the
integers via the Hopf invariant, we can interpret the difference
element for a pair of vector fields as being the (integral)
distance between the vector fields. Relative to a fixed vector
field H, and parallelization II which extends H

d(F, G) = d{¥, H) + d(H, G) = d{F, H) - d{G, H)
= { ( F : n ) } - { ( G : n)}
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(this distance does not depend on the choice of the reference
field H). We shall investigate in what sense there is a natural
choice for the reference field H.

2. Some classical examples.

Considering S3 as the Lie group of unit quaternions, we
have the right and left invariant vector fields. Since we are
interested in the homotopy class, it does not matter which
direction we pick at the identity. We also have the right and
left invariant parallelizations as extensions of these respective
fields. If R is the right invariant parallelization which is
given by [i; / ; k]. at the identity, then at any point qe S3,
Rg = [^?; /?; kq], Similarly, the left invariant parallelization
is described by Lq = [qi'y q j ' y qk].

We have seen that relative to a fixed parallelization II,
the parallelizations are in one-to-one correspondence with
the elements of 7T;3(SO(3)). This correspondence can be des-
cribed by g - > I I . g for g€=7T:3(SO(3)). In particular, if g
is a generator, then Il{n) = Tl.ng yields a complete set of
homotopy representatives of parallelizations. In [4; page 115],
an extremely useful generator for 7T3(SO(3)) is described.
Briefly, let S2 denote the set of unit pure quaternions. For
± yeS 3 , a rotation of S2 is given by g{q)[x) =qxq~1.
The mapping g : S3 -> S0(3) thus defined is a 2-fold covering
of S0(3) which generates 7i:3(SO(3)). Applying g to Rq
yields L^, showing that R and L lie in adjacent homotopy
classes and this is also the case for the right and left invariant
vector fields. These fields are excellent choices for the reference
field. There is no clear advantage in choosing either one over
the other in general. In fact each has its advantages in parti-
cular situations, as we shall see.

H. Hopf [1] has described a method for differentiably
fibering S3 by S1 so that the base space is S2. There is
such a fibering for each pair of relatively prime integers
(m, n) with m =^ 0, n > 0. In the case m = ± 1, n = 1
the structure is that of a principal fiber bundle. The fields
of tangent vectors to the fibers will be denoted by
H+(/n ==-)-!) and H_(m = — 1). In the other cases, these
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fiberings do not have the structure of fiber bundles, but are
singular fiberings.

In order to describe these fiberings explicity, we shall need
to choose coordinates for S2 and S3 :

S2 can be parameterized by (r, 6) with — 1 < r ^ 1
and 0 ^ 6 < 2n by means of the formulas

x^ == \/i — r2 cos 6 x^ = \/i — r2 sin 6, x^ = r

S8 can be parameterized by (r, [A, v) with 0 ^ r ^ 1
and 0 ^ |A, v < 2n by means of the formulas

x^ = r cos (A, x^ = r sin (JL,
Xn = \/1 — r2 cos v, ^4 === \/1 — r2 sin v,

In S3, the sets T^ which are obtained by holding r constant
are circles for r = 0, 1 and for 0 < r < 1, T, is a torus
which separates To and T\, and which has To and Ti
as its axes of symmetry.

We can now describe the (m, n)^ Hopf fibering by defining
the fiber projection p^: S3 -> S2:

Pm,n(^ (A, v) = (1 — 2r, — mix + w).

The Hopf invariant of p^ is mn. For 0 < r < 1 and
m, n relatively prime, p^(l — 2r, 6) is a circle on T, which
wraps m times in the To direction and n times in the Ti
direction. In particular, the tangent vector field is tangent
to T^ and is positively directed along ^^{n > 0) and is
either positively or negatively directed along To depending
on whether m > 0 or m < 0. Computing H,. and HL explici-
tly and using the identification (a, 6, c, d) -> a + bi + cj + dk.
we find.

PROPOSITION 2.1. — H+ coincides with the left invariant
vector field and H_ coincides with the right invariant vector
field. Consequently, H+ and H_ lie in adjacent homotopy
classes.

Another interesting vector field on S3 is the normal field
to the Reeb foliation [3]. This field has the properties that it
is tangent to To and Ti, and transverse to T^ for 0 < r < 1.
Since these vector fields can be extended to parallelizations,
their directions can be reversed by a homotopy, and so we
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are free to always choose the field to be directed positively
on To. Depending on the foliation it may then be either
positive (R+) or negative (R-) on T\.

PROPOSITION 2.2. — R+ is homotopic to H+ and R_ is
homotopic to H_.

This proposition is immediate from.

LEMMA 2.3. — If ¥ and G are vector fields on a paralle-
lizable manifold M" which are never negatives of one another^
then F and G are homotopic.

Proof. — With respect to any parallelization II (F : II)
and (G: II) are mappings of M" into S""1 which never
have (F : II) (x) and (G: II) (x) antipodal for any ^eM".
Therefore (F: 11) and (G: II) are homotopic.

COROLLARY 2.4. — The (m, n)^ Hopf fibering is homotopic
to H+ if m > 0 and to H_ if m < 0.

Proof. — Assume n > 0. For m > 0 compare with R+;
for m < 0 compare with R_.

3. Isolated periodic solutions.

Let F be a C1 vector field on an n-manifold M" and let
Y denote a nontrivial, isolated periodic solution of F. Then
there is a tubular neighborhood B of y which intersects
no periodic solution of F other than y. We shall assume
that Y is parameterized by t{0 ^ t < 1) and we denote
the normal fiber to y at time ( by B(.

For each fixed <, there is a diffeomorphism P of a neigh-
borhood of y(^) mto B( called the Poincare mapping. This
mapping is defined by P{x) is the first point where the posi-
tive trajectory from x intersects B(. It follows from the
uniqueness and the differentiability of the trajectories of F
with respect to their initial conditions that P is well defined,
one-to-one, and differentiable. Since an inverse for P can
be defined near y(^) ^d the inverse is also differentiable,
it follows that P is a diffeomorphism.

Consider B as a vector bundle with y corresponding to
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the zero cross section. Then we have a vector field F} defined
on B, by F}{x) is the vector x — P(x). The aggragation
of these vector fields is a C1 vector field F1 on B, which
has Y for its singular set. Similarly for each nonzero integer
k we have defined the /0th iterate Pk of P and the induced
vector field Fk defined on some neighborhood of y and
having y for its singular set. Thus we have the /0th index
of Y defined for each nonzero integer /c. The k^ index is
just the index of F^ at the origin in B, (it does not matter
which t we use). We shall use the notation ^(y, F) to denote
the k^ index of the periodic solution y of F. We can
obtain other information about F near y from the vector
fields F\ but first we need some additional topological
machinery.

Let C denote a regular simple closed curve in S3 and
consider the set of embeddings /•:[(), 1) x S1 -> S3 such that
f{0 x S1) = C. The images Im{f) of these embeddings are
called half-line bundles on C. Two half-line bundles lm(f)
and lm(g) are called equivalent if f and g are isotopic
rel (0 X S1). A necessary and sufficient condition for equi-

valence is that f [ 1 X S1} and g f 1 X s1^) have the same
y \ z )

linking with C. Given an equivalence class A of half-line
bundles, we define the rotation number r(A) to be the linking
number of M y X S1 \ and C for any representative / 'eA.

Now consider the set of immersions f[0, 1) x S1 -> S3

such that /'[(0, 1) x S1 is an embedding and f\0 x S1 : S1 -> C
has degree q for some positive integer q. Then for each
^e (0, 1), the set As = \m{f\ [s, 1) X S1) is a half-line bundle
in the above sense and r(Ag) == p for some integer p, which
does not depend on the choice of 5. Note that if T2 is the
boundary of a small tubular neighborhood of C chosen so
that T2 n Im{f) is a simple curve, than this curve has type
(p, q) in T2. Hence p and q are relatively prime. We shall
call the images of these immersions half-line bundles also,
and we define the rotation of an equivalence class A of such
bundles to be r(A) == pfq. The /^-images of nonzero sections
over 0 X S1 will be called sections in Im(/'). Every section
in Im(f) is a q-fold covering of C which links C p times.
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Now let C be a nonzero regular section in B. The vector
fields F^ define half-line bundles over C which we denote
by F^C. It is clear that F^C is altered isotopically when
C is altered homotopically through nonzero sections in B.
We define the torsion of ¥k along y? denoted by ^(y; F)
to be the integer ^(F^C) where C is a section in B which
does not link y.

We shall now give some examples of vector fields on the
open solid torus which illustrate some properties of the index
and the torsion. We assume that the reader is familiar with
[2; pages 1-75]. Describe the solid torus by coordinates
(r, 6, cp) where 0 ^ r < oo, 0 ^ 6, <p < 27r and cp parame-
terizes the axis r = 0. Let By denote the disk obtained
by setting cp equal to a constant. Let n be any integer and
choose a differential equation on Bo

r=R(r ,6) ; 6 == ©(r, 6)

such that R(0, 6) =0, such that this is the only singularity,
and such that the index of this singularity is n. Then on the
solid torus, the differential equation

F
r = R(r, 6)
6 = 0(r, 6)
y = l

has Y == {(r, 6, <p) | r = 0} for an isolated periodic solution.
In this case, ^(y; F) = n for every k > 0 and ^(y ; F^) == 0
for every k > 0. We call the equation on Bo the generating
equation for F. Suppose that the generating equation has
been chosen so that there are finitely many elliptic domains,
so that the attracted (repelled) trajectories are isolated, and
so that the system is symmetric with respect to rotations
of angle 2nlq where q is some positive integer, i.e.

R ^ e + ^ ^ R ^ o )
©(r,6+^=©(r,6)

Let E(H) denote the (finite) number of elliptic domains
(hyperbolic domains, respectively). It follows from the sym-
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metry condition that q divides E and H. Therefore since
1the index of y(0) is given by the formula 1 + -^ (E — H),
JL

it follows that the index is of the form 1 -{- nq. A trajectory
of the vector field F can be classified as elliptic, hyperbolic,
attracted, or repelled depending on which kind of trajectory
on Bo generated it. The union of the attracted (repelled)
trajectories is an invariant 2-manifold which has a finite
number of components. Each component has the property
that its union with y i8 a half-line bundle. The union of
the elliptic (hyperbolic) trajectories is an open subset with
E(H) components, each of which is an open solid torus. These
components are called elliptic (hyperbolic) domains. We now
construct another vector field G on the solid torus by cutting
the torus at Bo == B^ and identifying Bo to B^ by

^e^^e+^o)

where p is some nonzero integer which is relatively prime
to q. G is field of tangent vectors to the images of the trajec-
tories of F under this operation. It is clear that G is as
smooth as F. The invariant manifolds of G form half-line
bundles over y which have rotation number r(y; G) == pfq.
Also, there are e elliptic domains and h hyperbolic domains
for G where E = eq and H = hq. The restrictions G§
of G* to Bo either have y(0) a node if k + mq or similar
to the original field if k = mq. Therefore,

• / p.\ (1 if k + mq
l t ( Y ; G ) = = ;!+»<? " k=mq.

From this we also see immediately that ^(y; G) = 0 if
k -^ mq, and ^(y; G) is the same tor all m > 0. We shall
now compute ^(y; G).

LEMMA 3.1. — Let C denote any nonzero cross-section of
the solid torus and let G^C denote the half-line bundle over
C which is induced by G9. Then

r ( G ^ C ) = ^ ( T ; G ) + X ( C , Y ) ^ ( Y : G )

where X(C, y) denotes the linking number of C and y-
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Proof. — Let Co denote a section which does not link y
and let Ci denote a curve in Bo which links y once. Then
^(y : G) === ^(G^ICo). Now homotopies of C through nonzero
cross-sections induce equivalences of the bundle G^|C; so
we can assume that C is a section which lies very close to
Co u Ci (C is homologous to Co + ^(C, Y)Ci). A circuit of a
loop close to Ci rotates G^jC by i^(y; G), and so the formula
is established.

COROLLARY 3.2. — If C is a locale nonzero section which has
homology type (//, q'), then r(G^|C) == q't^-r : G) + p\(y : G).

COROLLARY 3.3. — ^(y : G) == r(y : G)[l — i^(y : G)].

Proof. — Let C be a local section which lies in an attracted
manifold. Then C has homology type (p, q) and r(G^|C) == p.
By 3.2.

P ̂  g^(T '- G) + pi^ : G).

Remark. — With the simple geometry that we have assumed,
we can compute the numbers ^(y; G) and ^(y; G) directly
the values e, h, p, q. The values are

1 if k =^ mq
^(T; G) = l + ? (^ _ /,) if k=mq

JL

S l if k + mq

^ ( Y ; G ) = = _ P ^ _ h ) if k=mq.
2i

DEFINITION. — Let F be any sector field on S3 and lei y
be a periodic solution of F. y has simple type if there is a
neighborhood of y on which F has the same form as one of
the vector fields G [above) near its periodic solution. The attrac-
ted and repelled manifolds of y are called the invariant
manifolds.

4. Geometrically simple vector fields.

We shall now investigate a special class of vector fields
on an orientable 3-manifold M3 whose trajectories have a
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sufficiently simple geometric structure that we can make
some rather strong statements about their global qualitative
structure. A vector field is called geometrically simple if its
trajectories satisfy the following properties :

1. There is a finite number of periodic solutions.

2. Each periodic solution has simple type.

3. Each trajectory has its a- and co-limit sets contained
in the set of periodic solutions.

4. If a trajectory does not intersect an invariant manifoldy
then its a- and co-limits are at the same periodic solution y
and the trajectory approaches y in an elliptic domain.

5. The invariant manifolds, have degenerate intersection^
i.e. they either coincide or else they are disjoint.

PROPOSITION 4.1. — The closure of an invariant manifold
of a geometrically simple vector field is the image of an immersion
f: S1 X [0, 1] -^ M3 which is one-to-one on S1 X (0, 1).

Proof. — Let N denote the closure of an invariant mani-
fold N. By the degenerate intersection property and the
fact that every trajectory must have its a- and co-limits
at some periodic solution, it follows that there are periodic
solutions Ya? Tco such that every trajectory in N has its
a-limit at Ya ^d its co-limit at y^ (it is not necessary

F l ~1that Ya and Y(O be distinct). Let /i : S1 X 0, — —— M3

o J
be an immersion into N which describes the half-line bundle

( 1 ) .over Ya ^d such that /i[S1 X ]~.r[ is transverse to F[N,

[ 2 "1 ^ / .and let f^: S1 X -.p 1 j be a similar embedding at Yco

(^i and /3 can be obtained via Lyapunov theory, for example
[5], [6]). Every trajectory which starts at a point

^Ni =f^S1 xi-I-h reaches N^ = f^S1 X i 2 ^ in
\ ( ° V \ ( ° )/

finite time t{x) and it follows by the implicit function theorem
and the differentiability of trajectories with respect to their
initial conditions that t: N1 -> R is as smooth as the vector
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field. Define ^: S1 X N-, 2-\ -> N by

x = A fe, -^V /2(e, ^) - ̂  (x, It - 1} 3t{x)\
\ 0 / \ \ ° / /

where ^ : M3 X R ->• M3 is the flow induced by the vector
field. The mapping /i u /g u /g is the desired immersion except

( 1 )possibly for the lack of smoothness at S1 X ]~rr[ and
( 2 ) . . v / .S1 X )~Q-^ ' Smoothing techniques for Lyapunov functions
( )

[5] can be used to remedy this problem.

PROPOSITION 4.2. — If V is an elliptic domain of a periodic
solution of F, then the saturation V = {p\(?(p, t) e V for some
( e R } of V is open. If Vi and Vg are distinct ellip-
tic domains, the Vi and Vg are disjoint.

Proof. — V is open since V is open. By the structure
near a periodic solution, Vi and Vg can be chosen so that
whenever a trajectory enters V^- positively (negatively) it
stays in V, for all future positive (negative) time. But with
such choices, Vi and Vg must be disjoint.

PROPOSITION 4.3. — Let ¥ be a geometrically simple sector
field and let ^ be a periodic solution of F. Then every hyper-
bolic domain of y, which intersects no invariant manifolds^
corresponds to an elliptic domain of some periodic solution.

Proof. — Let U denote a hyperbolic domain of y, let
p e U, and let Ya? Yco denote the respective a- and co-limit
sets of p. Since p does not lie on an invariant manifold,
Ya= TO)- Let V denote the elliptic domain of Ya which
corresponds to the trajectory through p . Since U is open
and connected and since U intersects no invariant manifolds,
it follows that U is contained in the saturation of V.

PROPOSITION 4.4 — The saturation of an elliptic domain
is homeomorphic to an open solid torus.

Proof. — Let V denote an elliptic domain of a periodic
solution Y- K we can construct a cross section to the induced
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flow on V which is contained in V, then the cross section
will have the form S1 X R. We can then obtain a homeo-
morphism h: S1 X R2 -> V by

h{Q, ^ t) == ^(g(6, s), t)

where g : S1 X R -^ V describes the cross-section and
^(p, () describes the induced flow. Thus it remains to construct
a cross-section to the flow on V. Let us suppose r(y; F) == pfq.
Then there is a neighborhood U of y such that F|U coin-
cides with one of the examples from § 3. Let (U7, y7) be the
y-fold covering space of (U, y) ^d ^t F' denote the induced
vector field, V7 a related elliptic domain. Then it suffices
to construct a cross-section to the flow induced on V7 by
¥ ' . But F/ can be described in coordinates by

r - R ( r , 6 ) ; 9= .0 ( r ,6 ) ; <p = 1.

Thus it suffices to find a cross-section to the generating equa-
tion on the elliptic domain V1 === V1 n Bg. But for this, we
can take any trajectory of a transverse vector field. There
is no difficulty in choosing the transverse vector field so that
the section is contained in V ([cf. [7]).

THEOREM 4.5 (STRUCTURE THEOREM). — Let ¥ be a
geometrically simple vector field on M3. Then F has a finite
set of periodic solutions YI? • • • ? T/c and a finite set of invariant
manifolds N1, . . . , N^. Each invariant manifold N^ is
diffeomorphic to S1 X (0, 1) and contains two periodic solutions
in its closure (not necessarily distinct) one attracting the trajec-
tories of N(, the other repelling them. The union of N; and
either of these periodic solutions forms a half-line bundle. The

( k \ / I \

complement of the set S === L J Ty ) ( LJ ̂  ) is t^ie umon °f
./=! / \ J^l /

disjoint open tori^ and each such torus is the saturation of an
elliptic domain of some periodic solution.

Proof. — The properties of the N, follow from 4.1. Let U
be a component of M3 — S. Then any p <= U lies in the
saturation of some elliptic domain (cf. 4.3) and by 4.2 U is
an elliptic domain. It follows from 4.4 that U is homeo-
morphic to an open solid torus. Finiteness follows since there
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are only finitely many periodic solutions and each of these
has only finitely many elliptic domains.

PROPOSITION 4.6. — Suppose that ¥ is a geometrically
simple vector field having periodic solutions Yo ancl/ Ti which
bound an invariant manifold N. Suppose that r(yo$ F) == pjq
and r(Yi; F) == p ' f q ' (y, q1 > 0, p or p ' may be zero). Then

=JL^JLMTO; Ti)
^ 9

r ( Y o ; F ) . r ( Y x ; F ) - X ( y o ; T ^ .

If F has no other periodic solutions, then

^(•Yo; F) = X(vo; Yi)^.(Yi; F) — X(vo; Yi)
^(Yi; F) = X(yo; Ti)^(Yi; F) — X(vo$ Ti)-

Proof. — Let y denote a section in the half-line bundle
N u Yo- Then X(y ; y^) == p and y covers YO ? times.
Similarly, X(y; y^) =^= ^/ and y covers YI 9' times. Trans-
lating Y by the flow to get it close to YO or Yi as ls desired,
we conclude

^(Yo; Yi) ==^(T; Ti) = P'
9^(To; Ti) ^MT; To) ̂  P-

If F has no other periodic solutions, then the roles of e
and h are interchanged for yo ^d Yr Thus, using the
formulas from § 3, we have

^(Yi;F)=l+-^-(A-^)

and

(,(Yo; F) = -^(e - h) =-^.^-[^(Y, F) - 1]

= ^(To; Ti)^'(Yi; F) — X(vo; Yi).

5. Some examples
of geometrically simple vector fields on S3.

In this section, we shall show that there are geometrically
simple vector fields on S3 and we shall determine the pro-
perties of those vector fields which have only two periodic
solutions. Preparatory for this goal, we must study the geo-
metric properties of the closure of an invariant manifold.
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LEMMA 5.1. — Let F be a vector field on S3 which has just
two periodic solutions YO an<^ Ti- Suppose that YO is asympto-
tically stable with domain of attraction S3 — YI and that yi
is asymptotically stable in the negative sense with domain of
(negative) attraction S 3 — Y O * Then YO anc^ Yi are unknotted
and X(vo, Yi) = ± 1.

Proof. — Let M denote an unknotted circle which lies
in a tubular neighborhood of YI and such that X(M, yi) = 1-
Let M( denote the translate of M by the flow for time t,
Then X(M(, yi) = 1 ^or an ^ ^d tor sufficiently large t ' ,
Mf lies in a tubular neighborhood U of YO- Let n : U ->- yo
denote the projection of the tubular neighborhood U, and
let q denote the degree of 7c|M^. Then

1 = \(M,, Yi) = gX(Yo, Ti)

from which it follows that q = ̂ (yo? Ti) = ± 1- Now if yo
were knotted, then M^ would be knotted. But this cannot
be since M is unknotted. Thus YO ls unknotted. By symme-
try, YI ls Bl80 unknotted.

THEOREM 5.2. — Let F denote a geometrically simple vector
field on S3 which has just two periodic solutions YO and Yi*
Then YO am^ Ti ar^ unknotted and ^(YO) Yi) == ± 1-

Proof. — There is no loss of generality in assuming that
every elliptic domain of YO corresponds to a hyperbolic
domain of yi? ^d conversely, since if W is the closure of
an elliptic domain of YO which does not contain yi? then
S3 — W is diffeomorphic to S3 — yo? ^d the resulting
diffeomorphism induces a geometrically simple vector field
on S3 with essentially the same structure except for the
omission of W. We shall build a new vector field G on
S3 which has YO? Yi t01* it8 ^ly minimal sets and which
has the elliptic domains and invariant manifolds as invariant
sets, but such that the hypotheses of 5.1 are satisfied. This is
sufficient to prove the theorem. Since every invariant mani-
fold of F has YO ^d Ti m ^t8 closure, we define G on
the invariant manifolds so that every trajectory runs from
Ti to To- Since every elliptic domain of F is a solid torus
which contains YO? Yi ^d two invariant manifolds in its
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boundary, we can extend G to each elliptic domain of F
so that every trajectory runs from yi to YO there also.

THEOREM 5.3. — If ¥ is a geometrically simple vector
fields on S3 which has just two periodic solutions^ yo? Yi? then

r{^V}=-p-^Q

r(yi; F) = ± q- + 0.

Proof. — There is no loss of generality in assuming YO = To
and Yi == TI. Let N denote the closure of an invariant
manifold which contains YO ^d Yi? ^d ^t C denote a
section in N. Then C covers YO ? ^ ^ times and X(C, Yo) = P '

By the relationship of To and Ti, it follows that
^(C, Yi) = 9 ^d C covers YolpI times, i.e. \p\ -^ 0. The
theorem follows.

Examples which have two periodic solutions, — We will now
describe some examples of geometrically simple vector fields
on S3 which have just two periodic solutions. As a conse-
quence of 4.2, 4.5, 5.2 and 5.3, it follows that these every
such vector field corresponds to one of these examples.

Take YO = To and YI === Ti. We choose integers p + 0,
q > 0, e > 0, h > 0 such that (p, q) = 1 and e + h = 0
mod 2. Consider the arcs

A ^ / Q \in A f\ 2TT/c 2nk )Afc = ] r, 6, (p 0 ^ r ^ 1, 6 = , (p =
( ^ + h) p{e + h)}

for /c == 1, 2, . . ., e + A. There is one point x^ in A.^ n Ty.
for each r, 0 < r < 1. Let Cjf denote the cannonical curve
of type (p, q) in T^. which passes through x^. Then

N, = U ̂ 'k
^r

0<r<l

is a submanifold of S3 whose closure can be considered as a

half-line bundle with rotation -f— at To or with rotation
e+h q

"- at Ti. S = S3 — [ j N/, has (e + h) components,
P k~i



16 WESLEY WILSON JR

each of which is an open solid torus. By means of immersions
of S1 X [0, 1] -^ Nfc and diffeomorphisms of S1 X R2 -> S
we can define a C1 vector field F on S3 which has YO :==: To,
y^ = TI periodic solutions of simple type, which has e
elliptic domains at YO? which has h elliptic domains at
Yi, and which has each N^ as an invariant manifold. (It
is also clear how to put in some elliptic domains at YO which
do not reach to YI 1^ we so desire). For simplicity, when we
refer to these examples, we shall intend for the vector field
on Yo to be directed with increasing 9. The vector field
may be directed in either direction on YI- We say
X(vo, Yi) == + 1 it F ls directed with increasing 6 on Yr

THEOREM 5.4. — Let p + 0, q > 0, e ^ 0, h ̂  0 be the
parameters used to construct a geometrically simple sector field
F which has two periodic solutions. Then

i) r(To; F)-^--
ii) ^(Yo, F) = 1 + -^ (. - A).

iii) ^(To; F^-ljl^-A).

iv) r(Yi; F)-X(vo, Yi) q--

v) ̂ ; F)=l~-ljl(^-A).

vi) ̂ ; F)=-^(.-A).

Proof. — The assertions regarding yo are restatements
of results obtained in § 3. The assertions regarding YI follow
similarly after we recall that for yi? the roles of e and h
and the roles of p and ^ are interchanged, and r(yi; F)
is computed by looking in the direction of F along YI-

Examples which have one periodic solution. We shall now
describe a countably infinite set of distinct examples of geo-
metrically simple vector fields on S3 which have just one
periodic solution. Let F be a geometrically simple vector
field with just two periodic solutions, and let p, ^, e, h be the
parameters describing F. Observe that if p and X(yo? Ti)
have the same sign, then F could be altered homotopically,
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preserving each invariant manifold and elliptic domain, so
that on some invariant manifold N, F is made to coincide
with the field of tangents to the (p, q)^ Hopf fibering (if
P-MYO? Ti) < 0, then this structure would force a disconti-
nuity at Yi)* Suppose that F has been so altered. Note
that there is a diffeomorphism h: S3 — N -> S3 — To. Define
a vector field G on S3 by

G|To = F|To
G|(S'-To)=A,(F|S^-N).

Then G is geometrically simple and YO ls the only periodic
solution of G. Also, since some invariant manifolds of F
remain as invariant manifolds of G near YO? lt follows
that r(Yo$ G) == p\q. Thus we obtain a different example of
a geometrically simple vector field with just one periodic
solution for each relatively prime pair (p, q).

6. Homotopy classification.

Let F denote a geometrically simple vector field on S3

which has just two periodic solutions YO? Ti? 8Ln(^ ^t p? ^5 e^ h
be the parameters describing F.

THEOREM 6.1. — If P^(YO) Ti) > O? ^en F ^ H+ if
p > 0, and F ^ HL if p < 0.

COROLLARY 6.2. — The examples which we have gi^en of
geometrically simple sector fields with just one periodic solution
are homotopic to H+ or H- according to whether p > 0 or
p < 0.

Proof of theorem. — Let {NJ^ denote the invariant mani-
folds of F and let {DJ^ denote the elliptic domains. By
the construction used in the proof of 4.4, there is a cross-
section M, to the flow in D, and we can arrange it so that
M( contains YO ^d Yi m ^s closure and forms a halt-line
bundle over yo ^d Ti? J^ as the N, do. Let M,^ denote
the translate of M^ by the flow for time t (— oo < t < oo).
Then M,^ is also a half-line bundle over YO ^d Yi an(^

2
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I_j M^ == D,. Since F is transversal to M,. for each i
-00<«00 ^

and (, there is a homotopy of F relative to \_JN^ which
1=1

produces a vector field F' which is tangent to every M,(.

LEMMA 6.3. — Let {Ma} be a family of embedded open
cylinders which fill S3 — To u Ti, and such that for each a

Ma = Ma u To u Ti

is a half-line bundle with rotation pfq over To and a half-line
bundle with rotation qfp over Ti. Then there is an isotopy
of S3 relative to To u Ti which carries {M^} onto {N9^}
where N^<p is the half-line bundle over To and T^

N9.9 = U C,1.9 — y^ ^r
Q<r<l

where Cp is the cannonical curve of type (p, q) in T^ which
passes through the point (r, 6, <p).

Continuing the proof of 6.1, we alter F' by the isotopy
of the flow described in 6.3. By a further homotopy on each
,NO^, we obtain the (p, q)^ Hopf field. The theorem now
follows from 2.4.

THEOREM 6.4. — If pX(vo, Yi) < 0, then
rf(F, H_) = - ^(yo; F)^(Yi; F) if X(yo, Yi) > 0.
d{F, H_) == ^(yo$ F)^(Yi; F) if X(Yo, Yi) < 0.

Proof. — We shall choose a parallelization II which extends
the (p, q)^ Hopf fibering and compute the difference element
by geometrically determining the Hopf invariant of the map-
ping of S3 into S2 induced by F and II.

By 6.3 and the construction used in the previous proof,
we can assume that F is transverse to {N9 y} on the
interior of each elliptic domain and that N, == NQ^. ̂  for
i= l , . . ., e + h. Let II denote a parallelization which
extends the (p, q)^ Hopf fibering H. By 1.1, it does not
matter which one we choose. On each N,, the trajectories
go either from YO to Yi o11 from yi to To- I11 either case,
there is no loss of generality in assuming that they are never
tangent to the first coordinate of II. Then, since F is trans-
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verse to NQ^ on the interior of each elliptic domain, it fol-
lows that the only places that F coincides with the first
coordinate direction H of II is on YO and Yr On yo? F
is positively directed and on Yi, F is negatively directed. We
can then alter 11 by a homotopy relative to H so that
expressed in 11-coordinates, the first coordinate of F|Tp has
value 1 — 2r. Thus to compute d(¥, H), it suffices to con-
sider the induced mapping f: Ty. —> S1. Since F is geome-
trically simple, sufficiently close to yo? F and F^ are homo-
topic. Since we have chosen II to fix the magnitude of the
first coordinate of F in 11-coordinates, we can use either F
or F^ to determine the other two H-coordinates of F|Tr.

LEMMA 6.5. — Let A denote the half-line bundle over To
induced by the second coordinate direction of the right invariant
(left invariant) parallelization of S3. Then

r(A) == — 1 right invariant
r(A) = -\- 1 left invariant.

Proof. — By 2.1, H+ and the left invariant vector field
coincide, i.e. H+ is the (l,l)-Hopt vector field and its trajec-
tories are the left-cosets the Lie-action of S1 on S3. Since
these cosets carry the left invariant parallelization, r(A) == 4- 1
in the left invariant case. The other case is similarly verified.

COROLLARY 6.6. — r(II|Yo) = — ^(Yo? Yi)*
Proof. — Since II is homotopic to one of the invariant

parallelizations (depending on the sign of p) we can apply
6.5.

Returning to the proof of 6.4, we let Ce(Cy) denote a curve
in T^ obtained by holding 9 constant (6 constant, respec-
tively). By the definition of torsion, ^g(Yo5 F^) = r(F|Cy).
Since r(II[C<p) = — ^ ( Y O ) Yi)? we conclude that /'|Cy has
degree <g(Yo; F) + MTO? Yi)- By definition, f\C^ has degree
^(Yo; F). Since these values do not depend on r, it follows
that the Hopf invariant of f is

- ^ ( Y o ; F ) ^ ( Y o ; F ) + ^ ( Y o , Y i ) ] .

(cf. the description of the Hopf fiberings in § 2). By 4.7,

<,(Yo; F) = X(vo; Yi)^p(Yi; F) - X(vo$ Yi).
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Thus the Hopf invariant of f is

-^(Yo; Yi)^(To; F)^(Yi; F).

THEOREM 6.7. — There is a geometric sector field with two
periodic solutions representing every homotopy class of vector
field on S3.

Proof. — We apply 6.4. To obtain the positive classes
(above H+), take X(yo, Ti) ^ + I? P < O? q > 0 and
e——h == /c. When g == k == 1, then

i , (To ;F)=2 ; i^;F)-l+p.

Then ^(F; H_) == - 2(1 + p) > 0 and for p = — 2, — 3, ...
every odd class above H+ is represented. Taking p == — 1,
k == 2, we find

i , ( Y o ; F ) = = l + 2 < ? ; ^;F)--1

and rf(F; H-) = 1 + 2<y and for y === 1, 2, . . ., every even
class above H+ is represented. The negative classes (below
HL) are found by taking X(yo$ Ti) === — 1-
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