Une question centrale dans la théorie de la déformations -adique des formes automorphes est la suivante : quelle est la relation entre une -fonction -adic sur une variété propre et la géométrie de cette variété propre ? Dans l’article nous montrons certains résultats dans cet esprit pour la partie ordinaire de la courbe propre (i.e., les familles d’Hida). Plus précisément, nous montrons que l’intersection de deux familles d’Hida est déterminée par le comportement local des -fonctions -adic des familles. Nous prouvons aussi que le comportement local des -fonctions -adique nous dit quand une famille d’Hida est ramifiée sur l’espace de poids. La technique principale consiste à prouver une réciproque d’un théorème de Vatsal et puis à interpoler -adiquement certaines congruences.
A major theme in the theory of -adic deformations of automorphic forms is how -adic -functions over eigenvarieties relate to the geometry of these eigenvarieties. In this article we prove results in this vein for the ordinary part of the eigencurve (i.e. Hida families). We show that the crossing of two Hida families is determined by the local behavior of -adic -functions on those Hida families. In addition, we prove that the local behavior of -adic -functions determines when a Hida family ramifies over the weight space. Our methods involve proving a converse to a result of Vatsal relating congruences between eigenforms to their algebraic special -values and then -adically interpolating congruences.
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3467
Keywords: $p$-adic $L$-functions, Hida theory, $\Lambda $-adic modular forms
Mot clés : $L$-fonction $p$-adique, Théorie d’Hida
Kramer-Miller, Joe 1
@article{AIF_2022__72_2_727_0, author = {Kramer-Miller, Joe}, title = {$p$-adic $L$-functions and the geometry of {Hida} families}, journal = {Annales de l'Institut Fourier}, pages = {727--770}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {2}, year = {2022}, doi = {10.5802/aif.3467}, zbl = {07554668}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3467/} }
TY - JOUR AU - Kramer-Miller, Joe TI - $p$-adic $L$-functions and the geometry of Hida families JO - Annales de l'Institut Fourier PY - 2022 SP - 727 EP - 770 VL - 72 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3467/ DO - 10.5802/aif.3467 LA - en ID - AIF_2022__72_2_727_0 ER -
%0 Journal Article %A Kramer-Miller, Joe %T $p$-adic $L$-functions and the geometry of Hida families %J Annales de l'Institut Fourier %D 2022 %P 727-770 %V 72 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3467/ %R 10.5802/aif.3467 %G en %F AIF_2022__72_2_727_0
Kramer-Miller, Joe. $p$-adic $L$-functions and the geometry of Hida families. Annales de l'Institut Fourier, Tome 72 (2022) no. 2, pp. 727-770. doi : 10.5802/aif.3467. https://aif.centre-mersenne.org/articles/10.5802/aif.3467/
[1] Modular forms in characteristic and special values of their -functions, Duke Math. J., Volume 53 (1986) no. 3, pp. 849-868 | DOI | MR | Zbl
[2] Eigenvarieties, families of Galois representations, p-adic L-functions, 2011 (http://people.brandeis.edu/~jbellaic/preprint/coursebook.pdf) | Zbl
[3] On the eigencurve at classical weight points, Duke Math. J., Volume 165 (2016) no. 2, pp. 245-266 | MR | Zbl
[4] Ramification of the eigencurve at classical RM points (2015) (https://arxiv.org/abs/1509.07819)
[5] Lectures on Formal and Rigid Geometry, Lecture Notes in Mathematics, 2105, Springer, 2014
[6] Deformations of induced Galois representations, J. Reine Angew. Math., Volume 556 (2003), pp. 79-98 | MR | Zbl
[7] The Eigencurve, Galois Representations in Arithmetic Algebraic Geometry (London Mathematical Society Lecture Note Series), Volume 254, Cambridge University Press, 1998, pp. 1-114 (Cambridge Books Online) | DOI | MR | Zbl
[8] Automorphic symbols, -adic -functions and ordinary cohomology of Hilbert modular varieties, Am. J. Math., Volume 135 (2013) no. 4, pp. 1117-1155 | DOI | MR | Zbl
[9] On the interpolation of systems of eigenvalues attached to automorphic Hecke eigenforms, Invent. Math., Volume 164 (2006) no. 1, pp. 1-84 | DOI | MR | Zbl
[10] Variation of Iwasawa invariants in Hida families, Invent. Math., Volume 163 (2006) no. 3, pp. 523-580 | DOI | MR | Zbl
[11] Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998 | DOI
[12] An introduction to congruences between modular forms, Current trends in number theory, Hindustan Book Agency, 2002, pp. 39-58 | DOI | Zbl
[13] -adic -functions and -adic periods of modular forms, Invent. Math., Volume 111 (1993) no. 2, pp. 407-447 | DOI | MR | Zbl
[14] On the de Rham cohomology of algebraic varieties, Publ. Math., Inst. Hautes Étud. Sci., Volume 29 (1966) no. 1, pp. 95-103 | DOI | Numdam | Zbl
[15] Congruences of cusp forms and special values of their zeta functions, Invent. Math., Volume 63 (1981) no. 2, pp. 225-261 | DOI | MR | Zbl
[16] On congruence divisors of cusp forms as factors of the special values of their zeta functions, Invent. Math., Volume 64 (1981) no. 2, pp. 221-262 | DOI | MR | Zbl
[17] Galois representations into attached to ordinary cusp forms., Invent. Math., Volume 85 (1986), pp. 545-614 | DOI | MR | Zbl
[18] Iwasawa modules attached to congruences of cusp forms, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 2, pp. 231-273 | DOI | Numdam | MR | Zbl
[19] Elementary Theory of L-functions and Eisenstein Series, London Mathematical Society Student Texts, 26, Cambridge University Press, 1993 | DOI
[20] Le Halo Spetral (preprint)
[21] On the differential equations satisfied by period matrices, Publ. Math., Inst. Hautes Étud. Sci., Volume 35 (1968) no. 1, pp. 71-106 | DOI | Numdam | Zbl
[22] On the differentiation of de Rham cohomology classes with respect to parameters, J. Math. Kyoto Univ., Volume 8 (1968) no. 2, pp. 199-213 | MR | Zbl
[23] Ramification points on the eigencurve and the two variable symmetric square -adic -function, Ph. D. Thesis, University of California, Berkeley (2006) | MR
[24] Parabolic points and zeta-functions of modular curves, Math. USSR, Izv., Volume 6 (1972) no. 1, pp. 19-64 | DOI
[25] Arithmetic of Weil curves, Invent. Math., Volume 25 (1974), pp. 1-62 | DOI | MR | Zbl
[26] On -adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math., Volume 84 (1986) no. 1, pp. 1-48 | DOI | MR | Zbl
[27] Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians (Warszawa, 1983), North-Holland, 1984, pp. 503-514 | Zbl
[28] Lie Algebras and Lie Groups: 1964 Lectures Given at Harvard University, Lecture Notes in Mathematics, W. A. Benjamin, Inc., 1965
[29] Introduction to the Arithmetic Theory of Automorphic Functions, Publications of the Mathematical Society of Japan, 11, Princeton University Press, 1971
[30] The Cuspidal Group and Special Values of -Functions, Trans. Am. Math. Soc., Volume 291 (1985) no. 2, pp. 519-550 | MR | Zbl
[31] Canonical periods and congruence formulae, Duke Math. J., Volume 98 (1999) no. 2, pp. 397-419 | DOI | MR | Zbl
[32] Introduction to cyclotomic fields, Graduate Texts in Mathematics, 83, Springer, 1997 | DOI
[33] Modular Elliptic Curves and Fermat’s Last Theorem, Ann. Math., Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
Cité par Sources :