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p-ADIC L-FUNCTIONS AND THE GEOMETRY OF
HIDA FAMILIES

by Joe KRAMER-MILLER

Abstract. — A major theme in the theory of p-adic deformations of automor-
phic forms is how p-adic L-functions over eigenvarieties relate to the geometry of
these eigenvarieties. In this article we prove results in this vein for the ordinary
part of the eigencurve (i.e. Hida families). We show that the crossing of two Hida
families is determined by the local behavior of p-adic L-functions on those Hida
families. In addition, we prove that the local behavior of p-adic L-functions de-
termines when a Hida family ramifies over the weight space. Our methods involve
proving a converse to a result of Vatsal relating congruences between eigenforms
to their algebraic special L-values and then p-adically interpolating congruences.
Résumé. — Une question centrale dans la théorie de la déformations p-adique

des formes automorphes est la suivante: quelle est la relation entre une L-fonction
p-adic sur une variété propre et la géométrie de cette variété propre ? Dans l’ar-
ticle nous montrons certains résultats dans cet esprit pour la partie ordinaire de
la courbe propre (i.e., les familles d’Hida). Plus précisément, nous montrons que
l’intersection de deux familles d’Hida est déterminée par le comportement local des
L-fonctions p-adic des familles. Nous prouvons aussi que le comportement local des
L-fonctions p-adique nous dit quand une famille d’Hida est ramifiée sur l’espace de
poids. La technique principale consiste à prouver une réciproque d’un théorème de
Vatsal et puis à interpoler p-adiquement certaines congruences.

1. Introduction

1.1. Congruences between Cusp Forms and Special Values

The relationship between special values of L-functions and congruent
eigenforms was first observed by Mazur. The underlying principle is that
congruent forms should have congruent special values. Vatsal proved gen-
eral results in this direction in [31] with applications to nonvanishing the-
orems in mind. It is natural to ask if the converse is true: if the special
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728 Joe KRAMER-MILLER

values of two eigenforms are congruent, are the eigenforms themselves con-
gruent? One may then consider p-adic families of eigenforms and p-adic
L-functions. The parallel question becomes: can one determine intersec-
tions of Hida families and ramification over the weight space by looking at
p-adic L-functions? In this article we answer both questions affirmatively.
Let us first recall Vatsal’s result. Let p > 3 be a prime and let K be

a finite extension of Qp. Let N0 > 3 be relatively prime to p and k > 1.
For r > 0 we will consider the space of eigenforms Sk(Γ,OK), where Γ is
the congruence subgroup Γ1(N0p

r). We will assume that K is large enough
to contain all the eigenvalues of the Hecke operators acting on Sk(Γ,OK).
We define the Hecke algebra TN0pr,k as the OK-algebra generated by the
operators Tl for l - N0p and Ul for l|N0p acting on Sk(Γ,OK). A maximal
ideal m of TN0pr,k then corresponds to a residual Galois representation
ρ up to semisimplification. We define TN0pr,k,m to be the localization of
TN0pr,k at m. Denote by Lk−2(OK) the OK [Γ]-module of homogeneous
polynomials in two variables of degree k− 2 with the standard action of Γ.
For the moment, assume there exists an isomorphism

H1(H/Γ,Lk−2(OK))±m ∼= TN0pr,k,m

as TN0pr,k-modules, where Lk−2(OK) is the local system associated to
Lk−2(OK) on H/Γ and the ±means we only consider the + or − eigenspace
with respect to complex conjugation (see Subsection 2.2). This isomorphism
is unique up to an element in O×K and a choice of isomorphism corresponds
to choosing a period. If f and g are two eigenforms with residual represen-
tation ρ, then we have two OK-algebra homomorphisms, δf and δg, from
TN0pr,k,m to OK . Any congruence satisfied between f and g is necessarily
satisfied between δf and δg. Evaluating δ∗ on the appropriate cycle (maybe
extending scalars to include the necessary roots of unity) yields special
L-values. These special values will satisfy any congruence between f and g.

In Theorem 3.8 we prove that the converse is true under the assumption
that both f and g are p-ordinary. We show that if periods Ω±f and Ω±g
can be chosen so that the algebraic special values of both eigenforms are
congruent mod πrK , then we have f ≡ g mod πrK . In fact, we only need
to consider a subset Aε of Dirichlet characters, which is defined in 3.1.
To prove this result, we use the theory of modular symbols introduced by
Manin [24] and generalized further by Ash and Stevens [1]. We show that a
p-ordinary modular symbol is completely determined by its special values.
This will allow us to construct a congruence module and use a standard
congruence module argument (see [15] or [27]).
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p-ADIC L-FUNCTIONS ON HIDA FAMILIES 729

Theorem 3.8. — Let f and g be p-ordinary eigenforms in Sk(Γ,OK). If
there exists periods Ω±f and Ω±g (these are defined canonically up to p-adic
unit) that satisfy

L(f, χ, 1)
2πiΩ±f

≡ L(g, χ, 1)
2πiΩ±g

mod πrK ,

for all χ ∈ Aε, then f ≡ g mod πrK .

This theorem can be viewed as a generalization of a result of Stevens
([30, Theorem 2.1]), who proves a similar result when k = 2. More precisely,
Stevens proves that if a modular symbol with constant coefficients vanishes
at a certain set of special values, then the modular symbol must be trivial.
One can then deduce Theorem 3.8 for weight 2 eigenforms using a standard
congruence module argument. The proof of Theorem 3.8 relies essentially on
the ordinary assumption. Without this assumption, it would be necessary
for us to require congruences between L(f,χ,m)

2πiΩ±
f

and L(g,χ,m)
2πiΩ±g

for m > 2.
After proving Theorem 3.8 we briefly describe the p-adic L-functions

L±p (f, χ) ∈ OK [[T ]] associated to a p-ordinary eigenform as described in [26].
An immediate consequence of the interpolation properties is:

Theorem. — Assume that for all Dirichlet characters χ in Aε we have

L±p (f, χ) ≡ L±p (g, χ) mod πsKOK [[T ]].

Then f ≡ g mod πsK .

1.2. Crossing components in Hida families

In the second half of this article we prove a geometric analogue to the
results of the first half. Let us first give a geometric interpretation of Theo-
rem 3.8 as motivation. Consider the space X = Spec(TN0pr,k). The points
of codimension zero in X correspond to cuspidal eigenforms of level N0p

r

and the points of co-dimension one correspond to residual representations.
Let xf and xg be points of X corresponding to eigenforms f and g. Let xf
and xg denote the Zariski closure of xf and xg. Then xf and xg specialize
to the same co-dimension one point xρ if and only if f ≡ g mod πK . We
then define the intersection multiplicity of the components xf and xg at xρ
to be

dimOK/πK TN0pr,k,m/(pf + pg)
where p∗ is the prime corresponding to x∗. This definition agrees with the
algebraic definition provided in [11]. One can check that the largest power of
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730 Joe KRAMER-MILLER

πK for which f and g are congruent is equal to this intersection multiplicity.
Theorem 3.8 can therefore be reformulated to relate congruences between
special L-values and intersection multiplicities.
This view of Theorem 3.8 suggests that Hida families that cross should

have p-adic L-functions that satisfy certain congruences. Let TN0,m be a
localized Hecke–Hida algebra (see Section 4.1 for a precise definition and
for the conditions we assume on the residual Galois representation) and let

π : Spec(TN0,m)→ Spec(OK [[Z×p ]])

be the map onto the weight space (cf. Section 4.1). Under certain conditions
on ρ, there exists an isomorphism of TN0,m-modules

H1(N0p
∞,OK)±ord

m
∼= TN0,m,(1.1)

which is defined up to multiplication by T×N0,m
. Fix such an isomorphism

for the remainder of this introduction. For any primitive Dirichlet character
χ, the isomorphism (1.1) determines p-adic valued function L±p (TN0,m, χ)
on Spec(TN0,m) that has the following interpolation property:

L±p (TN0,m, χ)(x) = L(fx, χ, 1)
2πiΩ±fx

u,

where x ∈ Spec(TN0,m) corresponds to a classical eigenform fx and u is
a p-adic unit. The period Ω±fx at each point is determined by the isomor-
phism (1.1). In particular, we may think of a choice of isomorphism (1.1)
as choosing a family of p-adically compatible periods.
By a Hida family we mean an irreducible component of Spec(TN0,m).

The weight space Spec(OK [[Z×p ]]) is equal to p− 1 disjoint copies Spec(Λ),
where Λ = OK [[T ]] (see Section 3.4). We may think of Spec(Λ) as the
open unit ball in OK . If C is a Hida family then π(C) is equal to one
copy of Spec(Λ), and we may regard π as a map from C to Spec(Λ). By
restricting L±p (TN0,m, χ) to C we obtain a p-adic L-function L±p (C,χ) on C
that interpolates the special values of eigenforms lying on C. We prove that
the local behavior of these p-adic L-functions around a point x determine
when two Hida families intersect. Let ÔC,x be the completion of the germ
of analytic functions defined at x. When x is a smooth OK-point we may
noncanonically identify ÔC,x with K[[T0]], where T0 is a formal variable.
The image of L±p (C,χ) in K[[T0]] is just the Taylor expansion of L±p (C,χ)
around the point x in terms of a parameter T0. We may now state our main
result.
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Theorem 1.1. — Let C1 and C2 be two Hida families in TN0,m. Let
xi ∈ Ci be an OK-point such that κ = π(x1) = π(x2) and π is étale at xi.
We assume that κ is a p-adic limit of classical weights. There are canonical
isomorphisms induced by π:

ÔC1,x1
∼= ÔSpec(Λ),κ ∼= ÔC2,x2 .

Let mκ be the maximal ideal of ÔSpec(Λ),κ. Then x1 and x2 are the same
point in Spec(TN0,m) (in particular, the two components cross over κ) if
and only if there exists u ∈ Λ× such that

L±p (C1, χ) ≡ L±p (C2, χ)u mod mκ,

for all χ ∈ Aε. Furthermore, the intersection multiplicity is at least d if and
only if we can pick u satisfying

L±p (C1, χ) ≡ L±p (C2, χ)u mod mdκ.

Roughly speaking, Theorem 1.1 states that two Hida families must cross
in Spec(TN0,m) if they have the same special values at some point. We
can further determine how these two components cross by asking how our
p-adic L-functions behave on infinitesimal deformations of the point along
the two families. In terms of the parameter T0, Theorem 1.1 states that
two Hida families cross with multiplicity at least d if and only if the Taylor
expansions of L±p (C1, χ) and L±p (C2, χ) agree for the first d terms.
The fact that crossing Hida families have congruent p-adic L-functions

follows directly from the construction of the p-adic L-functions. The proof
of the converse proceeds in several steps. First, we reduce the problem to the
situation where both components look almost like Spec(Λ). This involves
choosing small affinoid neighborhoods of x in the rigid fiber and choosing
an appropriate integral model. This integral model is chosen in a way that
allows us to remember information about congruences between cusp forms.
We develop the necessary geometry in Section 5. When both components
look like Spec(Λ) we may employ the p-adic Weierstrass preparation theo-
rem to the p-adic L-functions. Finally, we will apply Theorem 3.9 to a limit
of classical weights approaching π(x).

1.3. Ramification over the weight space

In the final section we describe the behavior of the p-adic L-functions at
points on Hida families that are ramified above the weight space. Informally
our result says that a component is étale over the weight space if and only
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if no poles are introduced when we differentiate each L-function along the
weight space. Let C be a Hida family and let T be any parameter for our
weight space Spec(Λ). Our parameter defines a derivation on the function
field of Spec(Λ) denoted d

dT . This derivation extends to the function field
K of C. If C is étale over Spec(Λ), then d

dT will give a derivation on the
global functions A of C. If for some x ∈ C there exists f ∈ A such that df

dT
has a pole at x, then x must be ramified over the weight space. Our main
result is that it is enough to check if there exists a Dirichlet character such
that d

dT L
±
p (C,χ) has poles. Furthermore, the order of pole determines the

ramification index.

Theorem 1.2. — A regular OK-point x ∈ C is ramified over π(x) ∈
Spec(Λ) if and only if there exists a Dirichlet character χ ∈ Aε such that
d

dT L
±
p (C,χ) has a pole at x, where T is a parameter of the weight space.

The ramification index e of x over π(x) is equal to one more than the largest
order pole occurring.

The proof of this theorem is similar to the proof of Theorem 1.1. We
first take a small affinoid neighborhood around x which comes naturally
equipped with a formal model that is isomorphic to Spec(OK〈Y 〉). This
allows us to apply the p-adic Weierstrauss preparation theorem and Theo-
rem 3.9 repeatedly. We then deduce by carefully keeping track of congru-
ences as we approach x.
Assume that C is ramified over Spec(Λ) with ramification index e and

that L±p (C,χ) is nonzero at a x for some χ ∈ Aε. By Theorem 3.8 such a
χ exists. We may find g ∈ T×N0,m

such that d
dT g has a pole of order e − 1.

Then if d
dT L

±
p (C,χ) does not have a pole of order e − 1, we know by the

Leibnitz rule that d
dT gL

±
p (C,χ) has a pole of order e − 1. Thus we may

choose the isomorphism (1.1) so that Theorem 1.2 holds. The content of
Theorem 1.2 is that, regardless of our choice of isomorphism, there exists
L±p (C,χ) that detects the ramification at x. Together, Theorem 1.1 and
Theorem 1.2 suggest that Spec(TN0,m) can be understood entirely from
finitely many p-adic L-functions L±p (C,χ1), . . . , L±p (C,χn). In other words,
there should be an embedding Spec(TN0,m)→ An+1 defined by

x ∈ Spec(TN0)→ (π(x), Lp(TN0 , χ1)(x), . . . Lp(TN0 , χn)(x)).

Such an embedding would mean that the p-adic L-functions detect all “tan-
gent” geometric data of Spec(TN0,m). Theorem 1.1 and Theorem 1.2 imply
that the p-adic L-functions detect tangent data at non-smooth points over
the weight space.
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1.4. Further Remarks

Recently there has been good deal of work studying ramification over the
weight space at points with weight one. For example, in [3], Bellaïche and
Dimitrov give a criterion for étaleness. In the ramified situation, work of
Betina in [4] proves that the ramification index is exactly two under certain
conditions. Previous examples of the ramification index being exactly two
were known due to Cho and Vatsal (see [6]). At these ramification points of
degree two, it would be interesting to try and find p-adic L-functions that
see this ramification, as predicted by Theorem 1.2.
It is also worth mentioning the relationship to the degree three adjoint L-

function. In [15] and [16], Hida proves that congruences between cusp forms
are determined by special values of the degree three adjoint L-function.
This suggests that there should be a two variable p-adic adjoint L-function
varying over a Hida family, whose zeros determine ramification over the
weight space. This p-adic L-function was constructed by Walter Kim in
his PhD thesis (see [23]), and it is proven that the zeros of this p-adic L-
function are related to ramification over the weight space. The connection
to Kim’s work and Theorem 1.2 is unclear. The discussion at the end of 1.3
suggests that the p-adic L-functions L±p (C,χ) should determine the Hida
family C. It seems unlikely that this is true for Kim’s p-adic adjoint L-
function. However, it is still interesting to ask if one can relate the L-
functions L±p (C,χ) to Kim’s p-adic adjoint L-function.
It would be interesting to extend these results to the positive slope part

of the eigencurve. There is one technical difficulties that immediately come
to mind. The construction of Coleman and Mazur [7] does not come with
an integral model. The large Hecke–Hida algebra over the integers of a local
field allows us to see congruences. Without an integral model that captures
all congruences, our methods fail.

The results in this article should have generalizations to ordinary fam-
ilies of automorphic forms for larger algebraic groups. A several variable
p-adic L-function was constructed by Dimitrov in [8] that varies over ordi-
nary families of Hilbert modular forms. It seems likely that our geometric
methods could be adapted to this context. Even more generally, it seems
plausible that one could construct measures using compatible families of
automorphic cycles living in Emerton’s completed cohomology (see [9]) that
detect ramification over the weight space and crossing.
The author is currently investigating the extension of the results in this

paper to points of characteristic p. Following the philosophy of [20] we
may view these points as the boundary of our Hida families. These points
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734 Joe KRAMER-MILLER

can be regarded as the ordinary part of the spectral halo conjectured by
Coleman. In [20] a formal model is constructed for the part of the eigencurve
living over the outer Halo of the weight space. It is plausible that p-adic
L-functions can be constructed on the spectral halo and that this formal
model could be used to imitate the techniques used in this paper.
I would like to acknowledge my doctoral adviser Krzysztof Klosin for

introducing me to the world of automorphic forms and encouraging me
to pursue a mathematical project I am passionate about. I have benefited
greatly from conversations with Glenn Stevens, Rob Pollack, Eric Urban,
Ray Hoobler, Ken Kramer, Johann de Jong, and Joe Gunther. I would also
like thank the anonymous referees for their helpful comments.

2. Modular symbols and the Eichler-Shimura isomorphism

In this chapter we summarize the theory of modular symbols developed
by Manin and then generalized by Ash and Stevens (see [1] and [24]). We
also give an overview of Eichler-Shimura theory.

2.1. Modular symbols and cohomology

Throughout this section we will fix N > 3 and Γ = Γ1(N). Let D0 be the
divisors of P(Q) of degree 0. Then GL2(Q), and therefore also Γ, acts on
D0 by linear fractional transformations. For any left Z[Γ]-module E, we let
Φ(E) = HomΓ(D0, E). These are modular symbols with values in E (see,
for example, [1]). When the action on E extends to GL2(Q) (resp. GL2(Z))
we may define a right action on Hom(D0, E) (resp. GL2(Z)). Explicitly, if
α ∈ Φ(E) and g ∈ GL(Q) then α|g sends (r1− r2) to g−1α(g(r1)− g(r2)).
The Γ-invariant elements of Hom(D0, E) are precisely Φ(E).

There is a locally constant sheaf Ẽ on H/Γ that is associated to E.
The sections of Ẽ are sections of the E-torsor s : E × H/Γ → H/Γ.
More precisely, for an open set U ⊂ H/Γ the sections Γ(U, Ẽ) are con-
tinuous functions f : U → s−1(U) such that f ◦ s is the identity (here
we give E the discrete topology). If U is small enough to trivialize s (i.e.
s−1(U) = U × E) then Γ(U, Ẽ) is just isomorphic to E. It is known that
Φ(E) ∼= H1

c (H/Γ, Ẽ) (see [1, Proposition 4.2]). We define H1
! (H/Γ, Ẽ) to

be the image of H1
c (H/Γ, Ẽ) in H1(H/Γ, Ẽ). Explicitly, we may think of

H1
! (H/Γ, Ẽ) as the cohomology classes in H1(H/Γ, Ẽ) that can be repre-

sented by a 1-form with compact support. Let [c] ∈ H1(H/Γ, Ẽ) and let ω
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be a 1-form representing [c]. Then for any z0 ∈ H we may define a 1-cocycle
on Γ with values in E:

g →
∫ g(z0)

z0

ω.

A different choice of ω or z0 will result in a 1-cocycle that differs by a
1-coboundary. When [c] is in H1

! (H/Γ, Ẽ) we may take ω to have compact
support. This allows us to choose z0 ∈ H ∪ P1(Q). If z0 ∈ P1(Q) then the
1-cocycle is zero when restricted to the parabolic subgroup Pz0 that fixes
z0. Putting this together gives the following commutative diagram:

Φ(E) ∼= H1
c (H/Γ, Ẽ) H1

! (H/Γ, Ẽ) H1(H/Γ, Ẽ)

H1
P (Γ, E) H1(Γ, E).

Here we define

H1
P (Γ, E) := ker(H1(Γ, E)→

∏
z0∈P1(Q)

H1(Pz0 , E)).

In general, these vertical maps are isomorphisms as long as Γ contains a
torsion free subgroup of finite index that is coprime to the exponent of
E. This condition is satisfied regardless of E, since we have taken Γ to be
torsion free.

2.2. The complex conjugation involution

The involution σ of H given by z → −z induces involutions on the
cohomology groups discussed above. Consider the 1-cocycle β defined by a
1-form ωβ . Then βσ is the 1-cocycle

g →
∫ −g(i)
i

ωβ =
∫ g(i)

i

σ∗(ωβ).

Thus β is sent to the 1-cocycle g → β(ξgξ−1), where ξ =
(−1 0

0 1
)
. On

de Rham cohomology the 1-form ω is send to its pullback σ∗(ω) under σ.
In particular, holomorphic forms are sent to anti-holomorphic forms and
vice versa. The involution σ sends a modular symbol α ∈ Φ(E) to α|ξ.

If E is 2-divisible (i.e. E is a Z[ 1
2 ]-module) then the cohomology groups

considered in Subsection 2.1 decompose into eigenspaces of σ. For example,

TOME 72 (2022), FASCICULE 2



736 Joe KRAMER-MILLER

we have H1(Γ, E) = H1(Γ, E)+⊕H1(Γ, E)−, where σ fixes the H1(Γ, E)+

and negates H1(Γ, E)−. This yields:

Φ(E)± ∼= H1
c (H/Γ, Ẽ)± H1

! (H/Γ, Ẽ)± H1(H/Γ, Ẽ)±

H1
P (Γ, E)± H1(Γ, E)±.

2.3. The Eichler-Shimura isomorphism

For any ring A, we define Ln(A) to be the space of degree n homogeneous
polynomials in two variables with coefficients in A. Then Ln(A) comes
equipped with a left action of Γ. When k > 2 there is a map from Sk(Γ,C),
the weight k cusp forms on Γ with coefficients in C, to the cohomology
group H1(H/Γ, L̃k−2(C)): the cusp form f(z) ∈ Sk(Γ,C) is sent to the
1-form

ωf = f(z)(x− zy)ndz.
Since f(z) vanishes at cusps z0 ∈ P1(Q) we may consider the 1-cocycle:

g →
∫ g(z0)

z0

ωf .

This 1-cocycle vanishes on Pz0 , which lets us infer that

ωf ∈ H1
! (H/Γ, L̃k−2(C)) ∼= H1

P (Γ, Lk−2(C)).

By projecting onto the ± parts we obtain the Eichler-Shimura isomorphism
(see [29, Chapter 8] for a full proof):

Sk(Γ,C) ∼= H1
P (Γ, Lk−2(C))±.

2.4. Hecke operators and integral cohomology

We may define Hecke operators on the cohomology groups from Sec-
tion 2.1 (see for example [29, Chapter 8.3] or [1, Section 2]). These operators
are compatible with the Eichler-Shimura isomorphism. Let f ∈ Sk(Γ,C)
be a normalized eigenform and let ω±f be the projection of the 1-form ωf
onto the ± part. We define a modular symbol α±f by

α±f ({r1} − {r2}) =
∫ r2

r1

ω±f .

ANNALES DE L’INSTITUT FOURIER
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This gives a Hecke equivariant map s : Sk(Γ,C) → Φ(Lk−2(C))±. By a
theorem of Shimura (see [13, Theorem 4.8]) the subspace of Φ(Lk−2(C))±
that has the same Hecke eigenvalues as f is one dimensional.
Fix an isomorphism Cp ∼= C and let K ⊂ C be a finite extension of Qp

that contains the Hecke eigenvalues of f . Let OK be the ring of integers
of K with uniformizer πK . Since modular symbols commute with flat base
change (cf. [2, Lemma III.1.2]) we have a Hecke equivariant isomorphism

Φ(Lk−2(OK))± ⊗OK C ∼= Φ(Lk−2(C))±.

As OK contains the Hecke eigenvalues of f , the subspace of Φ(Lk−2(OK))
that has the same Hecke eigenvalues as f is a free OK-module of rank one.
From this we see that there exist periods Ω±f such that

α±f

Ω±f
∈ Φ(Lk−2(OK))±

and
α±f

Ω±f
6∈ πKΦ(Lk−2(OK))±.

These periods are unique up to multiplication by a unit in OK .
Now consider the Hecke equivarient commutative diagram

Φ(Lk−2(OK))± H1
P (Γ, Lk−2(OK))± 0

Φ(Lk−2(C))± H1
P (Γ, Lk−2(C))± 0

i

i

Note that i(α±f ) = ω±f . In particular, we see that the subspace of
H1
P (Γ, Lk−2(OK))± that has the same Hecke eigenvalues as f is a free OK-

module of rank one generated by i(α
±
f

Ω±
f

) = ω±
f

Ω±
f

. Furthermore we see that

H1(Γ, Lk−2(OK))± ∩ Cωf = OK
ω±f

Ω±f
.

3. Congruences Between Cusp Forms and L-functions

The aim of this chapter is to prove that two cusp forms are congru-
ent if and only if the “algebraic” special values of their L-functions admit
congruences for all twists (see Theorem 3.8). The heart of the proof is
Theorem 3.1, which specifies certain linear combinations of cycles on H/Γ
that generate the ordinary part of H1(H/Γ). This type of result was first
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observed by Glenn Stevens and in particular Theorem 3.1 was inspired by
Theorem 2.1 in [30].

3.1. Special values of modular symbols

For this section we will take Γ = Γ1(N0p
r), where N0 is prime to p

and r > 1. We let N = N0p
r. Let OK be the ring of integers of a finite

extension K of Qp. Let πK be a uniformizing element of OK . Let s > 0
and assume πsK |pr (if this is not the case we may replace Γ with a smaller
congruence subgroup by increasing r). The purpose of this section is to
prove a nonvanishing result for the special values of modular symbols with
values in Ln(OK/πsK). We let [xy ] denote the degree zero divisor {xy }−{∞}.
For a Dirichlet character χ of conductor mχ we define

Λ(χ) =
mχ−1∑
i=0

χ(i)
[
i

mχ

]
∈ D0 ⊗ Z[χ].

If α is the modular symbol associated to a cusp form then the first coordi-
nate (i.e. the coefficient of Xn) of α(Λ(χ)) is a normalized special value (see
Section 3.2). For P (X,Y ) ∈ Ln(OK/πsK) the coefficient of Xn is P (1, 0).
Therefore it makes sense if we write α(Λ(χ))(1, 0) to denote the coefficient
of Xn in α(Λ(χ)). The next theorem says that under certain conditions a
modular symbol is completely determined by its special values. For ε > 0 we
define Pε to be the set of primes q larger than ε that satisfy the congruences

q ≡ −1 mod N.

We then define A′ε to be the set of all primitive character whose conductor
lies in Pε and we define Aε = A′ε∪{χtriv}. Our main result of this section is

Theorem 3.1. — Let α ∈ Φ(Ln(OK/πsK)). Assume the following con-
ditions:

(1) For every primitive Dirichlet character χ ∈ Aε the special value
α(Λ(χ))(1, 0) is zero.

(2) The image of α in H1(Γ, Ln(OK/πsK)) lies in the p-ordinary sub-
space H1(Γ, Ln(OK/πsK))ord (see, for example, [19, Chapter 7]).

(3) The Nebentypus of α is a Dirichlet character ψ (i.e. for γ ∈ Γ0(N)
we have α|γ = ψ(d)α). The conductor of ψ is necessarily N .

Then the image of α in H1(Γ, Ln(OK/πsK)) is zero.

The proof of Theorem 3.1 will be broken up into several smaller lemmas.
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Lemma 3.2. — Let c
d be a reduced fraction whose denominator is 1 mod

N . Then there exists γ ∈ Γ0(N) such that the denominators of γ( cd ) and
γ(0) are in Pε.

Proof. — Let l1 be a prime number satisfying

l1 ≡ −1 mod N.

We may take l1 large enough to be contained in Pε and so that l1 - c.
As l1 and d are both coprime to Nc, it possible to choose a prime z > l1
satisfying

z ≡ dl1 mod Nc.
Then

z ≡ −1 mod N,
since

d ≡ 1 mod N and l1 ≡ −1 mod N.
In particular z ∈ Pε. We have z = yNc+dl1 for some y and we set l2 = Ny.
Note that l2 is not divisible by l1: if l1|l2 then we see that l1|z, which is
impossible as z is a prime larger than l1. Since l2z and l1 are relatively
prime we may find t2 and t1 such that

l1t2 − l2zt1 = 1.

Thus the matrix
γ =

(
t2 t1z

l2 l1

)
is in Γ0(N). We compute(

t2 t1z

l2 l1

)
c

d
= t2c+ t1zd

z
and

(
t2 t1z

l2 l1

)
0 = t1z

l1
.

The fraction t1z
l1

is reduced since l1 is coprime to t1 and z. Furthermore z
is coprime to t2c so that t2c+t1zd

z is also reduced. This means γ satisfies the
desired properties. �

Lemma 3.3. — Let m ∈ Pε. The coefficient of Xn in α([ am ]) is zero if a
is prime to m That is,

α
([ a
m

])
(1, 0) = 0.

Proof. — Let OKm be the ring of integers of Km = Qp(ζm−1). Recall
that D0 is the group of degree zero divisors of P1(Q). Let M be the free
submodule of D0 ⊗Z OKm generated by the elements [ 1

m ], . . . , [m−1
m ] and

let M ′ be the submodule of M spanned by each Λ(χ) for primitive χ of
conductor m. We claim that M = M ′ ⊕OKm [ 1

m ]. To see this, consider the
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nonprimitive character 1d defined by 1d(a) = 1 for m - a and 1d(a) = 0
otherwise. The index ofM ′⊕OKmΛ(1d) inM is given by the Vandermonde
determinant ∏

06i<j6m−2
(ζjm−1 − ζim−1),

where ζm−1 is an m − 1th root of unity. We know that p|m + 1 so that
p - m − 1. Therefore ζjm−1 − ζim−1 is a p-adic unit whenver j > i and in
particular we find that M ′ ⊕OKmΛ(1d) = M . Now note that

Λ(1d) =
∑

prim χ

Λ(χ)− (m− 2)
[

1
m

]
.

From this we see Λ(1d) is contained in M ′ ⊕OKm [ 1
m ] and thus

M = M ′ ⊕OKm
[

1
m

]
.

By the first hypothesis in Theorem 3.1 we know that α(t)(1, 0) is zero
for t ∈M ′. Therefore it will suffice to show α([ 1

m ])(1, 0) is zero. We have

α

([
1
m

])
(1, 0) = α

([
1
m

])
(1, 0)− α([0])(1, 0)

= α

({
1
m

}
− {0}

)
(1, 0),

where α([0])(1, 0) = 0 because [0] = Λ(χtriv). Let γ0 =
( 1 0
−Nk 1

)
, where

m = Nk − 1. Then

γ0

({
1
m

}
− {0}

)
= {−1} − {0}

= [−1]− [0] .

There is an upper triangular matrix γ1 ∈ Γ such that γ1([−1]) = [0].
The action of an upper triangular matrix on Ln(OK/πsK) preserves the
coefficient of Xn. In particular we see that α([−1])(1, 0) is zero. Since γ0
acts on Ln(OK/πsK) as the identity, we find

α

({
1
m

}
− {0}

)
(1, 0) = γ0

(
α

({
1
m

}
− {0}

))
(1, 0)

= α([−1]− [0])(1, 0)
= 0.

The result follows. �
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Lemma 3.4 (Hida). — The map from Ln(OK/πK) to L0(OK/πK) in-
duced by projecting onto the coordinate of Xn induces an isomorphism

H1(Γ, Ln(OK/πK))ord → H1(Γ,OK/πK)ord.

Proof. — See the proof of Theorem 2 in [19, Section 7.2] for the case of
OK = Zp. To deduce the general case we first note that OK/πK is a free
Zp/p-module. Therefore the natural map

H1(Γ, Ln(Zp/p))⊗Zp/p OK/πK → H1(Γ, Ln(OK/πK))

is an isomorphism. This isomorphism commutes with the map induced
by projecting onto the Xn-coordinate. It also commutes with the Hecke
operators, which includes Hida’s idempotent e. This gives a square of iso-
morphisms:

H1(Γ, Ln(Zp/p))ord ⊗Zp/p OK/πK H1(Γ, Ln(OK/πK))ord

H1(Γ,Zp/p)ord ⊗Zp/p OK/πK H1(Γ,OK/πK)ord

�

Lemma 3.5. — Let m′ > m. Then

H1(Γ, Ln(OK/πmK )) = H1(Γ, Ln(OK))⊗OK OK/πmK ,

and
H1(Γ, Ln(OK/πmK )) = H1(Γ, Ln(OK/πm

′

K ))⊗OK OK/πmK .
Furthermore, these isomorphisms commute with the Hecke operators and
thus give isomorphisms of the ordinary subspaces.

Proof. — We see from (1.10a) and (1.11) of [15] that

H1(Γ, Ln(Z/pm)) = H1(Γ, Ln(Z))⊗ Z/pm.

Now consider the exact sequence

0 Ln(Zp) Ln(Zp) Ln(Zp/p) 0.×p

The long exact sequence of cohomology groups gives the short exact se-
quence

0→ H1(Γ, Ln(Zp))⊗ZpZp/p→ H1(Γ, Ln(Zp/p))→ H2(Γ, Ln(Zp))[p]→ 0,

where H2(Γ, Ln(Zp))[p] is the subgroup of p-torsion elements in
H2(Γ, Ln(Zp)). However we already know that the first map is an isomor-
phism, which means H2(Γ, Ln(Zp))[p] = 0. Since OK is a free Zp-module
we see that

H2(Γ, Ln(Zp))⊗Zp OK = H2(Γ, Ln(OK)).
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In particular, H2(Γ, Ln(OK)) has no p-torsion and consequently no πK-
torsion. Now consider the sequence

0 Ln(OK) Ln(OK) Ln(OK/πmK ) 0,×πmK

which gives rise to the sequence of cohomology groups

0→ H1(Γ, Ln(OK))⊗OK OK/πmK
→ H1(Γ, Ln(OK/πmK ))→ H2(Γ, Ln(OK))[πmK ].

Since H2(Γ, Ln(OK)) has no πK-torsion we conclude

H1(Γ, Ln(OK))⊗OK OK/πmK = H1(Γ, Ln(OK/πmK )).

The second isomorphism follows from the first together with that fact that
if M is any OK-module then

M ⊗OK OK/πmK = (M ⊗OK OK/πm
′

K )⊗OK OK/πmK .

The map

H1(Γ, Ln(OK))⊗OK OK/πmK → H1(Γ, Ln(OK/πmK ))

commutes with any double coset action, which gives the Hecke equi-
variance. �

Lemma 3.6. — Letm>0 such that πmK |pr. Let [c]∈H1(Γ,Ln(OK/πmK ))ord

be a cohomology class represented by a 1-cocycle c. Assume that for all
γ ∈ Γ we have c(γ)(1, 0) = 0 (i.e. the coefficient of Xn in c(γ) is zero).
Then [c] = 0.

Proof. — We will prove this lemma by induction on m. When m = 1
this follows immediately from Lemma 3.4. Now let m > 1. The image of [c]
in H1(Γ, Ln(OK/πK))ord is 0 by Lemma 3.4. Then by Lemma 3.5 we know
that [c] = πK [c0] for some [c0] in H1(Γ, Ln(OK/πmK ))ord. Thus πKc0 − c is
a 1-coboundary b. There exists p(X,Y ) ∈ Ln(OK/πmK ) such that b(γ) =
(1 − γ)p(X,Y ). Since πmK divides pr, we know that γ reduces to an upper
triangular matrix modulo πmK . This means that b(γ)(1, 0) = 0, as applying
γ to p(X,Y ) does not change the coefficient of Xn. Since πKc0 = b+ c we
find

πKc0(γ)(1, 0) = b(γ)(1, 0) + c(γ)(1, 0)
= 0.

Therefore c0(γ)(1, 0) is divisible by πm−1
K . We now use our induction hy-

pothesis to see that the cohomology class [c0] ∈ H1(Γ, Ln(OK/πm−1
K )) is
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zero. Since

H1(Γ, Ln(OK/πmK ))ord ⊗OK OK/πm−1
K = H1(Γ, Ln(OK/πm−1

K ))ord,

This implies [c0] is divisible by πm−1
K in H1(Γ, Ln(OK/πmK ))ord. It follows

that πK [c0] = [c] = 0. �

Proof of Theorem 3.1. — The image of α in H1(Γ, Ln(OK/πsK)) can be
represented by the 1-cocycle that sends γ ∈ Γ to α({0}−{γ(0)}). Let x be
γ(0). The denominator of x is 1 modulo N , so we may apply Lemma 3.2.
That is, we may find g ∈ Γ0(N) such that g({x}) and g({0}) have denom-
inators in Pε. In particular, we know that α(g({x})− g({0}))(1, 0) = 0 by
Lemma 3.3. Let c be the lower right entry of g. Then

α({x} − {0})(1, 0) = ψ(c)−1α|g({x} − {0})(1, 0)

= ψ(c)−1g−1α(g({x})− g({0}))(1, 0)
= 0

Applying Lemma 3.6 proves the result. �

3.2. Special values of L-functions

Let f(z) ∈ Sk(Γ,OK) with k > 2 be a normalized eigenform whose
eigenvalues are contained in K. We may write f(z) = Σanqn where q =
e2iπz and an ∈ OK . Then L(f, s) is defined to be Σann−s. Using the Mellin
transform we may write the special values of L(f, s) as an integral (see [1,
Section 4]): ∫ i∞

0
f(z)zjdz = j!L(f, j + 1)

(−2πi)j+1 .

More generally, if χ is a Dirichlet character of conductor mχ we define
L(f, χ, s) as Σanχ(n)n−s. This can be written as the integral (see [26,
Equation (8.6)]):

m−1∑
a=0

χ(a)
∫ i∞

a
m

f(z)(mχz + a)jdz = τ(χ)mj+1
χ j!L(f, χ, j + 1)

(−2πi)j+1 .

In particular, if α±f is the modular symbol defined in Section 2.4, then the

coefficient of Xk−2 in α±
f

(Λ(χ))
Ω±
f

is τ(χ)mχ
L(f,χ,1)
−2πiΩ±

f

when the parity of α∗f
matches the parity of χ (when the parities are mixed the modular symbol
evaluates to zero).
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Theorem 3.7. — Let f and g be two p-ordinary cuspidal eigenforms in
Sk(Γ,OK) with the same nebentypus. Let s > 0 such that πsK |pr. If we can
choose periods Ω±f and Ω±g (as in Section 2.4) such that

L(f, χ, 1)
2πiΩ±f

≡ L(g, χ, 1)
2πiΩ±g

mod πsKOK [χ]

for all Dirichlet characters χ ∈ Aε, then the image of α±
f

Ω±
f

− α±g

Ω±g
under the

map
Φ(Lk−2(OK))→ H1(Γ, Lk−2(OK))

from is contained in πsKH1(Γ, Lk−2(OK)).

Proof. — Let η denote the modular symbol α
±
f

Ω±
f

− α±g

Ω±g
. By the discussion

above we have

η(Λ(χ))(1, 0) =
α±f (Λ(χ))(1, 0)

Ω±f
−
α±g (Λ(χ))(1, 0)

Ω±g

= τ(χ)mχ
L(f, χ, 1)
−2πiΩ±f

− τ(χ)mχ
L(g, χ, 1)
−2πiΩ±g

,

which is contained in τ(χ)mχπ
s
KOK by our hypothesis. Thus η(Λ(χ)) ∈

πsKOK for all χ ∈ Aε. Then by Theorem 3.1 it follows that the image of
η in H1(Γ, Lk−2(OK/πsK)) is zero. From Lemma 3.5 we deduce that η is
contained in πsKH1(Γ, Lk−2(OK)). �

3.3. Congruences between special values

We may now prove Theorem 3.8 by combining Theorem 3.7 with a stan-
dard congruence module argument (cf [27] and [15]). Let f and g be nor-
malized p-ordinary cuspidal eigenforms of weight k > 2 for the congruence
subgroup Γ = Γ1(N0p

r). Assume that f(z) = Σanqn and g(z) = Σbnqn
have Fourier coefficients in OK . Let s > 0 such that

L(f, χ, 1)
2πiΩ±f

≡ L(g, χ, 1)
2πiΩ±g

mod πsK ,

for all primitive Dirichlet characters χ whose conductor is prime to p. Since
f and g are also eigenforms for Γ1(N0p

r′) for r′ > r, we may replace Γ
with a smaller congruence subgroup and assume that πsK divides pr. Let
ωf and ωg be the differential forms associated to f and g. In particular, if i
denotes the map from modular symbols to cohomology then i(α∗) = ω∗ (see
Section 2.4). By abuse of notation, when we refer to H1(Γ, Lk−2(OK))±
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we will actually mean the image of H1(Γ, Lk−2(OK))± in H1(Γ, Lk−2(C))±
(i.e. the torsion free part viewed as a “lattice” in the complex cohomology
group).
Let M± be H1(Γ, Lk−2(OK))± ∩ (Cω±f ⊕ Cω±g ). Then by end of

Section 2.4 we know that M± is a rank two free OK-submodule of
H1(Γ, Lk−2(OK))± fixed by the Hecke operators. Let M±∗ = M± ∩ Cω±∗ .
This is the subspace of H1(Γ, Lk−2(OK))± whose Hecke eigenvalues are the
same as f . By Section 2.4 M±∗ is generated by ω±∗

Ω±∗
as a OK-module. We

also let M∗± be the projection of M± onto Cω±∗ . Note that M±∗ ⊂ M∗±.
By Theorem 3.7 we know that

i(α±f )
Ω±f

−
i(α±g )
Ω±g

=
ω±f

Ω±f
−
ω±g

Ω±g
∈ πsKH1(Γ, Lk−2(OK))±.

In particular, we may find x ∈ H1(Γ, Lk−2(OK))± with πsKx = ω±
f

Ω±
f

− ω±g

Ω±g
.

As x is in the OK-submodule spanned by ω±
f

Ω±
f

and ω±g

Ω±g
we see that M±

contains x. Thus we have a map

OK/πsKOK →
M±

M±f ⊕M
±
g
, defined by

1 mod πsKOK → x mod M±f ⊕M
±
g .

In fact this map is an injection. This is true because M±f ⊕M±g is a free

rank two OK-module generated by ω±
f

Ω±
f

and ω±g

Ω±g
. If the map had a kernel

then

πs
′

Kx = πs
′−s
K

ω±f

Ω±f
− πs

′−s
K

ω±g

Ω±g
∈M±f ⊕M

±
g

for some s′ < s, which is impossible.
There is an equivalence of Hecke modules (see for example [12, Lemma 1]):

Mf±

M±f

∼=
Mf± ⊕Mg±

M±
∼=
Mg±

M±g
, and

Mf± ⊕Mg±

M±
∼=

M±

M±f ⊕M
±
g
.

In particular we find that

Mf±

M±f
⊗OK/πsKOK ∼=

Mg±

M±g
⊗OK/πsKOK ,
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as Hecke modules. Since M±∗ is isomorphic to OK we know that M∗±

M±∗
is

isomorphic to OK/πeKOK for some e > 0. By the above isomorphisms
there is an injection OK/πsK → M∗±

M±∗
and therefore e > s. Thus M∗±

M±∗
⊗

OK/πsKOK is isomorphic to OK/πsKOK . The Hecke operator Tn acts on
Mf±

M±
f

⊗ OK/πsKOK (resp Mg±

M±g
⊗ OK/πsKOK) through scalar multiplica-

tion by an mod πsKOK (resp bn mod πsKOK). The isomorphism of Hecke
modules then implies

an ≡ bn mod πsKOK .
Putting this together gives the following theorem:

Theorem 3.8. — Let f and g be eigenforms as above. If there exist
periods Ω±f and Ω±g as in Subsection 2.4 that satisfy

L(f, χ, 1)
2πiΩ±f

≡ L(g, χ, 1)
2πiΩ±g

mod πsK ,

for all Dirichlet characters χ ∈ Aε, then

f ≡ g mod πsK .

3.4. The one variable cyclotomic p-adic L-function

We will now reinterpret Theorem 3.8 in terms of p-adic L-functions. Our
construction roughly follows the cyclotomic p-adic L-function described
in [10]. The only difference is that we consider p-adic L-functions that are
twisted by a Dirichlet character of level prime to p. Let f be an p-ordinary
eigenform in Sk(Γ,OK). We define TN0pr,k to be the Hecke algebra over
OK generated by Tl for l - N0p, Ul for l|N0p, and the diamond operators
〈a〉 for a mod N . Let m be the maximal ideal of TN0pr,k corresponding
to the residue of f modulo p and recall that TN0pr,k,m is the localization
of TN0pr,k at m. We will assume that there is an isomorphism of Hecke
modules:

(A) H1(H/Γ, L̃k−2(OK))±m ∼= TN0pr,k,m.

For example, we say that f is p-distinguished if its residual representation
has distinct Jordan–Holder factors when restricted to the decomposition
group Gal(Qalgp /Qp). Then by Proposition 3.1.1 in [10] this isomorphism
holds for p-distinguished eigenforms.
There is a natural map δf from TN0pr,k,m to C sending each Hecke oper-

ator to its eigenvalue on f . The image of this map lies in OK . The 1-form
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ω±f also induces a map from H1(H/Γ, L̃k−2(OK))±m to C, which we will also
refer by ω±f , by integrating along each cycle. Then we have

ω±f

Ω±f
= δf ,

where Ω±f is a period as in Section 2.4. Choosing a different isomorphism
for A results in a different choice of period.
Let Λ = OK [[T ]] be the standard Iwasawa algebra. For M > 0 prime to

p we define ΛM to be the group ring Λ[Z/pMZ×]. Then there is a non-
canonical isomorphism

Λ[Z/pMZ×] ∼= lim←−OK [Z/MpsZ×],

where 1 + T goes to the topological generator 1 + p of 1 + pZp. Recall
that for any OK-module A we may think of elements of ΛM ⊗OK A as
measures on Z×p ⊕ Z/MZ× with values in A (see [25, Section 7]). Thus we
may define an element L±M,m of ΛM ⊗OK H1(H/Γ, L̃k−2(OK))±m as follows:
the open set (a+ prZp, a+MZ) in Z×p ⊕ Z/MZ× is sent to the homology
class U−rp

[
a

prM

]
∈ H1(H/Γ, L̃k−2(OK))±m (we are thinking of Up as acting

on the homology class defined by the cycle [ a
prM

]
). This gives a well defined

measure on Z×p ⊕ Z/MZ× with values in H1(H/Γ, L̃k−2(OK))±m.
Let L±M,f be the image of L±M,m under the map 1⊗δf . Then L±M,f is an ele-

ment of ΛM . Specializing at certain Cp points of Spec(ΛM ) will give us spe-
cial values of L(f, χ, s). Let us explain this interpolation property in more
detail. A Cp-point of Spec(ΛM ) is defined by an element of Homcont(Z×p ⊕
Z/MZ×,C×p ). In particular any primitive Dirichlet character χ of conduc-
tor Mpr induces a continuous homomorphism χ : Z×p ⊕Z/MZ× → C×p and
thus defines a Cp-point of Spec(ΛM ). Evaluating L±M,f at the point defined
by χ gives

L±M,f (χ) = U−rp δf

(
mχ∑
a=0

χ(a)
[
a

mχ

])

= U−rp

m−1∑
a=0

χ(a)
∫ i∞

a
m

f(z)
Ω±f

dz

= a−rp τ(χ)mχ
L(f, χ, 1)

2πiΩ±f
,

where ap is the eigenvalue of Up on f . Note that Spec(ΛM ) is equal to
φ(pM) copies of the open unit p-adic ball: one copy for each character
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of (Z/pMZ)×. For a primitive character χ of conductor pM we let Lχ,f
denote the restriction of L±M,f to the unit ball corresponding to χ.

Theorem 3.9. — Let f and g be two p-ordinary eigenforms of weight
k > 2 and level N0p

r whose coefficients are in OK . Assume that both
eigenforms have the same residual representation and

H1(H/Γ, L̃k−2(OK))±m ∼= TN0pr,k,m,

where m is the maximal ideal of TN0pr,k corresponding to this residual
representation. The following are equivalent

• The forms f and g are congruent modulo πsK .
• The p-adic L-functions Lχ,f and Lχ,g are congruent modulo πsK for
all Dirichlet characters χ ∈ Aε.

Proof. — If f and g are congruence modulo πsK then we know that
δf ≡ δg mod πsK . From this it’s clear that Lχ,f ≡ Lχ,g mod πsK . This
was originally proven by Vatsal in [31] using the p-adic Weierstrass prepa-
ration theorem. Conversely, if the p-adic L-functions are congruent then
the special values are congruent. Then from Theorem 3.8 we know that
f ≡ g mod πsK . �

4. p-adic L-functions on Hida families

4.1. Hida Theory

We will now summarize the main ideas of Hida theory, which was first
introduced in [17] and [18]. For an accessible introduction to the theory
with tame level 1 see [19] and for a general overview see [10]. Let N0 > 0
be relatively prime to p and let k > 2. We define

Sk(N0p
∞,OK)ord = lim−→

r>0
Sk(N0p

r,OK)ord,

which is the space of all p-ordinary cusp forms with tame level N0. There
is a natural action of Z/prZ× on Sk(N0p

r,OK)ord given by the product
of the Nebentypus action and the character γ → γk. These actions are
compatible with the inclusion of Sk(N0p

r,OK)ord in Sk(N0p
r+s,OK)ord

for any s > 0. Thus we may take the action on the direct limit to get an
action of Z×p on Sk(N0p

∞,OK)ord. In particular Sk(N0p
∞,OK)ord is an

OK [[Z×p ]]-module. Since OK [[Z×p ]] ∼= Λ[Z/pZ×], as described in Section 3.4,
we may view Sk(N0p

∞,OK)ord as a Λ[Z/pZ×]-module.
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Let TN0 be the p-adic completion of the OK-algebra generated by the
Hecke operators and diamond operators acting on Sk(Np∞,OK)ord. Since
OK [[Z×p ]] acts on Sk(Np∞,OK)ord via the diamond operators, we may view
TN0 as a OK [[Z×p ]]-algebra (and thus also a Λ[Z/pZ×]-algebra). In partic-
ular there is a map π : Spec(TN0) → Spec(Λ[Z/pZ×]). For a prime p of
Λ[Z/pZ×] of height one we write O(p) to denote Λ[Z/pZ×]/p. We say that
p is classical of weight k if the residue has characteristic zero and if the
induced homomorphism κp : Z×p → C×p equals the k-th power map on a
small enough open subgroup of Z×p . Just as before, we set O(p) := TN0/p

for a height one prime p of TN0 and define κp to be the homomorphism
Z×p → Cp induced by the ring homomorphism

OK [[Z×p ]]→ TN0 → O(p),

when O(p) has characteristic zero. We say that p is classical of weight k
if the character κp corresponds to a classical weight k point of OK [[Z×p ]].
Equivalently, p is classical of weight k if π(p) ∈ Spec(Λ[Z/pZ×]) is classical
of weight k. The fibers of π above classical weight k primes of Λ recover
the Hecke algebra acting on weight k cusp forms of tame level N0. More
specifically, Hida proved the following theorem in [18].

Theorem 4.1. — Using the above notation we have:
• The map π : Spec(TN0)→ Spec(Λ[Z/pZ×]) is a finite morphism.
• Let p ∈ Spec(Λ[Z/pZ×]) be a classical height one prime of weight
k. Then

π−1(p) = Spec(TN0 ⊗OK [[Z×p ]] O(p))

is equal to the full Hecke algebra acting on Sk(Np∞,O(p))ord[κp],
the subspace of Sk(Np∞,O(p))ord where Z×p acts via κp.

The Hecke algebra TN0 is a semi-local ring. Its maximal ideals correspond
to residual Galois representations (up to semi-simplification) that are asso-
ciated to cusp forms of tame level N0. By Theorem 4.1 the Spec(Cp)-points
of Spec(TN0) that map to classical points in Spec(Λ[Z/pZ×]) are in one-
to-one correspondence with p-ordinary eigenforms of tame level N0. We
may think of Spec(TN0) as a geometric object whose points interpolate
eigenforms in the following way: consider the formal power series

f(q) = ΣTnqn ∈ TN0 [[q]].

If p ∈ Spec(TN0) is classical of weight k then the image of f(q) in O(p)[[q]]
gives the q-expansion of a weight k eigenform. Two prime ideals corre-
spond to congruent eigenforms if and only if they are contained in the
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same maximal ideal. The minimal primes of TN0 then correspond to max-
imal irreducible families of eigenforms. We are primarily interested in the
interaction between different irreducible families.

Definition 4.2. — A Hida family is an irreducible component of
Spec(TN0).

Let C be a Hida family and recall that Spec(OK [[Z×p ]]) is isomorphic to
p − 1 copies of Spec(Λ). The image of π|C is equal to one of these copies.
This lets us regard π as a map from C to Spec(Λ). It is know that π|C is
a finite morphism that is étale at all classical points (see [18]).

4.2. p-adic L-functions

We will now construct a p-adic L-function that varies over a Hida fam-
ily. Our construction is based on the p-adic L-functions described in [10,
Section 3.1]. Let m be a maximal prime of TN0 corresponding to the semi-
simplified residual Galois representation ρssm and let TN0,m be the local-
ization of TN0 at m. The classical height one primes of TN0,m correspond
to congruent eigenforms whose semi-simplified residual Galois representa-
tion is ρssm . From now on we will assume that ρssm is p-distinguished (see
Section 3.4) and irreducible. Then we have the following multiplicity one
result:

Theorem 4.3. — Let p be a maximal prime of TN0pr,k,p whose residual
representation is irreducible and p-distinguished. Then

H1(H/Γ1(N0p
r), L̃k−2(OK))±ord

p
∼= TN0pr,k,p

as TN0pr,k,p-modules.

Proof. — This is [10, Proposition 3.1.1]. �

We define

H1(N0p
∞,OK)ord

m := lim←−H1(H/Γ1(N0p
r),OK)ord

m .

By Proposition 3.3.1 in [10], our assumptions on ρssm imply that
H1(N0p

∞,OK)±ord
m is a rank one free TN0,m-module. Fix an isomorphism

(B) H1(N0p
∞,OK)±ord

m
∼= TN0,m.

Similar to the p-adic L-function of Section 3.4, our p-adic L-functions will
be given by a measure on Z×p ⊕ Z/MZ with values in H1(N0p

∞,OK)±ord
m .

More precisely, we consider the measure sending the open set (a + prZp,
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a + MZ) in Z×p ⊕ Z/MZ to U−rp { a
prM ,∞} ∈ H1(N0p

∞,OK)±ord
m . This

defines an element

L±p (TN0,m,M) ∈ H1(N0p
∞,OK)±ord

m ⊗OK Λ[Z/MpZ×].

Using our fixed isomorphism (B), we may view L±p (TN0,m,M) as an element
of TN0,m⊗OK Λ[Z/MpZ×].We may view L±p (TN0,m,M) as a two variable p-
adic L-function that varies over the Hida family (i.e. Spec(TN0,m)) and the
cyclotomic variable. By specializing to a classical weight one prime of TN0,m

corresponding to an eigenform f we recover the p-adic L-function L±M,f from
Section 3.4. In particular, if p is the classical height one prime corresponding
to f then the image of L±p (TN0,m,M) in O(p) ⊗OK Λ[Z/MpZ×] is L±M,fu

where u is in O(p)×.
When we specialize the cyclotomic variable at a character we obtain a

p-adic L-function that interpolates the special values of the eigenforms in a
Hida family. More precisely, let χ be a primitive Dirichlet character whose
tame conductor is M . Then χ induces a ring homomorphism:

κχ : Λ[Z/MpZ×]→ OK [χ].

Let L±p (TN0,m, χ) be the image of L±p (TN0,m,M) under the map 1⊗ κχ so
that L±p (TN0,m, χ) is an element of TN0,m ⊗OK OK [χ] = TN0,m[χ]. Now let
p be a height one prime corresponding to a classical eigenform f . We have
the following interpolation property:

L±p (TN0,m, χ) ≡ L(f, χ, 1)
2πiΩ±f

mod p,

where Ω±f is a period independent of χ.

Remark. — The choice of the isomorphism in equation (B) will deter-
mines the periods Ω±f in a p-adically compatible way. Changing this iso-
morphism amounts to scaling the periods in a p-adic analytic compatible
manner.

5. Some Geometric Preliminaries

Let C1 and C2 be irreducible components of Spec(TN0,m) that cross at a
point x. It is often the case that the structure maps π from Ci to Spec(Λ)
are isomorphisms. This is an ideal situation, as functions on Spec(Λ) are
understood through the Weierstrass preparation theorem. However, there
are many examples of components whose structure maps are not isomor-
phisms (e.g. families of CM forms where the class group of the imaginary
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quadratic field is divisible by some power of p). The solution is to take small
enough affinoid neighborhoods around x so that π becomes isomorphic. We
then must choose integral models of these smaller neighborhoods in a way
so that they still carry information about congruences between cusp forms.
The purpose of this section is to prove some geometric theorems that allow
us to make this type of geometric simplification. In the first subsection we
prove a specific form of inverse function theorem. This allows us to choose
formal models for these small affinoids in a precise manner. In the second
subsection we introduce an auxiliary p-adic metric on the set of OK-points
of a schemes over OK . The purpose of this metric is to help keep track
of congruences between eigenforms. Finally, in the third subsection, we
give our precise definition of intersection multiplicity and explain its basic
properties.

5.1. The inverse function theorem for formal models

Throughout this section we let π : X → Spec(Λ) be a finite mor-
phism. We will assume X is a reduced affine scheme with a local coor-
dinate ring A. By an irreducible component of X we mean a closed sub-
scheme C = Spec(A/a) of X where a is a minimal prime ideal of A.
There is a rigid analytic space X = Xrig associated to X = Spec(A).
If f1, . . . , fn ∈ Γ(OX ,X ) are global functions on X we define X (f1, . . . , fn)
to be the subdomain whose points are

{x ∈ X ; |fi(x)|p 6 1 for all i}.

Whenever R is a OK-algebra, we will let R′ denote the quotient of R by
the ideal generated by πK power torsion.

Fix an irreducible component C of X and let x ∈ C be an OK-point
at which π is étale. Since C is finite over Spec(Λ), we have C = Spec(A)
where A = OK [[T ]][T1, . . . , Td]/I and π is given by projecting onto the T -
coordinate. After a change of variables, we may assume that x corresponds
to the point T = Ti = 0. We will write C for the rigid space associated to
C and W for the rigid space associated to Spec(Λ). The coordinate ring of
C is AK := A⊗OK K.

Lemma 5.1. — There is an affinoid neighborhood U of x in C and V of
π(x) in W such that U and V are isomorphic as rigid varieties. For any m
sufficiently large we may find N > m such that

π : C(p−NT, p−mTi)→W(p−NT )
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is an isomorphism. Furthermore, we may choose N so that

π : Spec(A〈p−NT, p−mT1, . . . , p
−mTd〉′)→ Spec(OK〈p−NT 〉)

is an isomorphism.

Proof. — Being étale at x just means that the Jacobian matrix, which
only has one element, is invertible. Thus the existence of U and V is just
a rigid analytic inverse function theorem. A proof can be found in [28,
Chapter III]. It remains to prove that U and V can be written as above.
We may find n large enough so that

U ′ = C(p−nT, p−nTi)

is contained in U . By the universal property of affinoid subdomains (see [5,
Definition 9]) we see that U ′ is an affinoid subdomain of U . Then V ′ =
π(U ′) is an affinoid subdomain of W that is of the form

W(p−n0T ) ∼= Sp(K〈p−n0T 〉)

for some n0 > n. With this in mind, we can rewrite U ′ as

U ′ = C(p−n0T, p−nTi).

Since U ′ ∼= V ′, we see that Ti = fi(p−n0T ) where fi(p−n0T ) ∈ K〈p−n0T 〉.
Moreover, we know that each fi has no constant term since all of the
coordinates of x are zero.
Let m > n. We may find N sufficiently large so that for all i we have

|fi(a)|p < p−m,

whenever a ∈ OCp satisfies |a|p < p−N . This is possible because fi(0) = 0.
Then for a ∈ Sp(K〈p−N 〉) the Ti coordinate of π|−1

U ′ (a) has p-adic absolute
value less than p−m. Thus

π−1
U ′ (Sp(K〈p−NT 〉)) = C(p−NT, p−mTi),

from which the first claimed isomorphism follows.
For the second isomorphism, let gi ∈ K〈p−NT 〉 such that p−mTi =

gi(p−NT ). We may assume that gi ∈ OK〈p−NT 〉 by sufficiently increasing
N . Consider the commutative diagram of coordinate rings:

OK〈p−NT 〉 A〈p−NT, p−mT1, . . . , p
−mTd〉′

K〈p−NT 〉 AK〈p−NT, p−mT1, . . . , p
−mTd〉.

The left vertical map and the bottom row map are injective so
that the top row is also injective. Since p−mTi − gi(p−NT ) is zero in
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AK〈p−NT, p−mT1, . . . , p
−mTd〉 we know that it is killed by a power of p

in A〈p−NT, p−mT1, . . . , p
−mTd〉. In particular p−mTi− gi(p−NT ) is zero in

A〈p−NT, p−mT1, . . . , p
−mTd〉′. Thus the image of the morphism on the top

of the diagram contains p−mTi. It follows that the top arrow is surjective
and therefore an isomorphism. �

5.2. p-adic distances and congruences

We’ll start by giving an informal description: consider an open n-dimens-
ional ball B in OK centered around the origin of radius one. We think of
OK [[T1, . . . , Tn]] as the ring of bounded analytic functions onB with integral
values. The OK-points of Spec(OK [[T1, . . . , Tn]]) correspond to the points
in B. If (x1, . . . , xn) and (y1, . . . , yn) are two OK-points in B, a natural
choice for the distance between them is

max
i
|xi − yi|p.

It would be great to translate this definition into something more intrinsic
and algebraic. In particular, we want a definition that will work for all
quotients of OK [[T1, . . . , Tn]] and OK〈T1, . . . , Tn〉.

Definition 5.2. — Let R be a ring that is a quotient of either
OK [[T1, . . . , Tn]] or OK〈T1, . . . , Tn〉. Let I be an ideal of R and let p be
a prime ideal of R corresponding to an OK-point. We define I(p) be the
ideal I+p mod p in R/p. Let |I(p)|p be the largest absolute value occurring
in I(p).

Definition 5.3. — Let p1 and p2 be prime ideals of R corresponding
to OK-points. We define d(p1, p2) to be |p1(p2)|p.

Lemma 5.4. — The following properties of d( · , · ) hold:
(1) d(p1, p2) = d(p2, p1)
(2) d(p1, p1) = 0
(3) Let (f1, . . . , fr) be any set of generators of p1. Then d(p1, p2) =

max |fi mod p2|p.
(4) Suppose R is OK [[T1, . . . , Tn]] or OK〈T1, . . . , Tn〉. Let p1, p2 ∈

Spec(R) beOK-points corresponding to the coordinates (x1, . . . , xn)
and (y1, . . . , yn). Then

d(p1, p2) = max
i
|xi − yi|p.
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(5) Let R and S be rings over OK as in the Definition 5.2. Let f :
Spec(R) → Spec(S) be a closed embedding. Then d(p1, p2) =
d(f(p1), f(p2)).

(6) The non-Archemedian triangle inequality holds. That is d(p1, p3) 6
max(d(p1, p2), d(p2, p3)).

Proof. — Statements (2), (3), and (5) are immediate. To prove (4) note
that p1 = (T1 − x1, . . . , Tn − xn) and p2 = (T1 − y1, . . . , Tn − yn). The
image of p2 in R/p1 is the ideal (x1 − y1, . . . , xn − yn). It follows that
d(p1, p2) = max |xi − yi|p. Statements (1) and (6) follow from (4). �

Lemma 5.5. — Let R be a ring over OK as in Definition 5.2. Let r be an
integer with p−re = d(p1, p2), where e is the ramification index of OK over
Zp. Then r is the largest integer making the following diagram commute:

R/p1

R OK/πrK .

A/p2

Proof. — Any such map R → OK/πr
′

K that factors through R/p1 and
R/p2 must also factor through R/(p1 + p2). Since

R/(p1 + p2) ∼=
R/p1

p2A/p1
∼= OK/πrK ,

we know that OK/πr
′

K is a quotient of OK/πrK . The Lemma follows. �

Now consider the Hecke algebra TN0 described in Section 4.1. Let m be
a maximal ideal of TN0 . The ring TN0,m is local, reduced, finite over Λ and
m-adically complete. Let r1, . . . , rn generate TN0,m as a Λ-algebra. If ri is
a unit then ri ≡ ai mod m for some ai ∈ O×K . By replacing ri with ri − ai
we may assume that each ri is in m so the ri are topologically nilpotent.
This lets us define a surjection OK [[T1, . . . , Tn]] → TN0,m by sending Ti to
ri (i.e. we have an embedding of Spec(TN0,m) into the n-dimensional open
unit ball over OK).

Lemma 5.6. — The local big Hecke algebra TN0,m embeds into an n-
dimensional open unit ball. This mapping is “isometric” with respect to
the natural p-adic metric on the p-adic ball and the metric d( · , · ) defined
above. Let p1, p2 ∈ Spec(TN0,m) be classical OK-points corresponding to
normalized eigenforms f1 and f2. If d(p1, p2) = p

−r
e then

f1 ≡ f2 mod πrK ,
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and

f1 6≡ f2 mod πr+1
K .

Informally, this means that the distance between two points in Spec(TN0,m)
tells us exactly how congruent the corresponding eigenforms are.

Proof. — The map TN0,m → TN0,m/pi
∼= OK sends Tl to the l-th Fourier

coefficient of fi. This means that f1 ≡ f2 mod πsK if and only if the following
diagram commutes:

TN0,m/p1

TN0,m OK/πsK .

TN0,m/p2

Then the Lemma is a consequence of Lemma 5.5. �

5.3. Intersection Multiplicities

In this section we will define the intersection multiplicity of two crossing
components on a curve over OK . We let X be a scheme that is finite over
Λ or OK〈T 〉 whose rigid analytic fiber X has dimension one. Let C1 and
C2 be irreducible components of X with rigid fibers C1 and C2. Let x be an
OK-point of X. There is a natural inclusion map ji : Ci → X. We define
Ii to be the OX -sheaf of ideals that define the component Ci.

Definition 5.7. — The intersection multiplicty I(X,C1, C2, x) of C1
and C2 at x is the K-dimension of

(OC1/j
∗
1 (I2))x = (OX/(I1 + I2))x = (OC2/j

∗
2 (I1))x.

Remark. — The intersection multiplicity is nonzero if and only if both
C1 and C2 contain x.

Since this definition is Zariski local we may take an affine neighborhood
U = Spec(A) of x. Let a1 and a2 be the minimal prime ideals of A defining
the components C1 and C2. Let px be the prime corresponding to x. Then

I(X,C1, C2, x) = dimK(Apx/(a1 + a2)).
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Lemma 5.8. — The following properties of intersection multiplicities
are true.

(1) Let X ′ be another scheme of finite type over Λ or OK〈T 〉 whose
rigid fiber is equal to X . Let C ′1 and C ′2 be connected components
corresponding to C1 and C2. These components cross at x′ whose
image in Xrig is x. Then I(X,C1, C2, x) = I(X ′, C ′1, C ′2, x′). In
other words, the intersection multiplicity only depends on the rigid
fiber.

(2) Recall how stalks are defined for a sheaf on a rigid analytic varieties

FXrig,x = lim−→
x∈U

U is affinoid

F(U).

Then I(X,C1, C2, x) = dimK(OXrig/(Irig1 + Irig2 ))x. That is, we
can use the rigid analytic stalks or the Zariski stalks to compute
intersection numbers.

(3) Let U be an affinoid neighborhood of x. Let U be a integral model
of U and let Di be the component of U whose rigid fiber is U ∩ Ci.
Then I(X,C1, C2, x) = I(U,D1, D2, x).

(4) Let i : Y → X be a closed subscheme such that i(Y ) contains the
generic points of C1 and C2. Then I(X,C1, C2, x) is the same as
I(Y, Y ×X C1, Y ×X C2, i

−1(x)).

Proof. — The first and third statement are immediate consequences of
the second statement. To prove the second statement, pick an affine neigh-
bodhood of x and use the fact that ÔX,x ∼= ÔXrig,x, where Â denotes the
completion of a local ring A along its maximal ideal (see [5, Section 1.7]).
The last statement is easily checked by picking an affine neighborhood
of x. �

In the simple situation of two rational curves crossing in OK〈T, T1〉, we
can come up with a precise formula for the intersection number. Let X be
finite over Spec(OK〈T 〉) and let X → OK〈T, T1〉 be a closed embedding.
Let C1 and C2 be two connected components of X that are isomorphic
both OK〈T 〉. Then we have embeddings Ci → Spec(OK〈T, T1〉) that factor
throughX and we see that Ci = Spec(OK〈T, T1〉/(T1−fi(T ))) with fi(T ) ∈
OK〈T 〉. Then we can compute the intersection number:

Lemma 5.9. — Let x be the point of X corresponding to T = 0 and
T1 = 0. The intersection I(X,C1, C2, x) is equal to the largest power of T
dividing f1(T )− f2(T ).
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Proof. — We have to compute the dimension of

OK〈T, T1〉/(T1 − f1(T )), T1 − f2(T )) ∼= OK〈T 〉/(f1(T )− f2(T )),

after localizing at x. This is the largest power of T dividing f1(T )− f2(T ).
�

6. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1. Recall our definition of TN0,m

from Section 4.1 as a local component of the Hecke algebra that acts on
the space of all cusp forms of tame level N0. There is a map

π : Spec(TN0,m)→ Spec(Λ) ∼= Spec(OK [[T ]]).

We will assume that Spec(TN0,m) has at least two distinct components C1
and C2. Let κ be an OK-point of Spec(Λ) that is the p-adic limit of classical
weights and let x1 (resp x2) be an OK-point of C1 (resp. C2) of weight κ.
After a change of variables we may take κ to be the point T = 0. We will
assume that the restriction of π to C1 (resp C2) is étale at x1 (resp x2). If
C1 and C2 cross above κ then it is possible to choose x1 and x2 to be the
same point when viewed as points of Spec(TN0,m).

6.1. Reducing to the simplest geometric situation

We may write Ci = Spec(Ai) where Ai is generated as a Λ-algebra
by Ti,1, . . . , Ti,n and xi corresponds to the origin in these coordinates. By
applying Lemma 5.1 to C1 and C2 simultaneously we know that there exists
N > m > 0 such that

Bi := Ai〈p−NT, p−mTi,1, . . . , p−mTi,n〉′ ∼= OK〈p−NT 〉.

Let Y = p−NT . Note that Spec(Bi) is a connected component of
Spec(TN0,m〈Y 〉). To see this we consider the commutative diagram

Spec(Bi) −−−−→ Spec(TN0,m〈Y 〉)

π|−1
Spec(Bi)

x y
Spec(OK〈Y 〉) Spec(OK〈Y 〉)

From this diagram we see that the generic point of Spec(Bi) must be sent
to a minimal prime in Spec(TN0,m〈Y 〉) and that the map TN0,m〈Y 〉 → Bi
is surjective.

ANNALES DE L’INSTITUT FOURIER



p-ADIC L-FUNCTIONS ON HIDA FAMILIES 759

Let Z be the scheme-theoretic union of Spec(B1) and Spec(B2) inside of
Spec(TN0,m〈Y 〉). This means that Z satisfies the following universal prop-
erty: if X → Spec(TN0,m〈Y 〉) is a closed embedding such that both maps
Spec(Bi) → Spec(TN0,m〈Y 〉) factor through X then Z → Spec(TN0,m〈Y 〉)
factors through X. Then Z comes naturally equipped with a map to
Spec(OK〈Y 〉), which we call π by abuse of notation. Let B be the co-
ordinate ring of Z, which is a finitely generated OK〈Y 〉-module. By the
structure theorem for modules over OK〈Y 〉 we know that if B has no Λ-
torsion then B is free (see [32, Theorem 13.12]). Let b ∈ B be killed by a
nonzero element f ∈ OK〈Y 〉. Since Bi has no torsion as an OK〈Y 〉-module
we know that the image of b in Bi is zero. Thus the map B → Bi factors
through B/(b). The universal property satisfied by B then tells us that b is
zero, so B has no torsion. In particular B is a free OK〈Y 〉-module of rank
two and we may write

B = OK〈Y 〉[X]/f(X,Y ),

where X is some indeterminate and f is monic of degree two in X. As π
admits two sections (one for each Spec(Bi)) the polynomial f factors into
linear terms, i.e.

(C) f(X,Y ) = (X − g1(Y ))(X − g2(Y )).

Here we have gi ∈ OK〈Y 〉 and gi corresponds to the closed subscheme
Spec(Bi). The points x1 and x2 are the same if and only if g1 and g2 have
the same constant term.
The advantage of working with Z is that both components are isomorphic

to a p-adic ball. We still need to understand what happens to the p-adic
distances introduced in Section 5.2. Let y1, y2 ∈ Z be OK-points of equal
weight (i.e. π(y1) = π(y2)). Consider the closed embedding

s : Z → TN0,m〈Y 〉.

By Lemma 5.4 closed embeddings are compatible with our p-adic dis-
tances, so we know that d(y1, y2) = d(s(y1), s(y2)). Now consider the map
t : Spec(TN0,m〈Y 〉) → Spec(TN0,m). Let T,X1, . . . , Xd be topological gen-
erators of TN0,m as an OK-algebra. This means Y = p−NT,X1, . . . , Xd are
topological generators for TN0,m〈Y 〉. In terms of these coordinates the map
t is given by

(y, x1, . . . , xd)→ (pNy, x1, . . . , xd).

In particular, write s(y1) = (a, a1, . . . , ad) and s(y2) = (b, b1, . . . , bd) in
terms of these coordinates. Then a = b since both points have the same
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weight. Thus by Lemma 5.4 we have

d(s(y1), s(y2)) = max(|ai − bi|p),

which does not change after applying t.

Lemma 6.1. — Assume that the images of y1 and y2 in Spec(TN0,m)
correspond to eigenforms fy1 and fy2 . Then d(y1, y2) 6 pme if and only if

fy1 ≡ fy2 mod πmK .

Informally this states that the distance between y1 and y2 tells us exactly
how congruent the corresponding forms are.

Proof. — This follows from the above discussion and from Lemma 5.6.
�

6.2. An ideal of differences of L-values

Recall that for a Dirichlet character χ with conductor prime to p

there is a one variable p-adic L-function L±p (TN0,m, χ) ∈ TN0,m[χ]. Let
L±p (Bi, χ) be the image of this function induced by the map Spec(Bi[χ])→
Spec(TN0,m[χ]). Then for x ∈ Spec(Bi) corresponding to a classical modu-
lar form fx we see that L±p (Bi, χ) evaluated at x is equal to the algebraic
part of L(fx, χ, 1). The isomorphism π : Spec(Bi[χ]) → Spec(OK [χ]〈Y 〉)
allows us to regard L±p (Bi, χ) as a power series in OK [χ]〈Y 〉. In particu-
lar, let κ ∈ Spec(OK〈Y 〉) be an OK-point corresponding to an element in
πKOK (which we refer to as κ by abuse of notation). Let yi = π−1(κ) ∈
Spec(Bi[χ]). Then the evaluation of this power series at κ is equal to
the evaluation of L±p (Bi, χ) at yi. Informally we write L±p (Bi, χ)(κ) =
L±p (Bi, χ)(yi).

Definition 6.2. — Let u(Y ) be a unit in OK〈Y 〉 and let OnrK be the
ring of integers of the maximal unramified extension of K. Then we de-
fine Iu to be the ideal of OnrK 〈Y 〉 generated by the elements L±p (B1, χ) −
u(Y )L±p (B2, χ) for all Dirichlet characters χ ∈ Aε.

Lemma 6.3. — Suppose that κ ∈ Spec(OK〈Y 〉) corresponds to a classi-
cal weight. Then |Iu(κ))|p is greater than or equal to |g1(κ)−g2(κ)|p (recall
that |Iu(κ))|p is the supremum of the absolute values of the elements in Iu
evaluated at κ).
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Proof. — Let yi be the point of Spec(Bi) lying above κ. From (C) we may
view yi as being in the XY -plane with coordinates (gi(κ), κ). In particular
we find that d(y1, y2) = |g1(κ) − g2(κ)|p. Assume |Iu(κ)|p = p

−n
e . This

means
L±p (B1, χ)(κ) ≡ L±p (B2, χ)(κ)u(κ) mod πnK

for χ ∈ Aε. Let fyi be the eigenform corresponding to yi. The interpolation
property of our p-adic L-function gives

L(fy1 , χ, 1)
2πiΩ±fy1

≡ L(fy2 , χ, 1)
2πiΩ±fy2

u(κ) mod πnK .

Since u(κ) is a unit in OK we know by Theorem 3.8 that fy1 ≡ fy2 mod πnK .
From Lemma 6.1 we conclude

|g1(κ)− g2(κ)|p = d(y1, y2) 6 p
−n
e = |Iu(κ)|p. �

6.3. Proof of Theorem 1.1

We are now ready to prove Theorem 1.1 by comparing g1(Y )−g2(Y ) with
the ideal Iu. The proof involves using Lemma 6.3 to see how congruences
behave as we approach the crossing point at classical weights.

Lemma 6.4. — The largest power of Y dividing the ideal Iu is at most
I(TN0 , C1, C2, x1).

Proof. — Let n = I(TN0 , C1, C2, x) and let m be the largest power of Y
dividing Iu. Since OKnr 〈Y 〉 is Noetherian we may find χ1, . . . , χd such that

Iu = (L±p (B1, χ1)− u(Y )L±p (B2, χ1), . . . , L±p (B1, χd)− u(Y )L±p (B2, χd)).

The Weierstrass preparation theorem allows us to write

L±p (B1, χi)− u(Y )L±p (B2, χi) = Y mχiPχi(Y )uχi(Y )πrχiK ,

where Pχi(Y ) is a polynomial not divisible by Y and uχi(Y ) is a unit in
OKnr 〈Y 〉. Similarly, by Lemma 5.9 we may write

g1(Y )− g2(Y ) = Y nP (Y )u(Y )πrK ,

where P (Y ) is a polynomial not divisible by Y and u(Y ) is a unit in OK〈Y 〉.
Pick a sequence tk of points in Spec(OK〈Y 〉) that converge to zero p-

adically such that each tk corresponds to a classical weight. By picking the
tk close enough to zero we may assume that c = vp(P (tk)) is constant. By
Lemma 6.3 we know that

min
i
vp(L±p (B1, χi)(tk)− u(tk)L±p (B2, χi)(tk)) 6 vp(g1(tk)− g2(tk)).
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Then since min(mχi) = m we find

mvp(tk) 6 min
i
vp(L±p (B1, χi)(tk)− u(tk)L±p (B2, χi)(tk))

6 vp(g1(tk)− g2(tk))

= nvp(tk) + r

e
+ c.

Letting k go to infinity (so vp(tk) gets large) we see that m 6 n. �

Proof of Theorem 1.1. — Let us first assume that x1 ∈ C1 and x2 ∈ C2
are equal to the same point x in Spec(TN0,m) and that the two components
cross at x with multiplicity d. Let ai be the minimal prime ideal of B such
that B/ai = Bi. Consider the commutative diagrams obtained by localizing
and completing the rings B,Bi, B/(a1 + a2) and OK〈Y 〉 at x.

B̂2,x2

T̂N0,m,x K[[Y ]] B̂x/(a1 + a2).

B̂1,x1

Here the vertical arrows are isomorphisms. The K-dimension of B̂x/(a1 +
a2) is d by our definition of intersection multiplicity (see Section 5.7). Fur-
thermore, since the arrows into B̂x/(a1 + a2) are surjective, we see that
B̂x/(a1 + a2) = K[Y ]/Y d. Following L±p (TN0,m, χ) along the top and bot-
tom of the diagram shows us that

L±p (B1, χ) ≡ L±p (B2, χ) mod Y d,

when we view both L-functions as elements of K[[Y ]]. Since Y generates
the maximal ideal of K[[Y ]], we have proven one direction of the theorem.
Conversely, assume that there exists u(Y ) ∈ OK〈Y 〉× such that

L±p (B1, χ) ≡ u(Y )L±p (B2, χ) mod Y d,

for χ ∈ Aε. This means the ideal Iu is divisible by Y d and then Lemma 6.4
tells us that the two components intersect with multiplicity at least d. �

7. Some examples

In this section we look at two Hida families of different levels with the
same residual representation. Under a suitable hypothesis on the levels, we
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can determine if the two families will cross in a higher level by looking at the
L-functions on each family modified by appropriate Euler factors. These
modified L-functions were introduced in [10] for trivial tame character using
results from [33].

7.1. Components of different level

In this subsection we apply our results on crossing components to the
situation described in [10, Section 2.6]. We will briefly summarize the set
up. For details and references see [10]. Let ρ be a modular residual Galois
representation and let V be the Fq vector space on which GQ acts. We will
assume that ρ is odd, irreducible, p-ordinary, and p-distinguished. Fix a
p-stabilization of ρ. Let N(ρ) be the conductor of ρ. For a prime l 6= p let
nl be the dimension of the Il-coinvariant of V (i.e. the largest quotient of
V that is invariant under the inertial group Il). Let Σ be a finite set of
primes not containing p. Define

N(Σ) := N(ρ)
∏
l∈Σ

lnl .

For any tame level N0 we let T′N0
be the Hecke algebra acting on

S(N0p
∞,OK) generated by Up and Tl for all l - N0p (explicitly, we are

just leaving out the Atkin Lehner operators).
We let Tnew

N0
denote the Hecke algebra generated by Tl for primes l - N0p

and Ul for l|N0p acting on the subspace of S(N0p
∞,OK) consisting of all

newforms. Then we have a natural map of Λ-algebras

T′N(Σ) → ΠM |N(Σ)Tnew
M .

This map becomes an isomorphism after tensoring over Λ with its fraction
field L. As described by Hida [19] there is a Galois representation ρ′M :
GQ → GL2(Tnew

M ⊗ L) for any M . This gives a Galois representation ρ′ :
GQ → GL2(T′N(Σ) ⊗ L). We have the following two theorems

Theorem 7.1. — There exists a unique maximal prime m of T′N(Σ) such
that the residual representation of the composition

GQ → GL2(T′N(Σ))→ GL2(TN(Σ)/m)

is ρ. Furthermore, there is a unique maximal prime n of TN(Σ) such that
the two local Hecke algebras are isomorphism:

TN(Σ),n ∼= T′N(Σ),m.

Proof. — This is [10, Theorem 2.1.2]. �
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Theorem 7.2. — Let a be a minimal prime ideal of TN(Σ),n. There is
an integer N(a), depending on a, that divides N(Σ) and a minimal prime
ideal a′ of Tnew

N(a) that makes the following diagram commute.

TN(Σ),n ∼= T′N(Σ),m −−−−→ ΠM |N(Σ)Tnew
My y

TN(Σ),n/a −−−−→ Tnew
N(a)/a

′

Proof. — This follows from 7.1 and the isomorphism

T′N(Σ) ⊗ L → ΠM |N(Σ)Tnew
M ⊗ L.

See [10, Proposition 2.5.2] for more details. �

Remark. — We may think of Spec(TN(Σ),n/a) as a family of old forms
of level N(Σ) and Spec(Tnew

N(a)/a
′) as a family of new forms of level N(a).

If x ∈ Spec(TN(Σ),n) corresponds to the classical old form fx, then there
is a corresponding x′ ∈ Spec(Tnew

N(a)/a
′) that is sent to x under the map

Spec(Tnew
N(a)/a

′)→ Spec(TN(Σ),n/a). The point x′ corresponds to a newform
fx′ of level N(a). The Fourier coefficients of fx and fx′ agree away from
the primes dividing the level N(Σ).

By Theorem 1.1 we can determine when two components of TN(Σ) cross
by looking at p-adic L-functions on each component. It is then natural
to ask if we can determine when a family of newforms of level M1|N(Σ)
will cross a family of newforms of level M2|N(Σ) by looking at p-adic
L-functions. To employ Theorem 1.1 it is necessary to relate our p-adic L-
functions on Spec(TN(Σ),n/a) to our p-adic L-functions on Spec(TN(a),n/a

′).
The former interpolates special values of eigenforms for the Hecke algebra
TN(Σ) and the later interpolates special values of eigenforms for the Hecke
algebra TN(a). As these two Hecke algebras only differ at l|N(Σ), it is nat-
ural to suspect that the two L-functions will be the same after introducing
some Euler factors for the primes l|N(Σ).

Definition 7.3. — Let l 6= p be a prime and let χ be a Dirichlet char-
acter of level Mpr. Define EN(a)(χ, l) ∈ TN(a) as follows:

EN(a)(χ, l) :=
{

1− χ(l)Tll−1 + χ(l2)〈l〉l−3 if l - N(a)
1− χ(l)Tll−1 if l|N(a)

We then define
EΣ(a, χ) := Πl∈ΣEN(a)(χ, l).
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Remark. — This definition is similar to Definitions 2.7.1 and 3.6.1 in [10].
The Euler factor of [10] varies over a branch of the Hida family and the
cyclotomic variable, while our definition only varies over the branch. If
the conductor of χ is a power of p then our Euler factor is equal to a
specialization of the Euler factor defined in [10].

Proposition 7.4. — Let χ be a Dirichlet character. There exists a unit
u ∈ TN(a)/a

′ independent of χ Dirichlet character such that

L±p (TN(Σ)/a, χ) = uEΣ(a′, χ)L±p (TN(a)/a
′, χ).

Proof. — The proof follows from the computations in beginning of the
proof of Theorem 3.6.2 in [10]. The only difference is that we are specializing
in the cyclotomic variable and we allow a nontrivial tame conductor. �

Theorem 7.5. — Let M1 and M2 be two integers dividing N(Σ). Let
ai be a minimal prime ideal of Tnew

Mi
. Let C1 and C2 be the components of

TN(Σ) corresponding to a1 and a2. The following are equivalent:
• The components C1 and C2 cross at a point x. We assume that
each component is étale at x over the weight space and the weight
κ of x is the p-adic limit of classical weights.

• There exists a point xi of Spec(Tnew
Mi

) over κ and a unit u of Λ
such that for all Dirichlet characters χ ∈ Aε the value of
uL±p (Tnew

M1
/a1, χ)EΣ(a1, χ) evaluated at x1 is the same as

L±p (Tnew
M2

/a2, χ)EΣ(a2, χ) evaluated at x2.

Proof. — This is a consequence of Proposition 7.4 and Theorem 1.1. �

8. Ramification over the weigth space

In this section we describe how p-adic L-functions behave when a Hida
family is ramified over the weight space. Let C be a Hida family contained
in Spec(TN0). Then C is affine and we let A be the coordinate ring. For a
Dirichlet character χ whose conductor is prime to p, we let L±p (C,χ) denote
the restriction of L±p (TN0,m, χ) to C. Informally, the main result of this
section says that C has ramified points over Spec(Λ) = Spec(OK [[T ]]) if and
only if there exists an L-function L±p (C,χ) that acquires singularities after
being differentiated in the direction of the weight space. The singularities
will be at ramified points.
We begin by making some geometric simplifications similar to those in

Section 6.1. Let x be a regular OK-point of C that is the p-adic limit of
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classical points. Assume that π is ramified at x. The ring Ax is a discrete
valuation ring since x is a regular point of codimension one. Let X be a
uniformizing element of Ax. We may assume that X is in A by clearing any
denominators. Since X is topologically nilpotent in A we have a map

g : C = Spec(A)→ Spec(OK [[X]]),

which is étale at x. Let Y1, . . . , Yd be generators of A as an OK [[X]]-algebra.
We will assume that x is the origin in terms of these coordinates. Then
Lemma 5.1 says that there exists m large enough and N > m such that
the map

g : Spec(A〈p−NX, p−mY1, . . . , p
−mYd〉 → Spec(OK〈p−NX〉)

is an isomorphism. If we let X0 = p−NX, we can write T = f(X0) where
f(X0) ∈ OK〈X0〉. Define B to be OK〈X0, T 〉/(T − f(X0)) and note that

B ∼= A〈p−NX, p−mY1, . . . , p
−mYd〉.

We may think of Spec(B) as a small p-adic neighborhood of C embedded
into the X0T -plane. There is a natural map

h : Spec(B)→ Spec(TN0,m),

and we let L±p (B,χ) denote the image of L±p (TN0,m, χ) under this map. The
following lemma relates distances in Spec(B) to our p-adic L-functions and
may be thought of as a counterpart to Lemma 6.3

Lemma 8.1. — Let a1, a2 ∈ Spec(B) be OK-points corresponding to
classical eigenforms of equal weight (i.e. they have the same T -coordinate).
Assume that

min
χ∈Aε

vp(L±p (B,χ)(a1)− L±p (B,χ)(a2)) = r

e
.

Then
d(a1, a2) 6 p

−r
e +N .

Proof. — Let fa1 and fa2 be the eigenforms corresponding h(a1) and
h(a2). The interpolation property of L±p (B,χ) gives

L(fa1 , χ, 1)
2πiΩfa1

≡ L(fa2 , χ, 2)
2πiΩfa2

mod πrK .

Applying Theorem 3.8 and Lemma 5.6 gives

d(h(a1), h(a2)) 6 p
−r
e .

We need to relate d(h(a1), h(a2)) to d(a1, a2). To do this, we note that C is
a subscheme of Spec(OK〈X,Y1, . . . , Yd〉) and Spec(B) is a closed subscheme
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of Spec(OK〈p−NX, p−mY1, . . . , p
−mYd〉). In terms of these coordinates, the

map h is given by

(x, y1, . . . , yd)→ (pNx, pmy1, . . . , p
myd).

By Lemma 5.4 we may compute distances with these coordinates. Since
N > m we see that d(a1, a2) 6 pNd(h(a1), h(a2)). We conclude

d(a1, a2) 6 pNd(h(a1), h(a2)) 6 p
−r
e +N . �

Lemma 8.2. — Let s ∈ A be a function on C such that the image of s
in OK〈X0〉 has a nonzero linear term. Let r be the ramification index of π
at x. Then d

dT (s) has a pole at x of order r − 1.

Proof. — Recall that T = f(X0) in B. The ramification index r is equal
to the power of X0 dividing f(X0). In particular f(X0) = p (X0)Xr

0 , where
p(X0) is not divisible by X0. Differentiating the equation

T − p(X0)Xr
0 = 0

with respect to T yields
dX0

dT = 1
Xr−1

0

1
X0p′(X0) + rp(X0) .

This shows that dX0
dT has a pole at X0 = 0 of order r − 1. By viewing s as

a power series in OK〈X0〉 and differentiating term by term, we see that s
has a pole of order r − 1 if it has a nonzero linear term. �

Proof of Theorem 1.2. — First let’s assume that π is étale at x. Infor-
mally, this means that a small neighborhood of x looks just like part of
Spec(Λ), so taking the derivative with respect to T should not introduce
any poles. More precisely, let Âx be the completion along the maximal ideal
of the stalk of OC at x. Define Λ̂K,π(x) to be the completion along the max-
imal ideal of the stalk of OΛ at π(x). The natural map from Λ̂K,π(x) → Âx
is an étale morphism of complete local rings with isomorphic residue fields.
This means the two rings are isomorphic. This isomorphism commutes with
the differential operator d

dT . In particular there is a map A→ Λ̂K,π(x) that
commutes with d

dT and the maximal ideal of Λ̂K,π(x) pulls back to x. It is
then clear that for any f ∈ A the function d

dT f does not have a pole at x.
The converse is slightly more difficult. By Lemma 8.2 it suffices to show

that there exists a primitive Dirichlet character χ ∈ Aε such that L±p (B,χ)
has a linear term when viewed as a power series inX0. Assume the contrary.
We may write

L±p (B,χ) =
∞∑
i=0

ci,χX
i
0,
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where ci,χ ∈ OK and c1,χ is zero. Now let x1 = (α, a1) and x2(α, a2) be
two distinct OK-points in Spec(B), where α is the T -coordinate and ai
is the X0-coordinate. We take both points to correspond to eigenforms,
which have the same weight since they have the same T -coordinate. Since
x, which is given by the coordinates (0, 0), is the limit of classical points,
we may let α be arbitrarily close to zero. Then we may also take a1 and a2
to be close to zero, since a1 and a2 are roots of α − f(X0). In particular,
we may assume that vp(a1) and vp(a2) are both greater than N . This gives

vp(aj1 − a
j
2) = vp(a1 − a2) + vp(aj−1

1 + · · ·+ aj−1
2 ) > vp(a1 − a2) +N,

whenever j > 2. We then apply Lemma 8.1 to get

vp(a1 − a2) = − logp d(a1, a2)
> min

χ
vp(L±p (B,χ)(a1)− L±p (B,χ)(a2))−N

> min
χ
vp

( ∞∑
i=0

ci,χa
i
1 −

∞∑
i=0

ci,χa
i
2

)
−N

= min
χ
vp

( ∞∑
i=2

ci,χ(ai1 − ai2)
)
−N

> vp(a1 − a2),

which gives a contradiction. �

For the previous result, we choose a parameter for the weight space.
The result holds true for any parameter and it would be nice to have
a statement that makes no reference to any choice of parameter. This
can be achieved using the Gauss–Manin connection, which can be defined
without choosing a basis. For an overview of the Gauss–Manin connection
see [21] or [22]. More precisely, consider the relative 0-th de Rham coho-
mology group H0

dR(C/Spec(Λ)) (see for example [14]). We may identify
H0
dR(C/Spec(Λ)) with π∗(OC). Let U be an open subscheme of C such

that π|U is étale. Then following [22] there is a Gauss–Manin connection

O : H0
dR(C/Spec(Λ))|U → H0

dR(C/Spec(Λ))⊗ ΩSpec(Λ)|U .

If f ∈ Γ(OC , U) and T0 is any parameter of the weight space then O(f) =
d

dT0
fdT0. The map O makes sense on all of Spec(Λ) when we allow poles

in the image.

Corollary 8.3. — Let κ be a OK point of Λ. The map π is étale at
the points above κ if and only if for all χ ∈ Aε whose conductor is prime
to p we have

O(L±p (C,χ)) ∈ Γ(π∗OC ⊗ ΩSpec(Λ), V )
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where V is some Zariski open containing κ.

Proof. — The “only if” direction follows from the existence of the Gauss–
Manin connection for smooth maps. For the “if” let x be a point in π−1(κ).
Let χ ∈ Aε. By our hypothesis O(L±p (C,χ)) ∈ (π∗OC ⊗ ΩSpec(Λ))κ Note
that

(π∗OC ⊗ ΩSpec(Λ))κ ∼= Aκ ⊗ΛK,κ ΩSpec(Λ),κ.

Choose a parameter T0 of the weight space and let D be the map from
ΩSpec(Λ),κ → OSpec(Λ) that sends dT0 to 1. Then D ◦ O is the map Aκ →
Aκ given by differentiation with respect to T0. There is a natural map
l : Aκ → A(x), the localization of A at x. Since O(L±p (C,χ)) is contained
in (π∗OC ⊗ΩSpec(Λ))κ we see that l ◦D ◦O(L±p (C,χ)) is contained in A(x).
This means that d

dT0
L±p (C,χ) does not have a pole at x. The corollary then

follows from Theorem 1.2 �
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