Abelianization of some groups of interval exchanges
[Abélianisé de certains groupes d’échange d’intervalles]
Annales de l'Institut Fourier, Tome 72 (2022) no. 1, pp. 59-108.

Soit IET le groupe des permutations de [0,1[ qui sont continues en dehors d’un ensemble fini, continues à droite et qui sont des translations par morceaux. Arnoux–Fathi et Sah ont établi un isomorphisme entre l’abélianisé d’IET et la seconde puissance extérieure des réels sur les rationnels.

Soit Γ un sous-groupe de / et Γ ˜ sa pré-image. On note par IET(Γ) le sous-groupe d’IET composé de l’ensemble des éléments continus en dehors de Γ. On établit un isomorphisme explicite entre l’abélianisé d’IET(Γ) et la seconde puissance antisymétrique de Γ ˜ sur . Ce groupe a souvent de la 2-torsion.

Puis nous définissons IET comme le groupe de tous les échanges d’intervalles avec renversements. Pour tout sous-groupe IET (Γ), on établit un isomorphisme explicite entre son abélianisé et un groupe abélien 2-élémentaire explicite.

Let IET be the group of permutations of [0,1[ which are continuous outside a finite set, right-continuous and piecewise translations. The abelianization homomorphism of IET was described by Arnoux–Fathi and Sah. It gives an isomorphism between the abelianization of IET and the second exterior power of the reals over the rationals.

Let Γ be a subgroup of / and let Γ ˜ be its preimage in . We denote by IET(Γ) the subgroup of IET consisting of all elements continuous outside Γ. We establish an explicit isomorphism between its abelianization and the second skew-symmetric power of Γ ˜ over . This group often has non-trivial 2-torsion.

Then, we define IET as the group of all interval exchange transformations with flips. For every subgroup IET (Γ) we establish an explicit isomorphism between its abelianization and an explicit 2-elementary abelian group.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3466
Classification : 37E05, 20F65, 20J06
Keywords: Interval exchange, abelianization.
Mot clés : Échange d’intervalles, abélianisation.

Lacourte, Octave 1

1 University Claude Bernard Lyon 1 Institut Camille Jordan 43 blvd du 11 novembre 1918 69622 Villeurbanne, France
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2022__72_1_59_0,
     author = {Lacourte, Octave},
     title = {Abelianization of some groups of interval exchanges},
     journal = {Annales de l'Institut Fourier},
     pages = {59--108},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {72},
     number = {1},
     year = {2022},
     doi = {10.5802/aif.3466},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3466/}
}
TY  - JOUR
AU  - Lacourte, Octave
TI  - Abelianization of some groups of interval exchanges
JO  - Annales de l'Institut Fourier
PY  - 2022
SP  - 59
EP  - 108
VL  - 72
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3466/
DO  - 10.5802/aif.3466
LA  - en
ID  - AIF_2022__72_1_59_0
ER  - 
%0 Journal Article
%A Lacourte, Octave
%T Abelianization of some groups of interval exchanges
%J Annales de l'Institut Fourier
%D 2022
%P 59-108
%V 72
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3466/
%R 10.5802/aif.3466
%G en
%F AIF_2022__72_1_59_0
Lacourte, Octave. Abelianization of some groups of interval exchanges. Annales de l'Institut Fourier, Tome 72 (2022) no. 1, pp. 59-108. doi : 10.5802/aif.3466. https://aif.centre-mersenne.org/articles/10.5802/aif.3466/

[1] Arnoux, Pierre Échanges d’intervalles et flots sur les surfaces, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French) (Monograph. Enseign. Math.), Volume 29, Univ. Genève, Geneva, 1981, pp. 5-38 | MR | Zbl

[2] Arnoux, Pierre Un invariant pour les échanges d’intervalles et les flots sur les surfaces, Ph. D. Thesis, Université de Reims (1981)

[3] Dahmani, François; Fujiwara, Koji; Guirardel, Vincent Free groups of interval exchange transformations are rare, Groups Geom. Dyn., Volume 7 (2013) no. 4, pp. 883-910 | DOI | MR | Zbl

[4] Dahmani, François; Fujiwara, Koji; Guirardel, Vincent Solvable groups of interval exchange transformations, Ann. Fac. Sci. Toulouse Math. (6), Volume 29 (2020) no. 3, pp. 595-618 | DOI | MR | Zbl

[5] Elliott, George A. On totally ordered groups, and K 0 , Ring theory (Proc. Conf., Univ. Waterloo, Waterloo, 1978) (Lecture Notes in Math.), Volume 734, Springer, Berlin (1979), pp. 1-49 | MR | Zbl

[6] Guelman, Nancy; Liousse, Isabelle Bounded Simplicity of Affine Interval Exchange Transformations and Interval Exchange Transformations (2019) (https://arxiv.org/abs/1910.08923)

[7] Guelman, Nancy; Liousse, Isabelle Reversible Maps and Products of Involutions in Groups of IETS (2019) (https://arxiv.org/abs/1907.01808)

[8] Nekrashevych, Volodymyr Simple groups of dynamical origin, Ergodic Theory Dynam. Systems, Volume 39 (2019) no. 3, pp. 707-732 | DOI | MR | Zbl

[9] Novak, Christopher F. Discontinuity-growth of interval-exchange maps, J. Mod. Dyn., Volume 3 (2009) no. 3, pp. 379-405 | DOI | MR | Zbl

[10] Sah, Chih-Han Scissors congruences of the interval (1981) (preprint)

[11] Viana, Marcelo Ergodic theory of interval exchange maps, Rev. Mat. Complut., Volume 19 (2006) no. 1, pp. 7-100 | DOI | MR | Zbl

[12] Vorobets, Ya. B. On the commutator of the group of interval exchanges, Tr. Mat. Inst. Steklova, Volume 297 (2017), pp. 313-325 English version: Proc. Steklov Inst. Math. 297 (2017), no. 1, 285–296 | DOI | MR

Cité par Sources :