Soit IET le groupe des permutations de qui sont continues en dehors d’un ensemble fini, continues à droite et qui sont des translations par morceaux. Arnoux–Fathi et Sah ont établi un isomorphisme entre l’abélianisé d’IET et la seconde puissance extérieure des réels sur les rationnels.
Soit un sous-groupe de et sa pré-image. On note par IET le sous-groupe d’IET composé de l’ensemble des éléments continus en dehors de . On établit un isomorphisme explicite entre l’abélianisé d’IET et la seconde puissance antisymétrique de sur . Ce groupe a souvent de la -torsion.
Puis nous définissons IET comme le groupe de tous les échanges d’intervalles avec renversements. Pour tout sous-groupe IET, on établit un isomorphisme explicite entre son abélianisé et un groupe abélien -élémentaire explicite.
Let IET be the group of permutations of which are continuous outside a finite set, right-continuous and piecewise translations. The abelianization homomorphism of IET was described by Arnoux–Fathi and Sah. It gives an isomorphism between the abelianization of IET and the second exterior power of the reals over the rationals.
Let be a subgroup of and let be its preimage in . We denote by IET the subgroup of IET consisting of all elements continuous outside . We establish an explicit isomorphism between its abelianization and the second skew-symmetric power of over . This group often has non-trivial -torsion.
Then, we define IET as the group of all interval exchange transformations with flips. For every subgroup IET we establish an explicit isomorphism between its abelianization and an explicit -elementary abelian group.
Révisé le :
Accepté le :
Publié le :
Keywords: Interval exchange, abelianization.
Mot clés : Échange d’intervalles, abélianisation.
Lacourte, Octave 1
@article{AIF_2022__72_1_59_0, author = {Lacourte, Octave}, title = {Abelianization of some groups of interval exchanges}, journal = {Annales de l'Institut Fourier}, pages = {59--108}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {72}, number = {1}, year = {2022}, doi = {10.5802/aif.3466}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3466/} }
TY - JOUR AU - Lacourte, Octave TI - Abelianization of some groups of interval exchanges JO - Annales de l'Institut Fourier PY - 2022 SP - 59 EP - 108 VL - 72 IS - 1 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3466/ DO - 10.5802/aif.3466 LA - en ID - AIF_2022__72_1_59_0 ER -
%0 Journal Article %A Lacourte, Octave %T Abelianization of some groups of interval exchanges %J Annales de l'Institut Fourier %D 2022 %P 59-108 %V 72 %N 1 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3466/ %R 10.5802/aif.3466 %G en %F AIF_2022__72_1_59_0
Lacourte, Octave. Abelianization of some groups of interval exchanges. Annales de l'Institut Fourier, Tome 72 (2022) no. 1, pp. 59-108. doi : 10.5802/aif.3466. https://aif.centre-mersenne.org/articles/10.5802/aif.3466/
[1] Échanges d’intervalles et flots sur les surfaces, Ergodic theory (Sem., Les Plans-sur-Bex, 1980) (French) (Monograph. Enseign. Math.), Volume 29, Univ. Genève, Geneva, 1981, pp. 5-38 | MR | Zbl
[2] Un invariant pour les échanges d’intervalles et les flots sur les surfaces, Ph. D. Thesis, Université de Reims (1981)
[3] Free groups of interval exchange transformations are rare, Groups Geom. Dyn., Volume 7 (2013) no. 4, pp. 883-910 | DOI | MR | Zbl
[4] Solvable groups of interval exchange transformations, Ann. Fac. Sci. Toulouse Math. (6), Volume 29 (2020) no. 3, pp. 595-618 | DOI | MR | Zbl
[5] On totally ordered groups, and , Ring theory (Proc. Conf., Univ. Waterloo, Waterloo, 1978) (Lecture Notes in Math.), Volume 734, Springer, Berlin (1979), pp. 1-49 | MR | Zbl
[6] Bounded Simplicity of Affine Interval Exchange Transformations and Interval Exchange Transformations (2019) (https://arxiv.org/abs/1910.08923)
[7] Reversible Maps and Products of Involutions in Groups of (2019) (https://arxiv.org/abs/1907.01808)
[8] Simple groups of dynamical origin, Ergodic Theory Dynam. Systems, Volume 39 (2019) no. 3, pp. 707-732 | DOI | MR | Zbl
[9] Discontinuity-growth of interval-exchange maps, J. Mod. Dyn., Volume 3 (2009) no. 3, pp. 379-405 | DOI | MR | Zbl
[10] Scissors congruences of the interval (1981) (preprint)
[11] Ergodic theory of interval exchange maps, Rev. Mat. Complut., Volume 19 (2006) no. 1, pp. 7-100 | DOI | MR | Zbl
[12] On the commutator of the group of interval exchanges, Tr. Mat. Inst. Steklova, Volume 297 (2017), pp. 313-325 English version: Proc. Steklov Inst. Math. 297 (2017), no. 1, 285–296 | DOI | MR
Cité par Sources :