Nous généralisons la formule de Künneth bien connue pour les groupes de Chow au cas d’une théorie homologique orientée de Borel–Moore arbitraire qui vérifient des propriétés de localisation et de descente (par exemple le bordisme algébrique) pour les produits avec une variété torique. En corollaire, nous obtenons un théorème de coefficients universels pour les anneaux de cohomologie opérationnelle. Nous donnons également une nouvelle description, de nature homologique, des groupes d’homologie des variétés toriques lisses, qui nous permet de calculer les groupes de bordisme algébrique de quelques variétés toriques singulières.
We generalize the well known Künneth formula for Chow groups to an arbitrary oriented Borel–Moore homology theory satisfying localization and descent (e.g. algebraic bordism) when taking a product with a toric variety. As a corollary we obtain a universal coefficient theorem for the operational cohomology rings. We also give a new, homological, description for the homology groups of smooth toric varieties, which allows us to compute the algebraic bordism groups of some singular toric varieties.
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3452
Keywords: oriented Borel–Moore homology, toric varieties, algebraic bordism
Mot clés : homologie orienté de Borel–Moore, variété torique, cobordisme algébrique
Annala, Toni M. 1
@article{AIF_2021__71_6_2431_0, author = {Annala, Toni M.}, title = {Oriented {Borel{\textendash}Moore} homologies of toric varieties}, journal = {Annales de l'Institut Fourier}, pages = {2431--2470}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {6}, year = {2021}, doi = {10.5802/aif.3452}, zbl = {07554451}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3452/} }
TY - JOUR AU - Annala, Toni M. TI - Oriented Borel–Moore homologies of toric varieties JO - Annales de l'Institut Fourier PY - 2021 SP - 2431 EP - 2470 VL - 71 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3452/ DO - 10.5802/aif.3452 LA - en ID - AIF_2021__71_6_2431_0 ER -
%0 Journal Article %A Annala, Toni M. %T Oriented Borel–Moore homologies of toric varieties %J Annales de l'Institut Fourier %D 2021 %P 2431-2470 %V 71 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3452/ %R 10.5802/aif.3452 %G en %F AIF_2021__71_6_2431_0
Annala, Toni M. Oriented Borel–Moore homologies of toric varieties. Annales de l'Institut Fourier, Tome 71 (2021) no. 6, pp. 2431-2470. doi : 10.5802/aif.3452. https://aif.centre-mersenne.org/articles/10.5802/aif.3452/
[1] Operational K-theory, Doc. Math., Volume 20 (2015), pp. 357-399 | MR | Zbl
[2] Algebraic Cobordism of Classifying Spaces (2009) (https://arxiv.org/abs/0907.4437)
[3] Equivariant intersection theory, Invent. Math., Volume 131 (1998) no. 3, pp. 595-634 | DOI | MR
[4] Introduction to Toric Varieties, Annals of Mathematics Studies, 131, Princeton University Press, 1993 | DOI
[5] Intersection Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 2, Springer, 1998 | DOI
[6] Intersection theory on spherical varieties, J. Algebr. Geom., Volume 4 (1995), pp. 181-193 | MR | Zbl
[7] Intersection Theory on Toric Varieties, Topology, Volume 36 (1997) no. 2, pp. 335-353 | DOI | MR | Zbl
[8] Equivariant algebraic cobordism, J. Reine Angew. Math., Volume 684 (2013), pp. 87-112 | MR | Zbl
[9] Equivariant cobordism for torus actions, Adv. Math., Volume 231 (2012) no. 5, pp. 2858-2891 | DOI | MR | Zbl
[10] The algebraic cobordism ring of toric varieties, Int. Math. Res. Not., Volume 2013 (2013) no. 23, pp. 5426-5464 | DOI | MR | Zbl
[11] Intersection theory in algebraic cobordism, J. Pure Appl. Algebra, Volume 221 (2017) no. 7, pp. 1645-1690 | DOI | MR | Zbl
[12] Algebraic Cobordism, Springer Monographs in Mathematics, Springer, 2007
[13] Bivariant Algebraic Cobordism, Algebra Number Theory, Volume 9 (2015), pp. 1293-1336 | MR | Zbl
[14] Descent for algebraic cobordism, J. Algebr. Geom., Volume 4 (2015), pp. 787-804 | MR | Zbl
[15] Projectivity in algebraic cobordism, Can. J. Math., Volume 3 (2015), pp. 639-653 | DOI | MR | Zbl
[16] Geometric Invariant Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 2. Folge., 34, Springer, 1994 | DOI | Zbl
[17] Equivariant Chow cohomology of toric varieties, Math. Res. Lett., Volume 13 (2006), pp. 29-41 | DOI | MR | Zbl
[18] Chow groups, Chow cohomology, and linear varieties, Forum Math. Sigma, Volume 2 (2014), e17, 25 pages | MR | Zbl
Cité par Sources :