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ORIENTED BOREL–MOORE HOMOLOGIES OF TORIC
VARIETIES

by Toni M. ANNALA

Abstract. — We generalize the well known Künneth formula for Chow groups
to an arbitrary oriented Borel–Moore homology theory satisfying localization and
descent (e.g. algebraic bordism) when taking a product with a toric variety. As a
corollary we obtain a universal coefficient theorem for the operational cohomology
rings. We also give a new, homological, description for the homology groups of
smooth toric varieties, which allows us to compute the algebraic bordism groups
of some singular toric varieties.
Résumé. — Nous généralisons la formule de Künneth bien connue pour les

groupes de Chow au cas d’une théorie homologique orientée de Borel–Moore ar-
bitraire qui vérifient des propriétés de localisation et de descente (par exemple
le bordisme algébrique) pour les produits avec une variété torique. En corollaire,
nous obtenons un théorème de coefficients universels pour les anneaux de cohomo-
logie opérationnelle. Nous donnons également une nouvelle description, de nature
homologique, des groupes d’homologie des variétés toriques lisses, qui nous per-
met de calculer les groupes de bordisme algébrique de quelques variétés toriques
singulières.

1. Introduction

In [6] and [7] the authors discovered the following surprising result: the
operational Chow cohomology rings op CH∗(X∆) of a complete toric vari-
ety can be naturally identified with the Z-dual of the usual Chow groups
CH∗(X∆) as Abelian groups. Such well behavedness was not anticipated
from the operational cohomology rings, which were originally thought only
as a temporary substitute until some sensible cohomology theory comes to
take its place.

The proof depends crucially on another result interesting in its own right.
Namely, if we are given a toric variety X∆, then the natural Künneth map

CH∗(X∆)⊗Z CH∗(Y ) −→ CH∗(X∆ × Y )

Keywords: oriented Borel–Moore homology, toric varieties, algebraic bordism.
2020 Mathematics Subject Classification: 14F43, 14C99, 14M25.



2432 Toni M. ANNALA

is an isomorphism for all varieties Y . This is a nontrivial result as it implies,
among other things, that if Y and X∆ are smooth, then all the line bundles
on Y ×X∆ can be expressed as an exterior product of line bundles on Y
and X∆, and this expression is unique up to isomorphism (neither of these
facts hold in general).
A natural question to ask is if these theorems generalize to other similar

theories such as the equivariant Chow groups CHT
∗ or algebraic bordism

Ω∗. The results would be useful especially in the case of algebraic bordism,
where computations are hard, and the groups are known only in a handful
of cases. Structural results on the behavior of these groups are therefore
important to improve our understanding.
This paper grew out of the attempts to generalize the two results to other

theories than CH∗. It turns out that the Künneth formula is the harder one
of these, and that the original proof for the universal coefficient theorem
goes through for an arbitrary theory as soon as the Künneth isomorphism
property is known. Moreover, the techniques that allow us to generalize the
Künneth property also offer a nice homological description of the algebraic
bordism Ω∗(X∆) of a smooth toric variety. The previous descriptions for
the groups were cohomological (they were actually descriptions of the co-
homology rings, which are isomorphic to the homology groups by Poincaré
duality).
The problem with the cohomological descriptions is that it is not nat-

ural to work with some of the functorial aspects of the homology groups.
Namely, describing pullback operations is easy, but describing the proper
pushforward maps is hard. In order to use the descent exact sequence to
calculate the homology groups of singular varieties, we need to be able to
effectively work with pushforwards, and hence the need for a new descrip-
tion. In the case of algebraic bordism, no calculations of homology groups
of singular toric varieties have been carried out previously. In fact, as far
as the author is aware, the examples computed in this paper are the first
examples of algebraic bordism group of any singular variety.

1.1. Outline of the article

We begin with a section summarizing the necessary background material
on oriented Borel–Moore homology theories, and on linear varieties. Most
of the proofs are skipped, and instead references are given to appropriate
texts. In the first real section of this paper, Section 3, we characterize the
equivariant homology groups BT∗ (X∆) of a smooth toric variety, where B∗
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is an oriented Borel–Moore homology theory. The methods are inspired by
those in [9] and [10]. The main technical work of this section is done in the
first three subsections. The equivariant groups BT∗ are shown to determine
B∗, and hence we also obtain a description for B∗(X∆) in the case X∆ is
nonsingular.
The description of algebraic bordism of a smooth toric variety we obtain

is nice enough to allow us to effectively carry out the computation of the
algebraic bordism group Ω∗(X∆) for some singular toric varieties in the
Section 3.4 using the descent exact sequence of [14]. In Section 3.5, we
compare our homological description of the equivariant groups BT∗ (X∆)
with the previously studied cohomological Stanley–Reisner presentations
of the same groups. These two sections are independent from the other
results of this paper, and can be skipped.
Section 4 is devoted to proving the Künneth isomorphism property for

all oriented Borel–Moore homologies B∗ when taking a product with a toric
variety, and the universal coefficient theorem that follows from it. The first
of these is obtained in Section 4.1

Theorem. — Let X∆ be a toric variety, and B∗ an oriented Borel–
Moore homology theory satisfying localization and descent. Then the Kün-
neth map

B∗(X∆)⊗B∗ B∗(Y ) −→ B∗(X∆ × Y )
is an isomorphism for all varieties Y .

Interesting examples where this result holds are the equivariant Chow
groups CHG

∗ , algebraic bordism Ω∗ and the equivariant algebraic bordism
ΩG∗ , although we prove the result in far greater generality (see Theorems 4.1
and 4.5). Note that here we are not taking the tensor product over the
integers Z but over the ring B∗ := B−∗(pt) which is the natural coefficient
ring of the theory B∗.

In Section 4.2 we prove the universal coefficient theorem for the opera-
tional cohomology rings opB∗(X∆) when X∆ is a complete toric variety.
Here we need to assume that B∗ has slightly stronger properties than those
of an oriented Borel–Moore homology theory, namely, B∗ must come with
refined l.c.i. pullbacks. This is needed for the construction of the operational
cohomology rings.

Theorem. — Let X∆ be a complete toric variety, and B∗ an refined
oriented Borel–Moore homology theory satisfying localization and descent.
Then there is a canonical identification

opB∗(X∆) ∼= HomB∗(B∗(X∆), B∗).
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2434 Toni M. ANNALA

Notice how, much like in the Künneth formula, we are taking the Hom
over the coefficient ring of the theory. Again, interesting examples where
this result holds are CHG

∗ , Ω∗ and ΩG∗ .

1.2. Conventions and notations

All schemes will be separated and finite type over a field k of charac-
teristic zero. By [15] we can get rid of all the projectivity assumptions of
algebraic bordism, and we will use this throughout the article (e.g., we have
proper pushforwards instead of projective ones and so on).
We will denote by B∗ a general oriented Borel–Moore homology theory

on the category of G-schemes for a linear algebraic group G. Usually G

is either trivial or a split torus T . When restricted to smooth varieties X,
B∗ gives an oriented cohomology theory B∗ in a natural way, where the
contravariant functoriality is provided by the l.c.i. pullbacks, and the ring
structure is provided by the intersection product. Note that cohomology
has different grading: B∗(X) = Bn−∗(X) where n is the dimension of X.

By abuse of notation, we will denote by B∗ the B∗-homology group
B−∗(pt), which acts on all the groups B∗(X) by the exterior product. It is
the natural coefficient ring for the theory B∗. It does not matter whether
we take the homological or cohomological grading for B∗ as the grading
needs never to be explicitly mentioned.
If G is a linear algebraic group, then we will denote by BG∗ the G-

equivariant version of B∗, whose construction is based on Totaro’s approx-
imation scheme for the classifying space BG. The construction of equivari-
ant groups was carried out for a very general class of theories in [13] which
includes all oriented Borel–Moore homology theories. The groups BG∗ have
formally very similar properties to those of B∗, and indeed we can usually
treat both cases simultaneously.

1.3. Acknowledgements

The author would like to thank their advisor Kalle Karu for a patient in-
troduction to algebraic cobordism, and for many helpful discussions where
he pointed out multiple potential weaknesses and mistakes. The author is
also grateful for the anonymous referee for multiple comments that greatly
improved the exposition.
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2. Background

In this section we are going to summarize technical background necessary
for the results of this paper. This consists mostly of definitions, and the
proofs are mostly omitted.

2.1. Oriented Borel–Moore homology theories

Let us denote by C a category, which is either the category of finite type
separated k-schemes or the category of finite type separated k-schemes with
an action by a linear algebraic group G with G-equivariant morphisms.
Both these categories have the notions of proper and l.c.i. morphisms, as
well as the notion of transversality of a Cartesian square. Let us also recall
the equivariant notion of a vector bundle. From now on, whenever we say
scheme, we mean a separated scheme of finite type over k.

Definition 2.1. — Let G be a linear algebraic group and X a G-
scheme, and let us denote the group action by µ : G × X → X. A G-
equivariant vector bundle onX consists of a locally free sheaf E (of constant
and finite rank) on X and an isomorphism

θ : µ∗(E) ∼−→ pr∗2(E)

of coherent sheaves on G × X satisfying a certain cocycle condition. The
reader can consult [16, Definition 1.6] for the precise definition in the case
of line bundles, which immediately generalizes to vector bundles of higher
rank.
As noted in [16, Chapter 1 Section 3], there is a more geometric way of

defining equivariant vector bundles. Namely, a G-equivariant vector bun-
dle is

(1) a vector bundle π : E → X;
(2) a G-action µE on the total space E;

such that
(a) π : E → X is G-equivariant;
(b) the square

pr∗2E = G× E E

G×X X

π′ π

µE

µ

is a morphism of vector bundles (on different base schemes).

TOME 71 (2021), FASCICULE 6



2436 Toni M. ANNALA

Given a G-equivariant vector bundle E on X, we may form the corre-
sponding equivariant projective bundle P(E)→ X. The rank of P(E) is by
definition rank(E)− 1.

Definition 2.2. — Let everything be as above. Denote by C′ the sub-
category of C whose objects are the objects of C, and whose morphisms
are the proper morphisms in C. An oriented Borel–Moore homology theory
consists of
(D1) a covariant functor X 7→ B∗(X) from C′ to the category of graded

Abelian groups;
(D2) ( l.c.i. pullbacks) a group homomorphism

f∗ : B∗(Y ) −→ B∗+d(X)

for all l.c.i. morphisms f : X → Y of relative dimension d;
(D3) (exterior product) a graded bilinear pairing

× : B∗(X)×B∗(Y ) −→ B∗(X × Y )

for all X and Y, which is commutative, associative, and has a unit
1 ∈ B0(Spec(k)).

Notice that this data allows us to define the first Chern class operator

c1(L ) := s∗ ◦ s∗ : B∗(X) −→ B∗−1(X)

of a line bundle L on X, where s is the zero section X → L . Of course,
if C is the category of equivariant schemes, then a line bundle implicitly
means an equivariant line bundle.
The data of an oriented Borel–Moore homology theory are required to

satisfy the following axioms:
(Ad) (additivity): the natural map

n⊕
i=1

B∗(Xi) −→ B∗

(
n∐
i=1

Xi

)
is an isomorphism;

(BM1) the l.c.i. pullbacks are contravariantly functorial;
(BM2) given a transverse Cartesian square

X ′ Y ′

X Y

f ′ f

g′

g
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with f l.c.i. and g proper, then

f∗ ◦ g∗ = g′∗ ◦ f ′∗

(note that being l.c.i. is stable under transverse pullbacks);
(BM3) given proper morphisms f : X → Y and g : X ′ → Y ′, then

(f × g)∗(α× β) = f∗(α)× g∗(β),

and similarly if f and g are l.c.i., then

(f × g)∗(α× β) = f∗(α)× g∗(β);

(PB) (projective bundle formula) given a projective bundle π : P(E) →
X, r := rank(E)− 1, then the morphisms

c1(O(1))i ◦ π∗ : B∗−r+i(X) −→ B∗(P(E))

induce an isomorphism
r⊕
i=0

B∗−r+i(X) −→ B∗(P(E));

(EH) (extended homotopy property) given a vector bundle V → X of
rank r and p : E → X a V -torsor, then the pullback morphism

p∗ : B∗(X) −→ B∗+r(E)

is an isomorphism.

Remark 2.3. — In the book [12] it is also required that B∗ should satisfy
a cellular decomposition axiom. As we do not need this for anything, we
will omit it from the definition.

Remark 2.4. — The exterior product makes B∗(X) a B∗ = B∗(pt)-
module for all X. It follows from the requirements imposed on the exterior
product × that the pushforwards and pullbacks are B∗-linear maps. More-
over, from the commutativity and the associativity assumptions it follows
that the exterior product associated to X × Y is B∗-bilinear. Hence we
have a natural Künneth morphism

B∗(X)⊗B∗ B∗(Y ) −→ B∗(X × Y ),

which is one of the protagonists of the paper.

Well known examples of such theories include algebraic bordism Ω∗
(see [12]) and the Chow groups CH∗ (see [5]). One can refine this defi-
nition to require the theory to have refined l.c.i. pullbacks. This means
that for a l.c.i. morphism f : X → Y of relative dimension d and any
morphism g : Y ′ → Y , we get a pullback map f !

g : B∗(Y ′) → B∗+r(X ′),

TOME 71 (2021), FASCICULE 6
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where X ′ is the pullback of X along g. These refined pullbacks are required
to satisfy certain compatibility conditions, see [5] or [13] for details. Both
the Chow groups and algebraic bordism have refined l.c.i. pullbacks. Next
we consider two useful extra properties one can require from an oriented
Borel–Moore homology theory.

Definition 2.5. — Let B∗ be an oriented Borel–Moore homology the-
ory. We say that B∗ satisfies localization if for all closed embeddings i :
Z ↪→ X, the sequence

B∗(Z) i∗−→ B∗(X) j∗−→ B∗(U) −→ 0

is exact, where j : U ↪→ X is the inclusion of the open complement of Z.

Recall that an envelope X̃ → X is a morphism such that any irreducible
subvariety of X is birationally mapped onto by an irreducible subvariety
of X̃.

Definition 2.6. — Let B∗ be an oriented Borel–Moore homology the-
ory. We say that B∗ satisfies descent if for any proper envelope π : X̃ → X,
the induced sequence

B∗(X̃ ×X X̃) pr1∗− pr2∗−−−−−−−→ B∗(X̃) π∗−→ B∗(X) −→ 0

is exact.

It is not known whether or not these properties hold for a general Borel–
Moore homology theory, but they are known to hold for Ω∗ by [12, 14], and
therefore also for all oriented Borel–Moore homology theories obtained from
algebraic bordism by a change of coefficients.

2.2. Formal group laws

A formal group law over a commutative ring A is an element F ∈ A[[x, y]],
satisfying the following properties:

(1) Neutral element: F (x, 0) = x and F (0, y) = y.
(2) Commutativity: F (x, y) = F (y, x).
(3) Associativity: F (x, F (y, z)) = F (F (x, y), z).

It is immediate from the first two restrictions that F must be of form

F (x, y) = x+ y + α11xy + α21x
2y + α12xy

2 · · ·

where αij ∈ A, and αij = αji. The third axiom induces more complicated
relations between the coefficients.

ANNALES DE L’INSTITUT FOURIER
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It is not hard to show that such an F has a formal inverse series, i.e., a
power series F− in one variable such that

F (x, F−(x)) = F (F−(x), x) = 0.

It is often more convenient to denote F (x, y) by x+F y and F−(x) = −Fx.
Moreover, the repeated addition x +F · · · +F x (here x appears n times)
can be denoted by n ·F x. It is not hard to show that these behave as one
would expect, i.e., n ·F x +F n ·F y = n ·F (x +F y), −n ·F x = n ·F (−x)
and so on.
There is universal such a group law. Consider the infinitely generated

Z-algebra Z[a11, a21, a12, . . . ] with the minimal relations making the power
series

x+ y + a11xy + a21x
2y + a12xy

2 + · · ·

a formal group law. The resulting ring is known as the Lazard ring L, and
it is characterized by the universal property that the set of ring homomor-
phisms ψ : L → A is in natural one-to-one correspondence with the set of
formal group laws with coefficients in A (the coefficients of the correspond-
ing formal group law are given by ψ(aij)). If we set the degree of aij to be
i+ j − 1, then all the relations respect grading, so we see that the Lazard
ring has a natural grading.
Formal group laws describe the behavior of Chern classes of line bundles

in oriented Borel–Moore homology theories B∗. Namely, it turns out that
there always exists a formal group law F ∈ B∗[[x, y]] so that given line
bundles L and M on X, we have

c1(L ⊗M ) = F (c1(L ), c1(M )) : B∗(X) −→ B∗−1(X).

Usually infinite expressions are not allowed for our theories, so in order to
make sense of the formal group law property one must require that the
Chern classes are nilpotent in a suitable sense. However, sometimes infinite
expressions make perfect sense (namely in equivariant theories), and then
we can make sense of the formal group law topologically (i.e., the series
will converge to something).
For Chow groups CH∗, the formal group law is known to be the additive

formal group law F (x, y) = x + y. A more complicated example is the al-
gebraic bordism Ω∗ (the universal oriented Borel–Moore homology theory)
whose formal group law is the universal formal group law over the Lazard
ring defined above.

TOME 71 (2021), FASCICULE 6
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2.3. Linear and G-linear varieties

In the paper [18] it was shown that the Chow groups satisfy the Künneth
formula for products of arbitrary variety and a linear scheme. Unfortunately
the proof made use of higher Chow groups, and therefore it cannot be
generalized to, say, algebraic bordism. However, part of the argument can
be salvaged, and the purpose of this section is to record this. First, however,
we need a definition.

Definition 2.7. — LetG be a linear algebraic group. AG-linear variety
is a G-variety obtained by the following inductive procedure.

(1) A G-representation (thought as a variety) is G-linear.
(2) If we have a G-equivariant closed embedding Z ↪→ X of G-linear

varieties, then the complement X − Z is G-linear.
(3) If we have aG-equivariant filtration ∅ = X−1 ⊂ X0 ⊂ · · · ⊂ Xr = X

such that Xi −Xi−1 is a G-linear variety for all i = 0..r, then also
X is G-linear.

Note that in the special case where G is trivial, the above definition
recovers the notion of a linear variety.

Proposition 2.8. — Let X be a G-linear variety, Y be an arbitrary
G-scheme, and let B∗ be an oriented Borel–Moore homology theory (on
G-schemes) satisfying localization. Then the Künneth map

B∗(X)⊗B∗ B∗(Y ) −→ B∗(X × Y )

is surjective.

Proof. — The fact that the map is surjective when taking a product
with a G-representation follows from the extended homotopy property and
compatibility properties of exterior products and pullbacks.
Assume that we have a closed inclusion Z ↪→ X such that the claim

holds for X − Z and Z. Then the localization exact sequence yields us a
diagram

B∗(Z)⊗B∗B∗(Y ) B∗(X)⊗B∗B∗(Y ) B∗(X−Z)⊗B∗B∗(Y ) 0

B∗(Z×Y ) B∗(X×Y ) B∗((X−Z)× Y ) 0

where the leftmost and rightmost vertical maps are surjections. From the
4-lemma it follows that also the middle vertical map is surjective. This
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shows that surjectivity is preserved in the third operation defining linear
varieties. Showing that it is preserved in the second operation is similar
but easier, so the claim follows. �

3. Homology groups of toric varieties

The main purpose of this section is to study the structure of B∗-homology
groups of toric varieties. Throughout the section, unless otherwise specified,
T will be a fixed split torus of rank n and B∗ will be an arbitrary oriented
Borel–Moore homology theory on the category C of k-schemes (without
a group action) satisfying localization. Our strategy is to first study the
equivariant homology groups BT∗ , whose construction is recalled in the first
subsection, and then reduce the study of non-equivariant groups B∗ to the
equivariant ones. The results of this section are crucial for the Künneth
formula and duality results proven in Section 4.
Let N ∼= Zn be the lattice of one-parameter subgroups of T , and let us

denote by NR the vector space defined to be the tensor product R ⊗ N .
Recall that a toric variety X∆ for T is determined by a fan ∆ consisting of
rational strictly convex polyhedral cones in NR (see [4] for more details).
The dual lattice HomZ(N,Z), which is the character lattice of T , is denoted
by M , and we define MR := R⊗M . Let us also fix a Z-basis e1, . . . , en of
N , and let us denote the corresponding dual basis of M by e∗1, . . . , e∗n.

3.1. Review of the construction and basic properties of
equivariant groups

The construction of the equivariant version BG∗ of B∗ is based on the
approximation scheme of Totaro. This has led to successful study of equi-
variant Chow groups [3] and algebraic bordism [2, 9, 10], among other the-
ories. Recently in [13], the construction was carried out in a very general
setting of so called ROBM pre-homology theories satisfying certain con-
ditions. The same construction works for oriented Borel–Moore homology
theories, and it is the construction we are going to use here. We note that
in order to make sense of the formal group laws in the theory BG∗ , one is
forced to consider it as a topological group, whose topology is given by the
filtration naturally arising from the definition. This is because equivariant
version of the theory no longer has to satisfy dimension axiom, and hence
Chern classes of line bundles may fail to be nilpotent.
The following definition will be of crucial importance:

TOME 71 (2021), FASCICULE 6
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Definition 3.1. — Let G be a linear algebraic group. A good sys-
tem of representations for G consists of pairs (Vi, Ui), where Vi is a G-
representation and Ui ⊂ Vi is an open subscheme. These are required to
satisfy the following conditions

(1) G acts freely on Ui, and the geometric quotient Ui/G exists as a
quasi-projective k-scheme;

(2) the G-representation Vi+1 splits as Vi ⊕Wi for all i;
(3) Ui ⊕Wi ⊂ Ui+1;
(4) the codimension of Vi − Ui in Vi is strictly smaller than that of

Vj − Uj in Vj whenever i < j.

Example 3.2. — An example of a good system of representations for T
would be (

(Ai+1)n, (Ai+1 − 0)n
)
,

where the jth coordinate of the torus acts diagonally on the jth copy of
Ai+1. The quotient can be identified as

(Ai+1 − 0)n/T ∼= (Pi)n,

which is projective.

Before defining the equivariant groups let us recall that the mixed quo-
tient X ×G Y of two G-schemes is by definition (if it exists) the geometric
quotient

(X × Y )/G
where G acts on X × Y by the anti-diagonal action (i.e., we invert the
action on X).

Definition 3.3 (cf. [8, Definition 12], [13, Section 4.2]). — Let G be
a linear algebraic group. The equivariant groups BG∗ (X) of a G-scheme X
are defined as

BGk (X) := lim←−
i

Bk+dim(Ui)−g(Ui ×
G X),

where Ui are in any good system of representations of G, and g = dim(G).
Note that the connecting morphisms of the inverse system are given by the
pullbacks along the induced l.c.i. morphisms Ui ×G X ↪→ Uj ×G X. We
also set

BG∗ (X) :=
⊕
i∈Z

BGi (X).

For a proof that these groups are well defined, see [8, Theorem 16] and [13,
Proposition 4.4].
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ORIENTED BOREL–MOORE HOMOLOGIES OF TORIC VARIETIES 2443

We will mostly deal with torus equivariant theories. However, suppose
B∗ is an oriented Borel–Moore homology theory on G-schemes for some
linear algebraic group G. If we would like to define T -equivariant versions
of B∗, then we would have to verify that the arguments of [8] proving that
BT∗ is well defined extend to the G-equivariant setting. It is much easier
to use the following result, which proves the well definedness in the most
important special case.

Proposition 3.4. — Let G be a linear algebraic group, and let X be a
T ×G-scheme. Then there is a natural isomorphism

BT×G∗ (X) ∼= (BG)T∗ (X).

In particular, the T -equivariant version of BG∗ is well defined.

Proof. — Let (Vi, Ui) be a good system of representations for T , and
(V ′i , U ′i) a good system of representations for G, so that (Vi × V ′i , Ui × U ′i)
is a good system of representations for T × G. Then, denoting by g the
dimension of G, we have

BT×Gk (X) = lim←−
i

Bk+dim(Ui)+dim(U ′
i
)−n−g

(
(Ui × U ′i)×T×G X

)
= lim←−

i

Bk+dim(Ui)+dim(U ′
i
)−n−g

(
Ui ×T (U ′i ×G X)

)
.

By cofinality, this is equivalent to

lim←−
i

lim←−
j

Bk+dim(Ui)+dim(U ′
j
)−n−g

(
Ui ×T (U ′j ×G X)

)
,

which is by definition just

lim←−
i

BGk+dim(Ui)−n(Ui ×T X),

finishing the proof. �

We record the fact that computing the T -equivariant group of the point
is trivial.

Proposition 3.5. — There is a natural isomorphism

BT∗ (pt) ∼= B∗(pt)[[ξ1, . . . , ξn]]gr,

where ξi is the first T -equivariant Chern class of the character line bundle
corresponding to the basis element e∗i for M . The right hand side is the
graded power series ring (each ξi having degree −1), consisting of finite
linear combinations of power series of constant degree, i.e., of form∑

m∈Nn
am · ξm1

1 · · · ξmnn
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with each am · ξm1
1 · · · ξmnn homogeneous and of constant degree.

Proof. — Indeed, one uses the good system of Example 3.2 to compute
this group, and the rest follows from the projective bundle formula and the
definition of the first (equivariant) Chern class in an oriented Borel–Moore
homology theory. �

We immediately obtain the following result. Notice how it highlights that
if B∗ has a complicated formal group law, changing the basis of N (and
hence the dual basis of M) can lead to complicated formulas.

Proposition 3.6. — Consider a character

m = a1e
∗
1 + · · ·+ ane

∗
n ∈M,

and let Vm be the corresponding T -equivariant line bundle on pt. Then

c1(Vm) = a1 ·F ξ1 +F · · ·+F an ·F ξn ∈ B−1(pt),

where F is the formal group law of the theory B∗.

The oriented Borel–Moore homology structure of the equivariant groups

Here we recall some useful formal properties of the equivariant groups
BG∗ . The justifications for all the claims can be essentially found in [8,
Section 4] (see also [8, Section 5] and [13, Section 4.3]).

We claim that the equivariant homology groups form an oriented Borel–
Moore homology theory on the category of G-schemes in the sense of Def-
inition 2.2. Indeed, most of the claims are pretty straightforward:

• BG∗ has functorial proper pushforwards and l.c.i. pullbacks along
equivariant maps constructed as a limit in the obvious way;

• the axioms (Ad), (BM1) and (BM2) follow from the obvious limiting
argument;

• the axioms (PB) and (EH) require understanding also a little bit
of the geometry of the situation, but they also follow (see [8, Sec-
tions 4.3 and 4.4]).

Moreover, since the transition maps of any inverse system used to construct
BG∗ are surjective, it satisfies the Mittag–Leffler condition, and therefore

• BG∗ satisfies localization, and ifB∗ satisfies descent, then so doesBG∗ .
The construction of the exterior product is slightly more subtle. Let

(Vi, Ui) be a good system of G-representations, and let X and Y be G-
schemes. Then the obvious morphism

φ : (Ui × Ui)×G (X × Y ) −→ (Ui ×G X)× (Ui ×G Y )
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is smooth, and we define the exterior product as the limit of compositions

B∗(Ui ×G X)×B∗(Ui ×G Y ) B∗((Ui ×G X)× (Ui ×G Y ))

B∗((Ui × Ui)×G (X × Y ));

φ∗

×

we note that also (Vi × Vi, Ui × Ui) is a good system of G-representations.
With these definitions

• the assumptions of (D3) on × and the axiom (BM3) are satisfied
for BG∗ .

This concludes our analysis.

First properties of the torus equivariant groups

We begin listing properties of BT∗ that are more or less direct from the
definition.

Proposition 3.7. — LetX be a k-scheme with a trivial T -action. Then

BT∗ (X) = B∗T ⊗̂B∗ B∗(X).

Proof. — As the action of T on X is trivial, we can identify X ×T Ui
with X × (Pi)n. Using the projective bundle formula, we see that

B∗[ξ1, . . . , ξn]/(ξi+1
1 , . . . , ξi+1

n )⊗B∗ B∗(X) −→ B∗+ni(Ui ×T X)

is an isomorphism. The limit of the left groups is going to be linear combi-
nations of power series of form∑

i1,...,in

ξi11 · · · ξinn bi1,...,in

where i1, . . . , in run over all the natural numbers, and

bi1,...,in ∈ Bk+i1+···+in(X)

for fixed k. This coincides with the completed graded tensor product of the
two, where B∗(X) is taken to have the trivial filtration. �

Another result easily proven, which is a special case of more general
Morita isomorphism principle, is the following.

Proposition 3.8. — Let X be a T -scheme. Then BT∗+n(T ×X), where
the product variety has the diagonal action, is naturally isomorphic to
B∗(X).
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Proof. — The map T×X → T×Xt defined by (t, x) 7→ (t, t−1x) identifies
T × X, with the original action on X, with T × Xt, where Xt is X with
the trivial T -action. Therefore for all Ui we have isomorphisms

Ui ×T (T ×X) ∼= Ui ×T (T ×Xt) = (Ui ×T T )×Xt = Ui ×Xt.

As the Ui can be chosen to be (Ai+1 − 0)n (see Example 3.2), we are done
if we can show that

B∗+i+1((Ai+1 − 0)× Y ) ∼= B∗(Y )

for any k-scheme Y . From the extended homotopy property we can deduce
that the smooth pullback map B∗(Y ) → B∗+i+1(Ai+1 × Y ) is an isomor-
phism. On the other hand, the first map in the localization sequence

B∗(Y ) s∗−→ B∗(Ai+1 × Y ) −→ B∗((Ai+1 − 0)× Y ) −→ 0

is zero because Ai+1×Y is a trivial vector bundle over Y , s∗s∗ corresponds
to its top Chern class (which vanishes), and because s∗ is an isomorphism.
This shows that the pullback map B∗(Y )→ B∗+i+1((Ai+1 − 0)× Y ) is an
isomorphism for all Y , and as a consequence the pullback map induces an
isomorphism

B∗(X) −→ B∗+n(i+1)(Ui ×X). �

The following result is the first case of the Künneth formula (Theo-
rem 4.1). Notice how it also gives a nice connection between certain quo-
tient groups of BT∗ and T -varieties obtained from X.

Proposition 3.9. — Let W be a T -representation of rank r. Then
BT∗+r((W − 0) × X) is the quotient of BT∗ (X) by the image of the top
equivariant Chern class of W . In particular, the Künneth morphism

BT∗ (W − 0)⊗B∗
T
BT∗ (X) −→ BT∗ ((W − 0)×X)

is an isomorphism.

Proof. — As the maps Ui ×T (W ×X) → Ui ×T X are vector bundles,
the Künneth isomorphism

BT∗ (W )⊗B∗
T
BT∗ (X) −→ BT∗ (W ×X)

follows from the extended homotopy property. Indeed, it is easy to show
using only the basic properties of Borel–Moore exterior product that taking
the exterior product with the fundamental class of a vector bundle exactly
coincides with the associated pullback morphism.
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The localization sequence yields the following commutative diagram:

BT∗ (pt)⊗B∗
T
BT∗ (X) BT∗ (W )⊗B∗

T
BT∗ (X) BT∗ (W− 0)⊗B∗

T
BT∗ (X) 0

BT∗ (X) BT∗ (W ×X) BT∗ ((W− 0)×X) 0

∼= ∼=

which gives the Künneth-formula for (W − 0) ×X by 5-lemma. To prove
the last remaining claim, it suffices to consider the localization sequence

BT∗ (pt) i∗−→ BT∗ (W ) −→ BT∗ (W − 0) −→ 0.

As the zero-section pullback i∗ is an isomorphism, and as i∗i∗ corresponds
to the top equivariant Chern class of the bundle W , we can identify
BT∗ (W − 0) with the quotient of BT∗ (pt) by the image of cr(W ) together
with a degree shift. �

As an immediate corollary, we obtain a generalization of an analogue of
a statement in [9] for the algebraic bordism Ω∗:

Corollary 3.10. — The natural surjection B∗T → B∗, obtained by
setting ξ1, . . . , ξn to be zero, gives an isomorphism

B∗ ⊗B∗
T
BT∗ (X) ∼−→ B∗(X).

Proof. — We already know that BT∗+n(T ×X) = B∗(X), where n is the
rank of the torus T . Moreover, T ∼= (V1 − 0)× · · · × (Vn − 0) where Vi are
the standard one dimensional coordinate representations of T , and hence
by the previous lemma taking the product with T corresponds algebraically
to setting the variables ξi to be zero. But setting ξ1, . . . , ξn = 0 is exactly
how one obtains the natural map B∗T → B∗, so we are done. �

Therefore the equivariant groups BT∗ determine the ordinary groups B∗.
If the T -action is trivial, this does not help much, but as we shall see soon,
a natural action can help very much in determining the structure.

3.2. A decomposition theorem for smooth toric varieties

We now turn our attention to toric varieties. Throughout this section,
X∆ will denote a toric variety for T . The following lemma will provide a
basis for the decomposition theorem:
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Lemma 3.11. — Suppose X∆ is nonsingular, and let σ ∈ ∆ be a maxi-
mal cone (so that the orbit Oσ is closed). Then the inclusion i : Oσ → X∆
induces an injection

i∗ : BT∗ (Oσ) −→ BT∗ (X∆).

Proof. — Without loss of generality we may assume that the cone σ is
generated by e1, . . . , er so that the open set Uσ corresponding to σ is

Spec(k[x1, . . . , xr, x
±1
r+1, . . . , x

±1
n ]) = Ar ×Oσ.

Denote by j the inclusion Oσ → Uσ, and note that this can be identified
with the zero section Oσ →W ×Oσ where W is the T -representation with
action

(λ1, . . . , λn).(w1, . . . , wr) = (λ1w1, . . . , λrwr).
We know that j∗j∗ corresponds to the equivariant top Chern class ofW . As
W splits into the direct sum of the natural coordinate representations V1⊕
· · ·⊕Vr, the top Chern class ofW is just c1(V1) · · · c1(Vr), i.e., multiplication
by ξ1 · · · ξr. On the other hand, by Proposition 3.9 BT∗ (Oσ) is isomorphic
to BT∗ /(ξr+1, . . . , ξn) with a shift, from which we conclude that the action
of the top Chern class of W is an injective morphism BT∗ (Oσ)→ BT∗ (Oσ),
and hence the map j∗ must be injective as well.

We can use this to show that also i∗ is injective. Denote by u the natural
open inclusion Uσ → X∆. Now the transverse Cartesian square

Oσ Uσ

Oσ X∆

1 u

j

i

tells us that j∗ = u∗i∗, and hence the injectivity of i∗ follows from that
of j∗. �

We record an immediate corollary.

Corollary 3.12. — Let i : Z → X∆ be a closed equivariant embed-
ding to a smooth toric variety X∆, i.e., Z is a closed subvariety that is a
union of orbits. Then the induced proper pushforward map i∗ : BT∗ (Z) →
BT∗ (X∆) is injective.

Proof. — We proceed by induction on the number of orbits in Z, case 0
being trivial. Let O be a minimal orbit in Z. As Z is closed inside X∆, we
see that O is a minimal orbit inside X∆ as well; denote by U and V the
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open complements of O in X∆ and Z respectively. By the previous lemma,
the diagram

BT∗ (O) BT∗ (Z) BT∗ (V ) 0

BT∗ (O) BT∗ (X∆) BT∗ (U) 00

1

has exact rows. By induction the rightmost vertical map is an injection.
It then follows from diagram chasing that the middle vertical map is an
injection as well. �

We can use the Lemma 3.11 to arrive at the following decomposition
result. Suppose we have a nonsingular toric variety X∆. We can remove all
the cones from ∆ one by one by choosing an arbitrary maximal cone and
removing its interior from the fan. By the previous result, at each step we
have a short exact sequence

0 −→ BT∗ (Oσ) −→ BT∗ (X∆) −→ BT∗ (X∆′) −→ 0

where BT∗ (Oσ) is isomorphic to shifted copy of B∗T /(ξ′1, . . . , ξ′r), where ξ′j are
the first Chern classes of character line bundles corresponding to a Z-basis
of characters in M orthogonal to σ. (For more details, see the Section 3.3
following this section).
This is very much in line with the structural results obtained in [7] for

Chow groups of toric varieties. Denoting by Vσ the orbit closure corre-
sponding to the cone σ, we can define a B∗T -linear map

(3.1)
⊕
σ∈∆

〈[Vσ]〉B∗
T
−→ BT∗ (X∆),

where 〈[Vσ]〉B∗
T
is the free B∗T -module on the symbol [Vσ] and the morphism

is defined as
b[Vσ] 7−→ b · iσ∗(1Vσ ),

iσ being the closed embedding Vσ ↪→ X∆. By the above analysis this mor-
phism is surjective.
We now have a nice set of generators of the equivariant homology group

BT∗ (X∆) over the coefficient ring B∗T , so we are left with the task of charac-
terizing the relations. From the decomposition we can almost immediately
conclude that the relations will be generated by those of form

ξ′[Vτ ] =
∑
σ⊃τ

bσ[Vσ],
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where ξ′ is a Chern class of a line bundle associated to a character orthog-
onal to the fan τ ∈ ∆, σ runs over all the cones of ∆ containing τ and
bi ∈ B∗T . In order to say more, we need to look more closely at the line
bundles associated to linear forms.

3.3. Line bundles associated to characters and more on the
structure of BT∗ (X∆)

Suppose we have a character m = a1e
∗
1 + · · · + ane

∗
n ∈ M of T . By

Proposition 3.6 the first Chern class of the corresponding line bundle Vm
is given by

ξm := c1(Vm) = a1 ·F ξ1 +F · · ·+F an ·F ξn ∈ BT−1(pt),

where ξi = c1(Ve∗
i
) and F is the formal group law of B∗. We note that this

defines a map from the character lattice M to the topological group of the
elements in

〈ξ1, . . . , ξn〉 ∩BT−1(pt)
with the group operation given by +F . Note that if Bi(pt) is trivial for
i negative (e.g. B∗ = Ω∗ is the algebraic bordism), then 〈ξ1, . . . , ξn〉 ∩
BT−1(pt) = BT−1(pt).
Let us begin with an easy observation.

Proposition 3.13. — Let m1, . . . ,mr ∈ M be linearly independent
characters. Then the B∗-algebra generated by ξmi inside B∗T is the free B∗-
algebra B∗[ξm1 , . . . , ξmr ]. Moreover, if mi generate M , then the quotient
of B∗T by the ideal generated by the ξmi is naturally identified with B∗.

Proof. — Let mi = ai1e
∗
1 + · · · + aine

∗
n, where aij ∈ Z. By the properties

of formal group law F of the theory B∗, we see that

c1(Vmi) = ai1 ·F ξ1 +F · · ·+F a
i
n ·F ξn

= ai1ξ1 + · · ·+ ainξn +O(quadratic in ξi).

Using this, one can show that the algebra generated by the Chern classes
in BT∗ (pt) is the free algebra on c1(Vmi).

For the second claim, we first observe from the formal group law that
ξmi is always contained in the ideal generated by ξ1, . . . , ξn, and hence the
natural map BT∗ → B∗ descends to a map BT∗ /(ξm1 , . . . , ξmr ) → B∗. But
as mi generate, xj can be expressed as an integral sum of mi, and hence
ξj can be expressed as a formal sum of ξm1 , . . . , ξmr . From this it follows
that ξj is contained in the ideal (ξm1 , . . . , ξmr ), and the claim follows. �
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We also record a statement whose proof is essentially contained in that
of the Lemma 3.11.

Proposition 3.14. — Let σ be a nonsingular cone having a lattice basis
v1, . . . , vr in NR ∼= Rn. Then

BT∗ (Oσ) ∼= B∗T /(ξmr+1 , . . . , ξmn),

with an appropriate degree change, where Oσ is the (non-closed) orbit
corresponding to σ, and mi form an integral basis for the linear forms
m ∈M orthogonal to σ.

Proof. — Extend mr+1, . . . ,mn to an integral basis m1, . . . ,mn of M .
Now the open set Uσ corresponding to the cone σ is naturally identified
with

Spec(k[χm1 , . . . , χmr , χ±mr+1 , . . . , χ±mn ]).
The torus orbit Oσ ↪→ Uσ is the vanishing locus of χm1 , . . . , χmr . It splits
as the product

Spec(k[ξ±mr+1 ])× · · · × Spec(k[χ±mn ])

of T -varieties, so in order to prove the claim, it is enough by the previous
lemma and Proposition 3.9 to look at the T -action on U = Spec(k[χ±m]),
where m is an arbitrary character a1e

∗
1 + · · ·+ane

∗
n ∈M , and to make sure

that it coincides with

(λ1, . . . , λn)u = λa1
1 · · ·λann .

But as this action arises from the map of k-algebras

k[χ±m] −→ k[x±1
1 , . . . , x±1

1 ]⊗k k[χ±m]
χm 7−→ xa1

1 · · ·xann ⊗ χm,

this is certainly true, and hence we are done. �

The elements ξi and divisors of X∆

In order to have a geometric interpretation of multiplying elements of
BT∗ (X∆) by ξi, we will express them with the help of divisors of X∆. This
is made easy by the following happy accident: if we use the good system
of representations of Example 3.2, then the intermediate approximations
UK ×T X∆ turn out to be toric varieties. (We replaced i with K to make
the notation in the following less painful).
Recall that UK = (AK+1− 0)n where the ith coordinate of T acts diago-

nally on the ith copy of AK+1− 0. One immediately observes that this is a
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toric variety for TK+1: it is given by the products of the fans one obtains
from the standard K + 1-cone 〈e0, . . . , eN 〉R>0 in RK+1 after removing the
interior of the maximal cone. Moreover, since the product of toric varieties
is given by the product of respective fans, UK ×X∆ is a toric variety for
TK+2 given by the product fan inside the n(K + 2) dimensional vector
space NK+2

R , whose basis we are going to denote by

e1
0, . . . , e

1
K , e

2
0, . . . , e

2
K , . . . , e

n
0 , . . . , e

n
K , e1, . . . , en,

where eij is the jth basis vector for the space corresponding to the ith copy
of AK+1 − 0, and ei are the basis vectors for the space corresponding to
X∆.
The mixed quotient UK ×T X∆ is a toric variety for the torus TK+1

identified as the quotient TK+2/T . Recalling that the action of T on UK ×
X∆ is the anti-diagonal one, we see that the lattice NK+1 of one-parameter
subgroups of TK+1 corresponds to the quotient of NK+2 by the sublattice
generated by the vectors

e1 − (e1
0 + · · ·+ e1

K), . . . , en − (en0 + · · ·+ enK).

Note that the images of

e1
0, . . . , e

1
K−1, e

2
0, . . . , e

2
K−1, . . . , e

n
0 , . . . , e

n
K−1, e1, . . . , en

form a basis for the quotient space. It is now clear that the fan inside NK+1

is almost the fan corresponding to PK × · · · × PK × X∆, except that the
“back rays” (which correspond to the images of eiK) are not just simply
−(ē i0 + · · · + ē iK−1), but instead ēi − (ē i0 + · · · + ē iK−1). Thus the mixed
quotient is an X∆-bundle over (PK)n.
From the last observation, we immediately get the following identity

using the standard properties of divisors on toric varieties.

Lemma 3.15. — Let everything be as above, and let Di be the Cartier
divisor associated to the ray generated by ēi − (ē i0 + · · ·+ ē iK−1). Then

−[Di] =
∑
ρ∈∆

〈e∗i , vρ〉[Dρ] ∈ Pic(UK ×T X∆),

where ρ runs over all the rays of ∆, vρ is the primitive lattice vector gen-
erating ρ, and Dρ is the divisor associated to the ray ρ.

Proof. — Indeed, this is exactly the relation given by the character e∗i ,
see [4, Section 3.2] for more details on Picard groups of toric varieties. �

Remark 3.16. — Note that in the above formula, when computing
〈e∗i , vρ〉, it does not matter if we consider e∗i and vρ to lie in MK+2 and
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NK+2 (with the convention for basis of NK+2 we have fixed above), re-
spectively, or in M and N respectively (the result will be the same).

This result is readily interpreted as an isomorphism of line bundles on
UK ×T X

π∗iO(−1) ∼= O(Dρ1)
⊗
〈e∗i ,vρ1 〉 ⊗ · · · ⊗ O(Dρr )

⊗
〈e∗i ,vρr 〉,

where ρi are the rays of ∆ enumerated in some order, and πi is the natural
map

UK ×T X −→ (PK)n pri−−→ PK .

As pr∗i O(−1) corresponds to the character line bundle of e∗i ∈M , we obtain
the following identity by taking limits and linear combinations of the basis
characters e∗i .

Lemma 3.17. — Let everything be as above, and let m ∈M be a char-
acter of T . Then we get an equality of equivariant Chern class operators

ξm = 〈m, vρ1〉 ·F c1(Dρ1) +F · · ·

+F 〈m, vρr 〉 ·F c1(Dρr ) : BT∗ (X∆) −→ BT∗−1(X∆),

where c1(Dρi) is a shorthand for c1(O(Dρi)).

Consider the generators for BT∗ (X∆), where X∆ is a non-singular toric
variety for T , given by the surjective morphism (3.1). Let Vτ be an orbit
closure corresponding to a cone τ ∈ ∆, and let m be a character orthogonal
to τ . Then the above Lemma gives us the relation

ξm[Vτ ] = (〈m, vρ1〉 ·F c1(Dρ1) +F · · ·+F 〈m, vρr 〉 ·F c1(Dρr )) ∩ [Vτ ].

Notice that by assumption 〈m, vρ〉 = 0 for all rays ρ in τ . Because equivari-
ant closed inclusions to smooth toric varieties induce injective pushforward
morphisms in BT∗ , relations of above form are the only relations in BT∗ be-
tween the generators [Vσ]. However, it seems hard to transform the above
formulas to a useful form: one should replace all terms containing self in-
tersections with BT∗ -linear combinations of [Vσ], and this seems hard to do
in general.

Remark 3.18. — One can easily read off the description of the Chow
groups of toric varieties achieved in [7] from this description, although one
gets it immediately only for smooth toric varieties. As the formal group law
of CH∗ is the additive one, the relations we get for the equivariant Chow
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groups are

ξm[Vτ ] = (〈m, vρ1〉c1(Dρ1) + · · ·+ 〈m, vρr 〉c1(Dρr )) ∩ [Vτ ]

=
∑
σ⊃τ
〈m,nσ〉[Vσ],

where σ runs over all the cones in ∆ of one dimension higher than τ con-
taining τ , and nσ is the primitive generator for the ray of σ not in τ . Passing
to the non-equivariant case (by setting all ξm = 0), we obtain∑

σ⊃τ
〈m,nσ〉[Vσ] = 0

exactly corresponding to the relations given in [7]. We note, however, that
here we fully described the T -equivariant Chow groups as well, at least for
smooth toric varieties. The presentation in the singular case should follow
easily from the descent exact sequence, and the proof left as an exercise for
the reader.

3.4. Application — algebraic bordism groups Ω∗(X∆) of some
toric varieties

In this subsection we apply the results obtained above in order to show
through examples that it is sometimes possible to fully determine the struc-
ture of Ω∗(X∆) where X∆ is a singular toric variety. The main idea is to
take a toric resolution X∆̃ → X∆ of X∆, compute the algebraic bordism
of the smooth toric variety X∆̃, and then use geometric arguments to de-
termine Ω∗(X∆). We will start with a general proposition, showing that
oriented Borel–Moore homology theories satisfying localization and descent
also satisfy a certain cosheaf condition.

Proposition 3.19. — Let B∗ be an oriented Borel–Moore homology
theory satisfying localization and descent. Moreover, let

E X̃

Z X

π′ π

i′

i

be an abstract blow-up square with π an envelope. Then the sequence

B∗(E) (−π′∗,i
′
∗)−−−−−→ B∗(Z)⊕B∗(X̃) i∗+π∗−−−−→ B∗(X) −→ 0

is exact.
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Remark 3.20. — Recall that being an abstract blow-up square means
that i is a closed embedding, that π is proper, birational, and an isomor-
phism over the complement of Z, and that the square is Cartesian.

Proof. — Being a proper envelope is clearly stable under pullbacks, so π′
is a proper envelope. Moreover, since B∗ satisfies descent, π∗ is surjective,
and therefore the complex is exact on the right. We are left to show the
exactness at the middle.
We start by considering the commutative diagram

0

B∗(E ×Z E)

B∗(E)/K

B∗(X̃ ×X X̃)

B∗(X̃)

B∗(U)

B∗(U)

0

0

pr1∗ − pr2∗ pr1∗ − pr2∗ 0

i′∗ j′∗

(i′ ×X i′)∗ (j′ ×X j′)∗

where j′ is the inclusion of the open complement of Z to X̃, and K is the
kernel of i′∗. Note that the rows of this diagram are essentially localiza-
tion exact sequences, and the columns are essentially the beginning of the
descent exact sequence, the only difference being that we have B∗(E)/K
instead of just B∗(E). By applying the snake lemma, we get an exact se-
quence

B∗(U) δ−→ B∗(Z)/K ′ i∗−→ B∗(X) j∗−→ B∗(U) −→ 0,

where K ′ is the image of K under π′∗. We claim that the connecting mor-
phism δ is 0: indeed, by construction, δ(u) is obtained by first lifting u to
ũ ∈ B∗(X̃ ×X X̃), then pushing it down to B∗(X̃), lifting again to a class
in B∗(E)/K, and then finally pushing down to B∗(Z)/K ′. But one way of
doing this is first finding a lift ũ′ ∈ B∗(X̃), and then setting

ũ := ∆
X̃/X∗(ũ

′) ∈ B∗(X̃ ×X X̃),

where ∆
X̃/X

is the diagonal morphism. As pr1∗(ũ) − pr2∗(ũ) = 0, we see
that δ(u) = 0, and therefore i∗ : B∗(Z)/K ′ → B∗(X) is injective.
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The above arguments have shown us that the rows of the commutative
diagram

K

K

B∗(E)

B∗(Z)

B∗(X̃)

B∗(X)

B∗(U)

B∗(U)

0

0

Id π′∗ π∗ Id

i∗ j∗

i′∗ j′∗

are exact. One then shows by a simple diagram chase, that given a ∈ B∗(X̃)
and b ∈ B∗(Z) whose images in B∗(X) coincide, there exists c ∈ B∗(E) so
that i′∗(c) = a and π′∗(c) = b. This proves the exactness of

B∗(E) (−π′∗,i
′
∗)−−−−−→ B∗(Z)⊕B∗(X̃) i∗+π∗−−−−→ B∗(X),

so we are done. �

Example 3.21. — Consider the complete fan ∆ spanned by the rays τ1 =
〈1, 0〉, pn = 〈−1, n〉, τ3 = 〈−1, 0〉 and qm = 〈−1,−m〉, m,n > 1. We obtain
a resolution ∆̃ by adding the rays τ2 = 〈0, 1〉, τ4 = 〈0,−1〉, pi = 〈−1, i〉
and qj = 〈−1,−j〉 for i = 1..n− 1 and j = 1..m.

In order to compute Ω∗(X∆̃), we first note that the relations generated
by the rays of the fan simply identify all the maximal cones with each other.
Hence we are left with the presentation

Ω∗(X∆̃)

=
〈
s, τ1, τ2, τ3, τ4,
p1, . . . , pn,
q1, . . . , qm, σ

∣∣∣∣∣ τ1−F (τ3+F p1+F ···+F pn+F q1+F ···+F qm)=0,
p1 +F 2 ·F p2 +F · · ·+F n ·F pn

−F (q1 +F 2 ·F q2 +F · · ·+F m ·F qM ) = 0

〉
.

In order to arrive at Ω∗(X∆), we notice that all the exceptional divisors
are isomorphic to either P1 or chains of P1, and it is easy to argue using
Proposition 3.19 that the additional relations we must add are exactly

τ2 = τ4 = p1 = · · · = pn−1 = q1 = · · · = qm−1 = [P1]× pt = −a11σ.
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As

p1 +F 2 ·F p2 +F · · ·+F n ·F pn

=
n∑
i=1

ipi − a11

(
n−1∑
i=1

i(i− 1)− n(n− 1)
2 +

n−1∑
i=1

i(i+ 1)
)
σ

=
n∑
i=1

ipi + a11
n(n− 1)

2 σ

= npn,

(first linear terms, then two terms from self intersections, and finally term
coming from intersections between consecutive pi) and as pi and qj do not
intersect, we finally arrive at the description

Ω∗(X∆) = 〈s, τ3, pn, qm, σ | npn −mqm = 0〉.

Example 3.22. — Consider next ∆ to be the fan over the cube, as in the
end of [4, Chapter 2]. The cube has vertices at points (±1,±1,±1) and we
consider this as a rational polytope in the lattice generated by the vertices
of the cube. The fan is the fan whose cones are generated by the faces, edges
and vertices of the cube. As a toric resolution X∆̃ → X∆ we subdivide each
face of the cube diagonally, in order to obtain a fan corresponding to P3

blown up at the four T -fixed points.
As X∆̃ is obtained by blowing up 4-points on the P3, it follows that

Ω∗(X∆̃) = 〈s, τ, σ, ρ, τ1, σ1, . . . , τ4, σ4〉,

where the first four basis elements come from the P3 before blowup, and
the next eight are the new elements introduced by the four blowups. As
the original variety X∆ can be obtained from X∆̃ by contracting the strict
transforms of the six lines connecting T -equivariant points of P3, and as
the class of the strict transform of the line connecting ith and jth T -fixed
point has to be of form

σ − σi − σj + bρ

for some b ∈ Ω1(pt) not depending on i and j, we need to add the relations

σ − σi − σj = −(a11 + b)ρ (i 6= j)

to Ω∗(X∆̃) in order to obtain Ω∗(X∆) (another easy application of Proposi-
tion 3.19). These relations have the effect of identifying the classes of σi with
each other — let us denote this class by σ′— and finally σ = 2σ′−(a11+b)ρ.
Hence,

Ω∗(X∆) = 〈s, τ, τ1, τ2, τ3, τ4, σ′, ρ〉.
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Remark 3.23. — It is worth to note that the algebraic bordism groups
of the singular toric varieties we computed in these two examples are very
similar to the corresponding Chow groups. In fact, one immediately ob-
serves that they are abstractly isomorphic to the tensor product of the
Chow groups with the Lazard ring. One could ask the question if this is
always the case. The author was not able to find any counter examples.

3.5. Stanley–Reisner presentations and piecewise functions on a
fan

Let us take another look at the relations of BT∗ (X∆) for a nonsingular
toric variety X∆ found in the end of the Section 3.3. If we consider the
equivariant homology group as the equivariant cohomology ring B∗T (X∆) =
BTn−∗(X∆), where multiplication is given by the intersection product, then
the relations

(3.2) ξi = 〈e∗i , vρ1〉 ·F ρ1 +F · · ·+F 〈e∗i , vρr 〉 ·F ρr,

where ρj are the rays of ∆ enumerated in some order, transform into the
following result.

Theorem 3.24. — Let X∆ be a non-singular toric variety for T .
Then the ring B∗T (X∆) is isomorphic to the graded power series ring
B∗[[ρ1, . . . , ρr]]gr modulo the Stanley–Reisner relations

ρi1 · · · ρij = 0

whenever ρi1 , . . . , ρij do not span a cone in ∆.

Proof. — Certainly the Stanley–Reisner ring R maps to B∗T (X∆). In
order to prove that this is an isomorphism, let us consider a monomial of
form

ρ
ni1
i1
· · · ρ

nij
ij
,

where the exponents are strictly positive, and the rays span a cone σ, which
we are going to call the support of the monomial.
Suppose then that we have a nonzero element of the graded Stanley–

Reisner ring. We are going to show that it determines a nonzero element in
B∗T (X∆). Without loss of generality, we may assume that the power series
is homogeneous, i.e., it is of form

β =
∑

i1,...,in

bi1,...,inρ
i1
1 · · · ρinr
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where bi1,...,ir ∈ Bk+i1+···+ir (pt) for some fixed k. Let σ be a cone that is
the support of a nontrivial term of β, and let jσ : Oσ ↪→ X∆ be the locally
closed inclusion of the orbit corresponding to σ. We claim that

j∗σ(β) 6= 0 ∈ B∗T (Oσ).

Indeed, without a loss of generality, σ is the cone spanned by e1, . . . , er and
hence by Proposition 3.14

B∗T (Oσ) ∼= B∗(pt)[[ξ1, . . . , ξn]]gr/(ξr+1, . . . , ξn).

Moreover, if ρi, where i 6 r, is a ray of σ, then we can use the relations (3.2)
to conclude that

ξi = ρi ∈ B∗T (Oσ),
and therefore j∗σ(β) 6= 0 ∈ B∗T (Oσ), proving the injectivity of the map
R → B∗T (X). The proof of surjectivity is of the same spirit, and is left to
the reader. �

The above result extends the well known results known for Chow groups,
K-theory and algebraic bordism. It also illuminates that in all of the cases
the reason of the Stanley–Reisner ring appearing is the same.

Another well known presentation of the T -equivariant cohomology ring
of a smooth toric variety X∆ is in terms of the global sections of a sheaf of
functions (of some kind) on the fan ∆. Examples include the T -equivariant
Chow ring, which is described in terms of piecewise polynomial functions
on ∆, and the T -equivariant algebraic cobordism, where we have piecewise
graded power series on ∆. This presentation has the advantage of gener-
ality over the Stanley–Reisner presentation: usually the same presentation
describes the T -equivariant operational cohomology rings of singular toric
varieties as well (see [1, 17, 13]). We can obtain similar description for
arbitrary theory BT∗ , at least in the smooth case.

We quickly recall what we mean by functions on a fan. Consider a smooth
toric varietyX∆. SinceX∆ is smooth, the inclusions of the orbits Oσ → X∆
are regular, and therefore we get a natural map

i : B∗T (X) −→
∏
σ∈∆

B∗T (Oσ)

induced by the l.c.i. pullbacks. We can think B∗T (Oσ) as a stalk of a sheaf
at the cone σ, and by the description B∗T (Oσ) we obtained earlier, we see
that for a inclusion τ ⊂ σ of fans, we get a surjective restriction morphism

B∗T (Oσ) −→ B∗T (Oτ )

and the basic functoriality properties of these restriction morphisms imply
that the rings at cones glue together to give a sheaf on the fan, where the
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open sets are taken to be the subfans. We call this the sheaf of graded
power series on the fan ∆.

Theorem 3.25. — Let everything be as above. Then the map i iden-
tifies B∗T (X∆) with the global sections of the sheaf of graded power series
on ∆.

Proof. — The proof is mostly formal from the Stanley–Reisner descrip-
tion. Consider at first a single l.c.i. pullback

B∗T (X∆) −→ B∗T (Oσ)

which, we recall, is a ring homomorphism. Let σ be spanned by rays
τi1 , . . . , τij , and note that B∗T (Oσ) can be identified as the graded power
series algebra of τ1, . . . , τr over the base ring B∗. I claim that the pullback
of any monomial including any other ray τ must be zero. This is because
the support of such a monomial does not meet the orbit Oσ (although it
might meet its closure Vσ). This proves the injectivity of i, and in fact, we
see that the pullback to minimal orbits would have been injective already.
Let us then have an element (fσ)σ∈∆, where fσ ∈ B∗T (Oσ), which cor-

responds to a global section of the sheaf of graded power series, i.e., this
collection respects the restriction maps. It is clear that we can always find
an element of the Stanley–Reisner ring pulling back to this collection, fin-
ishing the proof. �

This description should easily generalize to the operational cohomology
of an arbitrary toric variety using the techniques of [17], and perhaps as-
suming some extra compatibility conditions on the theory.

4. Künneth formula and a universal coefficient theorem

In this section we generalize the results of [7] concerning Künneth for-
mula and operational cohomology rings to arbitrary Borel–Moore homology
theories satisfying certain extra assumptions. This will be fairly straightfor-
ward after all the work in the previous section. Throughout the section B∗
will denote an oriented Borel–Moore homology theory satisfying localiza-
tion and T will be a fixed split torus of rank n.

4.1. Künneth Formula

The purpose of this subsection is to prove the following:
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Theorem 4.1. — Let B∗ be an oriented Borel–Moore homology theory
satisfying localization and descent, and let X∆ be a toric variety. Then the
Künneth morphism

B∗(X∆)⊗B∗ B∗(Y ) −→ B∗(X∆ × Y )

is an isomorphism for all varieties Y . (We say thatX∆×Y satisfies Künneth
formula in B∗.)

The proof is based to reducing this question to the T -equivariant case,
when X∆ is a toric variety for T . We begin with the case X∆ nonsingular.

Lemma 4.2. — Let X∆ be a smooth toric variety for T , and let Y be a
variety with a trivial T -action. Then X∆ × Y satisfies Künneth formula in
BT∗ .

Proof. — Suppose O is a torus orbit in X∆. Then, by Proposition 3.9 we
know that the Künneth morphism

BT∗ (O)⊗B∗
T
BT∗ (Y ) −→ BT∗ (O × Y )

is an isomorphism. Moreover, if σ is a maximal cone of ∆, which we can
assume without loss of generality to be generated by the standard lattice
vectors e1, . . . , er, then we can combine the above with Proposition 3.7 to
conclude that

BT∗ (Oσ × Y ) ∼= BT∗ (Oσ)⊗B∗
T
BT∗ (Y )

∼=
(
B∗T /(ξr+1, . . . , ξn)

)
⊗B∗

T

(
B∗T ⊗̂B∗ B∗(Y )

)
∼= B∗[[ξ1, . . . , ξr]]gr ⊗̂B∗ B∗(Y ).

If we denote by i the closed embedding Oσ × Y ↪→ X∆ × Y , then we can
deduce as in the proof of Lemma 3.11 that i∗i∗ is just multiplication by
ξ1 · · · ξr, and therefore the pushforward i∗ is injective.

We can now combine the above investigation with localization exact se-
quences to obtain the commutative diagram

0

BT∗ (Oσ)⊗B∗
T
BT∗ (Y ) BT∗ (X∆)⊗B∗

T
BT∗ (Y ) BT∗ (X∆′)⊗B∗

T
BT∗ (Y ) 0

BT∗ (Oσ×Y ) BT∗ (X∆×Y ) BT∗ (X∆′×Y ) 0

∼= ∼=

with exact rows, where the rightmost vertical map can be assumed to be
an isomorphism by induction on the number of cones in ∆ (the base case
of an empty fan being Corollary 3.10). It follows from 5-lemma that also
the middle vertical arrow is an isomorphism. �
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To generalize the previous result to singular varieties, we need to assume
that the theory B∗ satisfies descent (this holds for Ω∗ by [14]). Recall that
if B∗ satisfies descent, then so does the equivariant version BT∗ .

Lemma 4.3. — Let B∗ be as above, X∆ an arbitrary toric variety, and
Y a variety with a trivial T -action. Then X∆×Y satisfies Künneth formula
in BT∗ .

Proof. — Pick a toric resolution X∆̃ of X∆, and denote X = X∆, X̃ =
X∆̃. By descent assumption, we have the commutative diagram

BT∗ (X̃×XX̃)⊗B∗
T
BT∗ (Y ) BT∗ (X̃)⊗B∗

T
BT∗ (Y ) BT∗ (X)⊗B∗

T
BT∗ (Y ) 0

BT∗ ((X̃ ×X X̃)× Y ) BT∗ (X̃ × Y ) BT∗ (X × Y ) 0

∼=

with exact rows, where the middle vertical map is known to be isomorphism
by the previous lemma. In order to show that the rightmost vertical map
is an isomorphism, it is enough to show that the leftmost vertical map is a
surjection.
As X̃ and X are toric varieties and the map X̃ → X equivariant, we see

that X̃×X X̃ has a filtration by tori. Indeed, if Õ is an orbit in X̃ and O is
its image in X, the restricted map Õ → O is essentially just the projection
(α1, . . . , αr) 7→ (α1, . . . , αs), and hence Õ ×O Õ is isomorphic to a torus
(although this is no longer necessarily a single T orbit). Thus X̃ ×X X̃

is a T -linear scheme. We know that a product with a linear variety has a
surjective Künneth map by Proposition 2.8, so we are done. �

Bringing the theorem back to the ordinary case is now easy.
Proof of Theorem 4.1. — Let X∆ be a toric variety with torus T , and let

Y be an arbitrary variety. Now we know that the equivariant Künneth map

BT∗ (X∆)⊗B∗
T
BT∗ (Y ) −→ BT∗ (X∆ × Y )

is an isomorphism. This isomorphism is preserved after tensoring both sides
with B∗ considered as a B∗T -algebra in the natural way. On the right hand
side, this tensor product equals B∗(X∆ × Y ), and on the left hand side,
we get

B∗ ⊗B∗
T

(BT∗ (X∆)⊗B∗
T
BT∗ (Y ))

= (B∗ ⊗B∗
T
BT∗ (X∆))⊗B∗⊗B∗

T
B∗
T

(B∗ ⊗B∗
T
BT∗ (Y ))

= B∗(X∆)⊗B∗ B∗(Y ).
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This proves the claim. �

Remark 4.4. — Note how Lemma 4.2 gives a T -equivariant Künneth
isomorphism

BT∗ (X∆)⊗B∗
T
BT∗ (Y ) = BT∗ (X∆ × Y )

only if Y has a trivial T -action. We can do better, as the following re-
sult illustrates (consider the case when G = T and T × T acts on X∆
codiagonally).

Theorem 4.5. — Let B∗ be an oriented Borel–Moore homology theory
satisfying descent. Let G be a linear algebraic group, and suppose that a
toric variety X∆ has a T ×G-action extending the T -action. Then, for any
G-scheme Y , the Künneth morphism

BG∗ (X∆)⊗B∗
G
BG∗ (Y ) −→ BG∗ (X∆ × Y )

is an isomorphism.

Proof. — Recall that by Proposition 3.4, the T -equivariant version of
BG∗ is well-defined. Extend the G-action on Y to a T ×G-action by letting
T act trivially. The arguments proving Lemmas 4.2 and 4.3 also show that
the Künneth morphism

(BG)T∗ (X∆)⊗(BG)∗
T

(BG)T∗ (Y ) −→ (BG)T∗ (X∆ × Y )

is an isomorphism. One gets the desired result for BG∗ with the same argu-
ment as in the proof of Theorem 4.1. �

4.2. Universal coefficient theorem for operational cohomology

We are now ready to prove the universal coefficient theorem. Throughout
this subsection, B∗ is going to denote a ROBM-homology theory, i.e., an
oriented Borel–Moore homology theory with refined l.c.i. pullbacks (see [13]
for more details). Again, Ω∗ is an example of such a theory, as is proved
in [11] and [12]. For any such theory, we may construct the operational
bivariant group, and as a special case we get the operational cohomology
theory opB∗. The main purpose of this section is to prove the following
theorem:

Theorem 4.6. — Let B∗ be a ROBM-homology theory, and let X be
a proper variety having the property that the Künneth formula holds for
X × Y for all Y . Then there is a natural isomorphism

opB∗(X) ∼= HomB∗(B∗(X), B∗).
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Combining this theorem with the Künneth isomorphism results of Sec-
tion 4.1, we get the following corollary.

Corollary 4.7. — Let B∗ be a ROBM-homology theory satisfying lo-
calization and descent, and let X∆ be a complete toric variety for T . Then
there is a natural isomorphism

opB∗(X) ∼= HomB∗(B∗(X), B∗).

Moreover, if we choose a T×G-action on X∆ extending the T -action, where
G is a linear algebraic group, then there is a natural isomorphism

opB∗G(X) ∼= HomB∗
G

(BG∗ (X), B∗G).

The proof of Theorem 4.6 is formally the same as proof of the analogous
result in [6]. Note that the B∗-module HomB∗(B∗(X), B∗) has a natural
grading as the Hom-module of graded modules over a graded ring. In order
to have grading that coincides with the usual cohomological grading, we
set Homk

B∗(B∗(X), B∗) to consist of degree preserving B∗-linear morphisms
B∗+k(X)→ B∗(pt). Before embarking on the proof, we quickly review the
definition of operational cohomology groups.

Review on operational cohomology groups

Here we recall the construction of operational cohomology groups. Let
X be any variety. An operational cohomology class c ∈ opB∗(X) consists
of morphisms

c ≡ cY→X : B∗(Y ) −→ B∗(Y )

for any morphism Y → X. Moreover, these maps are required to satisfy
the following compatibility axioms:

(C1) Given maps Y ′ f→ Y → X, where f is proper, the diagram

B∗(Y ′) B∗(Y ′)

B∗(Y ) B∗(Y )

f∗ f∗

c

c

commutes, i.e., operational classes commute with proper pushfor-
ward.

ANNALES DE L’INSTITUT FOURIER



ORIENTED BOREL–MOORE HOMOLOGIES OF TORIC VARIETIES 2465

(C2) Given maps Y ′ f→ Y → X, where f is smooth, the diagram

B∗(Y ) B∗(Y )

B∗(Y ′) B∗(Y ′)

f∗ f∗

c

c

commutes, i.e., operational classes commute with smooth pullbacks.
(C3) If we have morphisms Y → X, and Y → Z, and an l.c.i. map

i : Z ′ → Z inducing a Cartesian square

Y ′ Z ′

Y Z

i

then the induced diagram

B∗(Y ) B∗(Y )

B∗(Y ′) B∗(Y ′)

i! i!

c

c

commutes, i.e., operational classes commute with refined l.c.i. pull-
backs.

(C4) If we have maps Y × Z → Y → X, where the first map is the
canonical projection, then

c(α× β) = c(α)× β

in B∗(Y × Z), i.e., operational cohomology classes are compatible
with the exterior product. This also show that the maps c are linear
over the coefficient ring B∗ of the theory.

Two of the three bivariant operations still make sense when restricted
to the underlying cohomology theory. First of all, one defines the bivariant
product to simply be the composition of two bivariant classes. Moreover,
for any morphism f : X ′ → X one can define the operational pullback

f∗ : opB∗(X) −→ opB∗(X ′)

simply by setting
(f∗c)Y→X′ = c

Y→X′ f→X
.
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One readily verifies that these operations produce operational cohomology
classes.

Proof of Theorem 4.6

We are now ready to prove the main theorem of this subsection. Let X
be a proper variety. We define the Kronecker duality map

opB∗(X) −→ HomB∗(B∗(X), B∗)

as the composition

B∗(X) c−→ B∗(X) π∗−→ B∗(pt) = B∗,

where π : X → pt is the structure morphism. We begin with a simple
observation.

Lemma 4.8. — Let X be a proper variety satisfying the Künneth iso-
morphism criterion in 4.6. Then the Kronecker duality map is an injection.

Proof. — Let Y → X be a map, Γ : Y → X×Y be the graph embedding,
and let c be an operational cohomology class. Now we have the following
diagram

B∗(Y )

B∗(X)⊗B∗ B∗(Y )

B∗(Y )

B∗(X)⊗B∗ B∗(Y ) B∗(Y )

Γ∗

cY→X

Γ∗

cX×Y→X π2∗

1

where π2 is the projection X × Y → pt × Y = Y inducing the proper
pushforward

π2∗ := π∗ ⊗ 1 : B∗(X)⊗B∗ B∗(Y ) −→ B∗(pt)⊗B∗ B∗(Y ) = B∗(Y ),

by the basic compatibility properties of the exterior product with pushfor-
wards. Moreover, by the operational cohomology axiom C4, the map

cX×Y→X : B∗(X)⊗B∗ B∗(Y ) −→ B∗(X)⊗B∗ B∗(Y )

coincides with c1 ⊗ 1, where c1 is the homomorphism in the operational
class c corresponding to the identity map X → X.

We have shown that cY→X coincides with the composition

B∗(Y ) Γ∗−→B∗(X)⊗B∗B∗(Y ) c1⊗1−−−→B∗(X)⊗B∗B∗(Y ) π∗⊗1−−−→B∗(pt)⊗B∗(Y ).
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As Γ∗ does not depend on c, we have shown that the class c is completely
determined by its image under the Kronecker duality map, which is exactly
what we wanted. �

Remark 4.9. — In the above proof, we did not in fact use the Künneth
isomorphism requirement in its full strength. Indeed, it would have been
enough to require the Künneth morphism to be surjective. This is to make
sure that the proper pushforward Γ∗ of an element β ∈ B∗(Y ) is of the
form

Γ∗(β) = α1 × β1 + · · ·+ αr × βr,

and therefore its image in π2∗c is completely determined by the image of c
in the Kronecker morphism.

In order to finish the proof of 4.6, it is enough to prove that any B∗-linear
map ψ : B∗(X)→ B∗ gives rise to an operational cohomology class via the
formula

cY→X := B∗(Y ) Γ∗−→ B∗(X)⊗B∗ B∗(Y ) ψ⊗1−−−→ B∗(Y ).

If the classes cY→X formed an operational cohomology class c, then the
image of c under the Kronecker duality map would be ψ as the diagram

B∗(X) B∗(X)⊗B∗ B∗(X)

B∗(X)⊗B∗ B∗(pt)

B∗(pt)⊗B∗ B∗(X)

B∗(pt)⊗B∗ B∗(pt)

∆∗

1 1 ⊗ π∗

ψ ⊗ 1

1 ⊗ π∗

ψ ⊗ 1

commutes. This would prove the surjectivity of the Kronecker morphism.
Note that this is where we require the Künneth morphism to be an iso-
morphism: if we cannot say that B∗(X ×Y ) = B∗(X)⊗B∗ B∗(Y ), then we
cannot define the function ψ ⊗ 1.

Proof of Theorem 4.6. — We have to verify that the axioms C1-C4 are
satisfied for a collection of morphism defined as above.
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(C1). — Let f : Y ′ → Y be a proper morphism. Now we have the
induced diagram

B∗(Y ′) B∗(X)⊗B∗ B∗(Y ′) B∗(Y ′)

B∗(Y ) B∗(X)⊗B∗ B∗(Y ) B∗(Y )

f∗ 1 ⊗ f∗

Γ′∗

Γ∗

ψ ⊗ 1

ψ ⊗ 1

f∗

The two small squares commute, and hence the big square commutes, prov-
ing (C1). One proves the axioms (C2) and (C3) the same way, using the
fact that smooth pullbacks and refined l.c.i. pullbacks commute with proper
pushforwards.
(C4). — Consider the composition Y ×Z → Y → X, where the first map

is the canonical projection. Then the graph embedding Y ×Z → X×Y ×Z
equals Γ×1Z , where Γ is the graph embedding Y → X×Y . Thus the map
associated to Y × Z → X is given by

B∗(Y × Z) (Γ×1)∗−−−−→ B∗(X)⊗B∗ B∗(Y × Z) ψ⊗1−−−→ B∗(Y × Z)

Now
(Γ× 1)∗(α× β) = Γ∗(α)× β,

and
(ψ ⊗ 1)(Γ∗(α)× β) = (ψ ⊗ 1)Γ∗(α)× β,

so the collection of maps we have defined satisfies (C4). �

This identification is functorial in the following sense. Suppose we have
a morphism f : X → Y of proper varieties. Now there are two kinds of
pullbacks one can think about in this situation. First of all, we have the
usual operational pullbacks f∗ : opB∗(Y )→ opB∗(X). On the other hand,
the morphism f∗ is proper, so we have the pullback

(f∗)∗ : HomB∗(B∗(Y ), B∗) −→ HomB∗(B∗(X), B∗)

induced by the proper pushforward f∗ : B∗(X)→ B∗(Y ). These work well
with the Kronecker duality map, namely:

Proposition 4.10. — The two pullbacks above commute with the Kro-
necker morphism.

Proof. — Let c ∈ opB∗(Y ) be an operational cohomology class. It is
enough to show that the Kronecker image of f∗c coincides with ψ◦f∗, where

ANNALES DE L’INSTITUT FOURIER



ORIENTED BOREL–MOORE HOMOLOGIES OF TORIC VARIETIES 2469

ψ is the Kronecker image of c. This follows directly from the commutativity
of the diagram

B∗(X) B∗(Y )⊗B∗ B∗(X) B∗(X) B∗

B∗(Y ) B∗(Y )⊗B∗ B∗(Y ) B∗(Y ) B∗

f∗ 1 ⊗ f∗

Γ∗

∆∗

ψ ⊗ 1

ψ ⊗ 1

f∗

πX∗

πY ∗

1

where the top row is, by constructions of operational pullback and Kro-
necker map, just the Kronecker image of f∗c, and the bottom row is simi-
larly the Kronecker image of c. �
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