L’indice grossier équivariant est bien compris et utilisé pour les actions par les groupes discrets. On commence par étendre la définition de cet indice aux groupes localement compacts généraux. On utilise une notion de modules admissibles sur des -algèbres de functions continues, pour obtenir un indice utile. Inspirés par le travail de Roe, nous développons une variante localisée, à valeurs dans la -théorie de la -algèbre d’un groupe, généralisant l’assembly map de Baum–Connes aux actions non-cocompactes. On montre qu’un indice pour des opérateurs de type Callias est un cas spécial de cet indice localisé ; on obtient des résultats sur l’existence et la non-existence de métriques Riemanniennes à courbure scalaire positive, invariantes par des actions propres ; et on montre qu’une version localisée de la conjecture de Baum–Connes est plus faible que la conjecture originale, et on donne une description conceptuelle de la -théorie des -algèbres de groupes.
The equivariant coarse index is well-understood and widely used for actions by discrete groups. We first extend the definition of this index to general locally compact groups. We use a suitable notion of admissible modules over -algebras of continuous functions to obtain a meaningful index. Inspired by a work of Roe, we then develop a localised variant, with values in the -theory of a group -algebra. This generalises the Baum–Connes assembly map to non-cocompact actions. We show that an equivariant index for Callias-type operators is a special case of this localised index, obtain results on existence and non-existence of Riemannian metrics of positive scalar curvature invariant under proper group actions, and show that a localised version of the Baum–Connes conjecture is weaker than the original conjecture, while still giving a conceptual description of the -theory of a group -algebra.
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3445
Keywords: Roe algebra, equivariant index, proper group action, locally compact group, Callias-type operator
Mot clés : Algèbre de Roe, indice équivariant, action propre, groupe localement compact, opérateur de type Callias
Guo, Hao 1 ; Hochs, Peter 2 ; Mathai, Varghese 3
@article{AIF_2021__71_6_2387_0, author = {Guo, Hao and Hochs, Peter and Mathai, Varghese}, title = {Equivariant {Callias} index theory via coarse geometry}, journal = {Annales de l'Institut Fourier}, pages = {2387--2430}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {6}, year = {2021}, doi = {10.5802/aif.3445}, zbl = {07554450}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3445/} }
TY - JOUR AU - Guo, Hao AU - Hochs, Peter AU - Mathai, Varghese TI - Equivariant Callias index theory via coarse geometry JO - Annales de l'Institut Fourier PY - 2021 SP - 2387 EP - 2430 VL - 71 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3445/ DO - 10.5802/aif.3445 LA - en ID - AIF_2021__71_6_2387_0 ER -
%0 Journal Article %A Guo, Hao %A Hochs, Peter %A Mathai, Varghese %T Equivariant Callias index theory via coarse geometry %J Annales de l'Institut Fourier %D 2021 %P 2387-2430 %V 71 %N 6 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3445/ %R 10.5802/aif.3445 %G en %F AIF_2021__71_6_2387_0
Guo, Hao; Hochs, Peter; Mathai, Varghese. Equivariant Callias index theory via coarse geometry. Annales de l'Institut Fourier, Tome 71 (2021) no. 6, pp. 2387-2430. doi : 10.5802/aif.3445. https://aif.centre-mersenne.org/articles/10.5802/aif.3445/
[1] Parallelizability of proper actions, global -slices and maximal compact subgroups, Math. Ann., Volume 212 (1974), pp. 1-19 | DOI | MR | Zbl
[2] Remark on Callias’ index theorem, Rep. Math. Phys., Volume 28 (1989) no. 1, pp. 1-6 | DOI | MR | Zbl
[3] On the index of Callias-type operators, Geom. Funct. Anal., Volume 3 (1993) no. 5, pp. 431-438 | DOI | MR | Zbl
[4] Classifying space for proper actions and -theory of group -algebras, -algebras: 1943–1993 (San Antonio, 1993) (Contemporary Mathematics), Volume 167, American Mathematical Society, 1994, pp. 240-291 | DOI | MR | Zbl
[5] Some remarks on the paper of Callias, Commun. Math. Phys., Volume 62 (1978) no. 3, pp. 235-245 | DOI | MR | Zbl
[6] The index theory on non-compact manifolds with proper group action, J. Geom. Phys., Volume 98 (2015), pp. 275-284 | DOI | MR | Zbl
[7] Callias-type operators in von Neumann algebras, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 546-586 | DOI | MR | Zbl
[8] -index for certain Dirac-Schrödinger operators, Duke Math. J., Volume 66 (1992) no. 2, pp. 311-336 | DOI | MR | Zbl
[9] A -theoretic relative index theorem and Callias-type Dirac operators, Math. Ann., Volume 303 (1995) no. 2, pp. 241-279 | DOI | MR | Zbl
[10] The coarse index class with support (2018) (https://arxiv.org/abs/1706.06959)
[11] Axial anomalies and index theorems on open spaces, Commun. Math. Phys., Volume 62 (1978) no. 3, pp. 213-234 | DOI | MR | Zbl
[12] An index formula for perturbed Dirac operators on Lie manifolds, J. Geom. Anal., Volume 24 (2014) no. 4, pp. 1808-1843 | DOI | MR | Zbl
[13] Callias-type operators in -algebras and positive scalar curvature on noncompact manifolds, J. Topol. Anal., Volume 12 (2020) no. 4, pp. 897-939 | DOI | MR | Zbl
[14] The -index theorem for homogeneous spaces of Lie groups, Ann. Math., Volume 115 (1982) no. 2, pp. 291-330 | DOI | MR | Zbl
[15] Geometrization of the strong Novikov conjecture for residually finite groups, J. Reine Angew. Math., Volume 621 (2008), pp. 159-189 | DOI | MR | Zbl
[16] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math., Inst. Hautes Étud. Sci. (1984) no. 58, pp. 83-196 | MR | Zbl
[17] Index of Equivariant Callias-Type Operators and Invariant Metrics of Positive Scalar Curvature, J. Geom. Anal., Volume 31 (2021) no. 1, pp. 1-34 | DOI | MR | Zbl
[18] Coarse geometry and Callias quantisation, Trans. Am. Math. Soc., Volume 374 (2021) no. 4, pp. 2479-2520 | DOI | MR | Zbl
[19] Positive scalar curvature and Poincaré duality for proper actions, J. Noncommut. Geom., Volume 13 (2019) no. 4, pp. 1381-1433 | DOI | MR | Zbl
[20] A Lichnerowicz Vanishing Theorem for the Maximal Roe Algebra (2021) (https://arxiv.org/abs/1905.12299)
[21] Proper metrics on locally compact groups, and proper affine isometric actions on Banach spaces (2006) (https://arxiv.org/abs/math/0606794)
[22] Analytic -homology, Oxford Mathematical Monographs, Oxford University Press, 2000, xviii+405 pages | MR
[23] A coarse Mayer–Vietoris principle, Math. Proc. Camb. Philos. Soc., Volume 114 (1993) no. 1, pp. 85-97 | DOI | MR | Zbl
[24] Geometric quantization and families of inner products, Adv. Math., Volume 282 (2015), pp. 362-426 | DOI | MR | Zbl
[25] An equivariant index for proper actions III: The invariant and discrete series indices, Differ. Geom. Appl., Volume 49 (2016), pp. 1-22 | DOI | MR | Zbl
[26] An equivariant Atiyah–Patodi–Singer index theorem for proper actions I: the index formula (2020) (https://arxiv.org/abs/1904.11146)
[27] An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the -theoretic index (2020) (https://arxiv.org/abs/2006.08086)
[28] An index theorem of Callias type for pseudodifferential operators, J. -Theory, Volume 8 (2011) no. 3, pp. 387-417 | DOI | MR | Zbl
[29] A Callias-type index theorem with degenerate potentials, Commun. Partial Differ. Equations, Volume 40 (2015) no. 2, pp. 219-264 | DOI | MR | Zbl
[30] The scalar curvature on totally geodesic fiberings, Ann. Global Anal. Geom., Volume 18 (2000) no. 6, pp. 589-600 | DOI | MR | Zbl
[31] A short proof of an index theorem, Proc. Am. Math. Soc., Volume 129 (2001) no. 12, pp. 3729-3736 | DOI | MR | Zbl
[32] The fundamental equations of a submersion, Mich. Math. J., Volume 13 (1966), pp. 459-469 | MR | Zbl
[33] Coarse cohomology and index theory on complete Riemannian manifolds, Mem. Am. Math. Soc., Volume 104 (1993) no. 497, p. x+90 | DOI | MR | Zbl
[34] Index theory, coarse geometry, and topology of manifolds, CBMS Regional Conference Series in Mathematics, 90, American Mathematical Society, 1996, x+100 pages | DOI | MR
[35] Comparing analytic assembly maps, Q. J. Math, Volume 53 (2002) no. 2, pp. 241-248 | DOI | MR | Zbl
[36] Lectures on coarse geometry, University Lecture Series, 31, American Mathematical Society, 2003, viii+175 pages | DOI | MR
[37] Positive curvature, partial vanishing theorems and coarse indices, Proc. Edinb. Math. Soc., II. Ser., Volume 59 (2016) no. 1, pp. 223-233 | DOI | MR | Zbl
[38] The topology of positive scalar curvature, Proceedings of the International Congress of Mathematicians (Seoul 2014) Vol. II (2014), pp. 1285-1307 | MR | Zbl
[39] Totally geodesic maps, J. Differ. Geom., Volume 4 (1970), pp. 73-79 | MR | Zbl
[40] Higher index theory, Cambridge Studies in Advanced Mathematics, 189, Cambridge University Press, 2020, xi+581 pages | DOI
[41] An index for confined monopoles, Commun. Math. Phys., Volume 327 (2014) no. 1, pp. 117-149 | DOI | MR | Zbl
[42] The Novikov conjecture for groups with finite asymptotic dimension, Ann. Math., Volume 147 (1998) no. 2, pp. 325-355 | DOI | MR | Zbl
[43] The coarse Baum–Connes conjecture for spaces which admit a uniform embedding into Hilbert space, Invent. Math., Volume 139 (2000) no. 1, pp. 201-240 | DOI | MR | Zbl
[44] A characterization of the image of the Baum–Connes map, Quanta of maths (Clay Mathematics Proceedings), Volume 11, American Mathematical Society, 2010, pp. 649-657 | MR | Zbl
Cité par Sources :