Soit une variété complexe et un fibré en droites holomorphe sur . Supposons que est semi-positive, à savoir admet une métrique hermitienne lisse avec une courbure de Chern semi-positif. Soit une sous-variété kählérienne compacte de telle que la restriction de à est topologiquement triviale. Nous examinons l’obstruction pour que soit plat unitaire sur un voisinage de . Comme application, par exemple, nous prouvons l’existence d’un fibré en droites nef, grand et non semi-positif sur une surface projective non singulière.
Let be a complex manifold and be a holomorphic line bundle on . Assume that is semi-positive, namely admits a smooth Hermitian metric with semi-positive Chern curvature. Let be a compact Kähler submanifold of such that the restriction of to is topologically trivial. We investigate the obstruction for to be unitary flat on a neighborhood of in . As an application, for example, we show the existence of nef, big, and non semi-positive line bundle on a non-singular projective surface.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Hermitian metrics, neighborhoods of subvarieties, Ueda theory
Mot clés : métrique hermitienne, voisinage de sous-variété, théorie d’Ueda
Koike, Takayuki 1
@article{AIF_2021__71_5_2237_0, author = {Koike, Takayuki}, title = {Linearization of transition functions of a semi-positive line bundle along a certain submanifold}, journal = {Annales de l'Institut Fourier}, pages = {2237--2271}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {5}, year = {2021}, doi = {10.5802/aif.3439}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3439/} }
TY - JOUR AU - Koike, Takayuki TI - Linearization of transition functions of a semi-positive line bundle along a certain submanifold JO - Annales de l'Institut Fourier PY - 2021 SP - 2237 EP - 2271 VL - 71 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3439/ DO - 10.5802/aif.3439 LA - en ID - AIF_2021__71_5_2237_0 ER -
%0 Journal Article %A Koike, Takayuki %T Linearization of transition functions of a semi-positive line bundle along a certain submanifold %J Annales de l'Institut Fourier %D 2021 %P 2237-2271 %V 71 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3439/ %R 10.5802/aif.3439 %G en %F AIF_2021__71_5_2237_0
Koike, Takayuki. Linearization of transition functions of a semi-positive line bundle along a certain submanifold. Annales de l'Institut Fourier, Tome 71 (2021) no. 5, pp. 2237-2271. doi : 10.5802/aif.3439. https://aif.centre-mersenne.org/articles/10.5802/aif.3439/
[1] Bifurcations of invariant manifolds of differential equations and normal forms in neighborhoods of elliptic curves, Funct. Anal. Appl., Volume 10 (1977) no. 4, pp. 249-259 translation from Funkts. Anal. Prilozh. 10, no. 4, p. 1-12 (1976) | Zbl
[2] Foliations and complex Monge–Ampère equations, Commun. Pure Appl. Math., Volume 30 (1977) no. 5, pp. 543-571 | DOI | Zbl
[3] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | Zbl
[4] On Kähler surfaces with semipositive Ricci curvature, Riv. Mat. Univ. Parma, Volume 1 (2010) no. 2, pp. 441-450 | Zbl
[5] Compact complex manifolds with numerically effective tangent bundles, J. Algebr. Geom., Volume 3 (1994) no. 2, pp. 295-345 | MR | Zbl
[6] Smooth and Rough Positive Currents, Ann. Inst. Fourier, Volume 68 (2018) no. 7, pp. 2981-2999 | DOI | Numdam | MR | Zbl
[7] Extension of pluriadjoint sections from a log-canonical center, Ph. D. Thesis, Princeton University, Princeton, USA (2007) | MR
[8] On minimal singular metrics of certain class of line bundles whose section ring is not finitely generated, Ann. Inst. Fourier, Volume 65 (2015) no. 5, pp. 1953-1967 | DOI | Numdam | MR | Zbl
[9] On the minimality of canonically attached singular Hermitian metrics on certain nef line bundles, Kyoto J. Math., Volume 55 (2015) no. 3, pp. 607-616 | MR | Zbl
[10] Higher codimensional Ueda theory for a compact submanifold with unitary flat normal bundle, Nagoya Math. J., Volume 238 (2018), pp. 104-136 | DOI | MR | Zbl
[11] Hermitian metrics on the anti-canonical bundle of the blow-up of the projective plane at nine points (2019) (https://arxiv.org/abs/1909.06827)
[12] On the neighborhood of a torus leaf and dynamics of holomorphic foliations (2020) (https://arxiv.org/abs/1808.10219)
[13] Ueda theory: theorems and problems, Memoirs of the American Mathematical Society, 415, American Mathematical Society, 1989 | Zbl
[14] Vanishing theorems on complete Kähler manifolds, Publ. Res. Inst. Math. Sci., Volume 20 (1984) no. 1, pp. 21-38 | DOI | Zbl
[15] Komplex-analytische Blätterung reeller Hyperflächen im , Math. Ann., Volume 137 (1959) no. 5, pp. 392-411 | DOI | MR | Zbl
[16] On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ., Volume 22 (1983), pp. 583-607 | MR | Zbl
Cité par Sources :