Coning-off CAT(0) cube complexes
[Coller des cônes sur des complexes cubiques CAT(0)]
Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1535-1599.

Dans cet article, nous étudions les propriétés de courbure négative stricte d’espaces obtenus à partir de complexes cubiques CAT(0) en collant des cônes au-dessus de sous-complexes convexes. En guise d’application, nous donnons une preuve cubique directe de la caractérisation des groupes de Coxeter à angles droits relativement hyperboliques. Nous prouvons également l’hyperbolicité acylindrique des quotients à petite simplification C (1/4)-T(4) des produits libres.

In this paper, we study the geometry of cone-offs of CAT(0) cube complexes over a family of combinatorially convex subcomplexes, with an emphasis on their Gromov-hyperbolicity. A first application gives a direct cubical proof of the characterization of the (strong) relative hyperbolicity of right-angled Coxeter groups, which is a particular case of a result due to Behrstock, Caprace, Hagen and Sisto. A second application gives the acylindrical hyperbolicity of C (1/4)-T(4) small cancellation quotients of free products.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3430
Classification : 20F65, 20F67
Keywords: CAT(0) cube complexes, hyperbolicity, acylindrically hyperbolic groups, relatively hyperbolic groups, right-angled Coxeter groups, small cancellation
Mot clés : complexes cubiques, hyperbolicité, groupes acylindriquement hyperboliques, groupes relativement hyperboliques, groupes de Coxeter à angles droits, petites simplifications

Genevois, Anthony 1

1 University of Montpellier Institut Mathématiques Alexander Grothendieck Place Eugène Bataillon 34090 Montpellier (France)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2021__71_4_1535_0,
     author = {Genevois, Anthony},
     title = {Coning-off {CAT(0)} cube complexes},
     journal = {Annales de l'Institut Fourier},
     pages = {1535--1599},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.5802/aif.3430},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3430/}
}
TY  - JOUR
AU  - Genevois, Anthony
TI  - Coning-off CAT(0) cube complexes
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 1535
EP  - 1599
VL  - 71
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3430/
DO  - 10.5802/aif.3430
LA  - en
ID  - AIF_2021__71_4_1535_0
ER  - 
%0 Journal Article
%A Genevois, Anthony
%T Coning-off CAT(0) cube complexes
%J Annales de l'Institut Fourier
%D 2021
%P 1535-1599
%V 71
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3430/
%R 10.5802/aif.3430
%G en
%F AIF_2021__71_4_1535_0
Genevois, Anthony. Coning-off CAT(0) cube complexes. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1535-1599. doi : 10.5802/aif.3430. https://aif.centre-mersenne.org/articles/10.5802/aif.3430/

[1] Abbott, Carolyn Not all finitely generated groups have universal acylindrical actions, Proc. Am. Math. Soc., Volume 144 (2016) no. 10, pp. 4151-4155 | DOI | MR | Zbl

[2] Arzhantseva, Goulnara N.; Hagen, Mark Acylindrical hyperbolicity of cubical small-cancellation groups (2016) (https://arxiv.org/abs/1603.05725)

[3] Bahls, Patrick Relative hyperbolicity and right-angled Coxeter groups (2014) (https://arxiv.org/abs/math/0401280)

[4] Bandelt, Hans-Jürgen; van de Vel, Marcel Superextensions and the depth of median graphs, J. Comb. Theory, Ser. A, Volume 57 (1991), pp. 187-202 | DOI | MR | Zbl

[5] Behrstock, Jason; Charney, Ruth Divergence and quasimorphisms of right-angled Artin groups, Math. Ann., Volume 352 (2012) no. 2, pp. 339-356 | DOI | MR | Zbl

[6] Behrstock, Jason; Hagen, Mark; Sisto, Alessandro Thickness, relative hyperbolicity, and randomness in Coxeter groups, Algebr. Geom. Topol., Volume 17 (2017) no. 2, pp. 705-740 (with an appendix written jointly with P.-E. Caprace) | DOI | MR | Zbl

[7] Bowditch, Brian Relatively hyperbolic groups, Int. J. Algebra Comput., Volume 22 (2012) no. 3, 1250016, 66 pages | MR | Zbl

[8] Bowditch, Brian Uniform hyperbolicity of the curve graphs, Pac. J. Math., Volume 269 (2014), pp. 269-280 | DOI | MR | Zbl

[9] Bridson, Martin R.; Haefliger, André Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, 319, Springer, 1999, xxii+643 pages | DOI | MR

[10] Caprace, Pierre-Emmanuel Buildings with isolated subspaces and relatively hyperbolic Coxeter groups, Innov. Incidence Geom., Volume 10 (2009), pp. 15-31 corrigendum in ibid. 14 (2015), p. 77-79 | DOI | MR | Zbl

[11] Chepoi, Victor Graphs of some CAT (0) complexes, Adv. Appl. Math., Volume 24 (2000) no. 2, pp. 125-179 | DOI | MR | Zbl

[12] Chepoi, Victor; Dragan, Feodor; Estellon, Bertrand; Habib, Michel; Vaxès, Yann Diameters, centers, and approximating trees of δ-hyperbolic geodesic spaces and graphs, Computational geometry (SCG’08), ACM Press, 2008, pp. 59-68 | DOI | MR | Zbl

[13] Genevois, Anthony Hyperbolic diagram groups are free, Geom. Dedicata, Volume 188 (2017), pp. 33-50 | DOI | MR | Zbl

[14] Gruber, Dominik Infinitely presented graphical small cancellation groups, Ph. D. Thesis, University of Vienna (Austria) (2015)

[15] Gruber, Dominik; Sisto, Alessandro Infinitely presented graphical small cancellation groups are acylindrically hyperbolic, Ann. Inst. Fourier, Volume 68 (2018) no. 6, pp. 2501-2552 | DOI | Numdam | MR | Zbl

[16] Hagen, Mark Weak hyperbolicity of cube complexes and quasi-arboreal groups, J. Topol., Volume 7 (2014) no. 2, pp. 385-418 | DOI | MR | Zbl

[17] Haglund, Frédéric Finite index subgroups of graph products, Geom. Dedicata, Volume 135 (2008), pp. 167-209 | DOI | MR | Zbl

[18] Hruska, G. Christopher; Wise, Daniel T. Packing subgroups in relatively hyperbolic groups, Geom. Topol., Volume 13 (2008), pp. 1945-1988 | DOI | MR | Zbl

[19] Leary, Ian A metric Kan–Thurston theorem, J. Topol., Volume 6 (2013) no. 1, pp. 251-284 | DOI | MR | Zbl

[20] Lyndon, Roger C.; Schupp, Paul E. Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, 89, Springer, 1977

[21] Manning, Jason Geometry of pseudocharacters, Geom. Topol., Volume 9 (2005), pp. 1147-1185 | DOI | MR | Zbl

[22] Martin, Alexandre Acylindrical actions on CAT(0) square complexes (2015) (https://arxiv.org/abs/1509.03131)

[23] McCammond, Jonathan P.; Wise, Daniel T. Fans and ladders in small cancellation theory, Proc. Lond. Math. Soc., Volume 84 (2002) no. 3, pp. 599-644 | DOI | MR | Zbl

[24] Niblo, Graham The singularity obstruction for group splittings, Topology Appl., Volume 119 (2002), pp. 17-31 | DOI | MR | Zbl

[25] Osin, Denis Acylindrically hyperbolic groups, Trans. Am. Math. Soc., Volume 368 (2016) no. 2, pp. 851-888 | DOI | MR | Zbl

[26] Pankrat’ev, Anton Hyperbolic products of groups, Vestn. Mosk. Univ., Ser. I, Volume 54 (1999) no. 2, pp. 9-13 | MR | Zbl

[27] Papasoglu, Panos Strongly geodesically automatic groups are hyperbolic, Invent. Math., Volume 121 (1995) no. 2, pp. 323-334 | DOI | MR | Zbl

[28] Polat, Norbert Finite invariant simplices in infinite graphs, Period. Math. Hung., Volume 27 (1993) no. 2, pp. 125-136 | DOI | MR | Zbl

[29] Sageev, Michah Ends of group pairs and non-positively curved cube complexes, Proc. Lond. Math. Soc., Volume 71 (1995) no. 3, pp. 585-617 | DOI | MR | Zbl

[30] Schupp, Paul E. A survey of small cancellation, Word Problems (Studies in Logic and the Foundations of Mathematics), Volume 71, North-Holland, 1973, pp. 569-589 | MR | Zbl

[31] Sigarreta, José M. Hyperbolicity in median graphs, Proc. Indian Acad. Sci., Math. Sci., Volume 123 (2013) no. 4, pp. 455-467 | DOI | MR | Zbl

[32] Steenbock, Markus Rips–Segev torsion-free groups without the unique product property, J. Algebra, Volume 438 (2015), pp. 337-378 | DOI | MR | Zbl

[33] Strebel, R. Appendix. Small cancellation groups, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progress in Mathematics), Volume 83, Birkhäuser, 1990, pp. 227-273 | MR

[34] Thomas, Simon; Velickovic, Boban Asymptotic cones of finitely generated groups, Bull. Lond. Math. Soc., Volume 32 (2000) no. 2, pp. 203-208 | DOI | MR | Zbl

[35] Van Kampen, Egbert On some lemmas in the theory of groups, Am. J. Math., Volume 55 (1933) no. 1, pp. 268-273 | MR | Zbl

[36] Wise, Daniel T. Cubulating small cancellation groups, Geom. Funct. Anal., Volume 14 (2004) no. 1, pp. 150-214 | DOI | MR | Zbl

[37] Wise, Daniel T. The structure of groups with a quasiconvex hierarchy, Annals of Mathematics Studies, 366, Princeton University Press, 2021 | DOI

Cité par Sources :