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CONING-OFF CAT(0) CUBE COMPLEXES

by Anthony GENEVOIS

Abstract. — In this paper, we study the geometry of cone-offs of CAT(0) cube
complexes over a family of combinatorially convex subcomplexes, with an emphasis
on their Gromov-hyperbolicity. A first application gives a direct cubical proof of
the characterization of the (strong) relative hyperbolicity of right-angled Coxeter
groups, which is a particular case of a result due to Behrstock, Caprace, Hagen and
Sisto. A second application gives the acylindrical hyperbolicity of C′(1/4) − T (4)
small cancellation quotients of free products.
Résumé. — Dans cet article, nous étudions les propriétés de courbure négative

stricte d’espaces obtenus à partir de complexes cubiques CAT(0) en collant des
cônes au-dessus de sous-complexes convexes. En guise d’application, nous donnons
une preuve cubique directe de la caractérisation des groupes de Coxeter à angles
droits relativement hyperboliques. Nous prouvons également l’hyperbolicité acy-
lindrique des quotients à petite simplification C′(1/4)− T (4) des produits libres.

1. Introduction

A fruitful method to study a given group is to make it act on some
space which is “negatively-curved” in some sense. Following Gromov, a
possibility is to define δ-hyperbolic geodesic spaces by requiring that, in
any geodesic triangle, any side is included into the δ-neighborhood of the
union of the two other sides. Often it happens that a group G admits a
natural action on some geodesic space X, which is generally not hyperbolic
however. A well-known method to produce an action on a hyperbolic space
is to cone-off this space: loosely speaking, we construct a new geodesic
space Y from X by gluing cones over subspaces of X, in order to “kill”
the non-hyperbolic subspaces of X and to make Y hyperbolic; thus, if
this collection of subspaces is G-equivariant, the action G y X naturally

Keywords: CAT(0) cube complexes, hyperbolicity, acylindrically hyperbolic groups, rel-
atively hyperbolic groups, right-angled Coxeter groups, small cancellation.
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1536 Anthony GENEVOIS

induces a new action G y Y . In this paper, for convenience we will use
two different definitions of a cone-off; nevertheless, the spaces we obtain
are quasi-isometric:

Definition 1.1. — Let X be a CW complex and Q a collection of
subcomplexes. The cone-off of X over Q is the graph obtained from X(1)

by adding an edge between two vertices whenever they both belong to a
common subcomplex of Q.

Definition 1.2. — Let X be a CW complex and Q a collection of
subcomplexes. The usual cone-off of X over Q is the graph obtained from
X(1) by adding a vertex for each subcomplex Q ∈ Q and linking it by an
edge Q to each vertex belonging to Q.

In this article, we focus on the class of CAT(0) cube complexes. Roughly
speaking, a cube complex is CAT(0) if, when endowed with the natural
length metric which extends the Euclidean metric defined on each cube,
the geodesic triangles turn out to be thinner than the Euclidean triangles.
However, in all the article, we think of CAT(0) cube complexes as combi-
natorial objects, namely we only consider their one-skeleta endowed with
their graph metrics (referred to as the combinatorial metric of the cube
complex). We refer to Section 2 for more details.
The first result of this paper determines precisely when a CAT(0) cube

complex is hyperbolic (with respect to its combinatorial metric), in order
to identify the possible obstructions to hyperbolicity.

Theorem 1.3. — Let X be a CAT(0) cube complex. The following are
equivalent:

(i) X is hyperbolic;
(ii) the flat rectangles in X are uniformly thin;
(iii) X is finite-dimensional and the grid of hyperplanes in X are uni-

formly thin.

A flat rectangle is a combinatorially geodesic subcomplex isomorphic to
some square complex [0, a]× [0, b]; it is L-thin if min(a, b) 6 L and L-thick
if a, b > L. A grid of hyperplanes is the data of two families of hyperplanes
V = {V1, . . . , Vp} and H = {H1, . . . ,Hq}, such that any Vi is transverse to
any Hj , and any Vi (resp. Hj) separates Vi−1 and Vi+1 (resp. Hj−1 and
Hj+1); such a grid is said δ-thin if min(#V,#H) 6 δ. Notice that an (n,m)-
grid of hyperplanes is precisely the crossing graph of [0, n] × [0,m] ⊂ R2

endowed with its canonical structure of square complex.
Criteria similar to Theorem 1.3 can be also found in [16, Theorem 7.6,

Lemma 7.14] and [12, Corollary 5].
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Next, we show that a cone-off of a CAT(0) cube complex which “kills”
the flat rectangles (which are sufficiently thick) turns out to be hyperbolic:

Theorem 1.4. — Let X be a CAT(0) cube complex and Y a cone-off
of X over a collection of combinatorially convex subcomplexes. If the thick
flat rectangles of X are uniformly bounded in Y , then Y is hyperbolic.

Our first application concerns weak relative hyperbolicity. In [16], Hagen
associates to any CAT(0) cube complex a hyperbolic graph, namely its con-
tact graph, and in particular he deduces that cubulable groups are weakly
hyperbolic relative to the hyperplane stabilizers. Up to a quasi-isometry,
looking at the contact graph amounts to coning-off the (neighborhood of
the) hyperplanes of the cube complex. Using Theorem 1.4, we show that it
is possible to choose the hyperplanes we have to cone-off. More precisely,
for every n > 0, we define a class of hyperplanes, the n-combinatorially
contracting hyperplanes, and we prove that the cone-off ΓnX of X over
the hyperplanes which are not n-combinatorially contracting is hyperbolic.
In particular, we are able to slightly improve the result of Hagen:

Corollary 1.5. — Let G be a group acting geometrically on a CAT(0)
cube complex X. Then G is weakly hyperbolic relative to the stabilizers of
the non-contracting hyperplanes of X.

For instance, applied to the class of right-angled Coxeter groups, we
obtain:

Proposition 1.6. — Let Γ be a finite graph. The right-angled Coxeter
group C(Γ) is weakly hyperbolic relative to each of the following collection
of subgroups

• {C(Γ1 ∗ Γ2) |Γ1 ∗ Γ2 ⊂ Γ with Γ1,Γ2 not complete},
• {〈star(u)〉 |u ∈ �(Γ)},

where �(Γ) denotes the set of vertices of Γ which belong to an induced
square.

Afterwards, we focus on strong relative hyperbolicity. First of all, we
prove a criterion in order to determine when the usual cone-off of a CAT(0)
cube complex is fine. Explicitly,

Theorem 1.7. — Let X be a uniformly locally finite CAT(0) cube com-
plex and Y a usual cone-off of X over a collection Q of combinatorially
convex subcomplexes. If Q is locally finite (i.e., there exist only finitely-
many subcomplexes of Q containing a given edge of X) and if there exists
a constant C > 0 such that two subcomplexes of Q are both intersected
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1538 Anthony GENEVOIS

by at most C hyperplanes, then Y is fine. Conversely, if Q is not locally
finite or if it contains two subcomplexes both intersected by infinitely many
hyperplanes, then Y is not fine.

Thus, combining this criterion with Theorem 1.4, we are able to give a
purely cubical proof of the characterization of the strong relative hyperbol-
icity of right-angled Coxeter groups stated in [6, Theorem I]. Given a finite
graph Γ, we find a collection of subgraphs J∞(Γ) such that:

Theorem 1.8. — The right-angled Coxeter group C(Γ) is relatively
hyperbolic if and only if J∞(Γ) 6= {Γ}. If so, then C(Γ) is hyperbolic
relative to {C(Λ) |Λ ∈ J∞(Γ)}.

According to Theorem 1.3, infinite-dimensional CAT(0) cube complexes
cannot be hyperbolic. Thus, a natural cone-off to look at is the cone-off over
the high dimensional cubes. In fact, up to a quasi-isometry, it amounts to
considering the distance d∞ corresponding to the `∞-norm on each cube.
Thus, considering the distance d∞ allows us to introduce hyperbolicity in
infinite dimensions. In fact, since loosely speaking the cone-off kills the
dimension, the criterion suggested by Theorem 1.3 is precisely what we
get:

Theorem 1.9. — Let X be a CAT(0) cube complex. Then (X, d∞) is
hyperbolic if and only if the grids of hyperplanes in X are uniformly thin.

For instance, infinite-dimensional CAT(0) cube complexes in which the
grid of hyperplanes are uniformly thin naturally appear in some infinitely-
presented groups which are “limits” of hyperbolic groups; for example,
they include the cubulations of infinitely-presented C ′(1/6) or C ′(1/4) −
T (4) groups [36]. In order to exhibit a negatively-curved behavior of such
groups, we determine when the action on this hyperbolic space satisfies an
acylindrical condition.

Theorem 1.10. — Let G be a group acting on a complete CAT(0)
cube complex X. Suppose (X, d∞) hyperbolic. The following statements
are equivalent:

(i) for every d > 0, there exists R > 0 such that, for every vertices
x, y ∈ X,

d∞(x, y) > R⇒ #{g ∈ G | d∞(x, gx), d∞(y, gy) 6 d} < +∞;

(ii) there exists R > 0 such that, for every vertices x, y ∈ X,

d∞(x, y) > R⇒ #{g ∈ G | gx = x, gy = y} < +∞;

ANNALES DE L’INSTITUT FOURIER



CONING-OFF CAT(0) CUBE COMPLEXES 1539

(iii) there exists R > 0 such that, for any hyperplanes J1, J2 separated
by at least R pairwise disjoint hyperplanes, stab(J1) ∩ stab(J2) is
finite.

The weak acylindricity considered in this statement differs from the usual
acylindricity from the lack of uniform control on the cardinalities: we know
that the cardinality of the set under consideration is finite, but it may not
be uniformly bounded when x and y vary. (Compare with Theorem 8.34
below, where we get a truly acylindrical action when X is hyperbolic.)
Nevertheless, such an action is useful to prove the acylindrical hyperbolicity
of the group (see Section 8 for precise definitions), since any loxodromic
isometry of G turns out to be WPD. For instance, we are able to deduce:

Theorem 1.11. — Infinitely-presented C ′(1/4) − T (4) groups are
acylindrically hyperbolic.

Theorem 1.12. — Let G = G1 ∗ · · · ∗ Gn be a finitely-generated free
product and R ⊂ G a family satisfying the condition C ′(1/4)−T (4). Then
the quotient Q = G/〈〈R〉〉 is either virtually cyclic or acylindrically hyper-
bolic.

The first result may be compared with [15], where it is proved, in par-
ticular, that infinitely-presented C(7) groups are acylindrically hyperbolic.

This paper is organised as follows. Section 2 contains the necessary pre-
liminaries on CAT(0) cube complexes, including combinatorial projections
and disc diagrams. Sections 3 and 4 are respectively dedicated to the proofs
of Theorems 1.3 and 1.4. In Section 5, we prove the applications toward
weak and strong relative hyperbolicities that we mentioned above. Finally,
Section 6 contains the proof of 1.9, Section 7 the proof of Theorem 1.10,
and these two results are combined in Section 8 to deduce Theorem 1.11
and Theorem 1.12.
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2. Preliminaries

A cube complexem is a CW complex constructed by gluing together
cubes of arbitrary (finite) dimension by isometries along their faces. Fur-
thermore, it is nonpositively curved if the link of any of its vertices is a
simplicial flag complex (i.e., n+ 1 vertices span a n-simplex if and only if
they are pairwise adjacent), and CAT(0) if it is nonpositively curved and
simply-connected. See [9, p. 111] for more information.
Alternatively, CAT(0) cube complexes may be described by their 1-

skeletons. Indeed, Chepoi notices in [11] that the class of graphs appearing
as 1-skeletons of CAT(0) cube complexes coincides with the class of median
graphs, which we now define.
Let Γ be a graph. If x, y, z ∈ Γ are three vertices, a vertex m is called a

median point of x, y, z whenever
d(x, y) = d(x,m) + d(m, y)
d(x, z) = d(x,m) + d(m, z)
d(y, z) = d(y,m) + d(m, z).

Notice that, for every geodesics [x,m], [y,m] and [z,m], the concatena-
tions [x,m] ∪ [m, y], [x,m] ∪ [m, z] and [y,m] ∪ [m, z] are also geodesics;
furthermore, if [x, y], [y, z] and [x, z] are geodesics, then any vertex of
[x, y] ∩ [y, z] ∩ [x, z] is a median point of x, y, z.

The graph Γ is median if every triple (x, y, z) of pairwise distinct vertices
admits a unique median point, denoted by m(x, y, z).

Theorem 2.1 ([11, Theorem 6.1]). — A graph is median if and only if
it is the 1-skeleton of a CAT(0) cube complex.

A fundamental feature of cube complexes is the notion of hyperplane.
Let X be a nonpositively curved cube complex. Formally, a hyperplane J
is an equivalence class of edges, where two edges e and f are equivalent
whenever there exists a sequence of edges e = e0, e1, . . . , en−1, en = f where
ei and ei+1 are parallel sides of some square in X. See Figure 2.1. Notice
that a hyperplane is uniquely determined by one of its edges, so if e ∈ J
we say that J is the hyperplane dual to e. Geometrically, a hyperplane J
is rather thought of as the union of the midcubes transverse to the edges
belonging to J . The neighborhood N(J) of a hyperplane J is the smallest
subcomplex of X containing J , i.e., the union of the cubes intersecting J .
In the following, ∂N(J) will denote the union of the cubes of X contained
in N(J) but not intersecting J , and X\\J = (X\N(J)) ∪ ∂N(J). Notice
that N(J) and X\\J are subcomplexes of X.
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Figure 2.1. A hyperplane (in bald) and the corresponding union of
midcubes.

Theorem 2.2 ([29, Theorem 4.10]). — Let X be a CAT(0) cube com-
plex and J a hyperplane. Then X\\J has exactly two connected compo-
nents.

The two connected components of X\\J will be referred to as the halfs-
paces associated to the hyperplane J .

Distances `p

There exist several natural metrics on a CAT(0) cube complex. For ex-
ample, for any p ∈ (0,+∞), the `p-norm defined on each cube can be ex-
tended to a distance defined on the whole complex, the `p-metric. Usually,
the `1-metric is referred to as the combinatorial distance and the `2-metric
as the CAT(0) distance. Indeed, a CAT(0) cube complex endowed with
its CAT(0) distance turns out to be a CAT(0) space [19, Theorem C.9],
and the combinatorial distance between two vertices corresponds to the
graph metric associated to the 1-skeleton X(1). In particular, combinatorial
geodesics are edge-paths of minimal length, and a subcomplex is combina-
torially convexem if it contains any combinatorial geodesic between two of
its points.
In fact, the combinatorial metric and the hyperplanes are strongly linked

together: the combinatorial distance between two vertices corresponds ex-
actly to the number of hyperplanes separating them [17, Theorem 2.7],
and

TOME 71 (2021), FASCICULE 4
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Theorem 2.3 ([17, Corollary 2.16]). — Let X be a CAT(0) cube com-
plex and J a hyperplane. The two components of X\\J are combinatorially
convex, as are the components of ∂N(J).

The `∞-metric, denoted by d∞, is also of particular interest. Alterna-
tively, given a CAT(0) cube complex X, the distance d∞ between two
vertices corresponds to the distance associated to the graph obtained from
X(1) by adding an edge between two vertices whenever they belong to a
common cube. Nevertheless, the distance we obtain stays strongly related
to the combinatorial structure of X:

Proposition 2.4 ([4, Corollary 2.5]). — Let X be a CAT(0) cube com-
plex and x, y ∈ X two vertices. Then d∞(x, y) is the maximal number of
pairwise disjoint hyperplanes separating x and y.

Proposition 2.5. — Let X be a CAT(0) cube complex and D a half-
space. For all vertices x, y ∈ D, there exists a d∞-geodesic between x and
y lying in D.

Proof. — Let X be a CAT(0) cube complex, D a half-space and x, y ∈ D
two vertices. To conclude, it is sufficient to prove that a d∞-geodesic be-
tween x and y intersecting a minimal number of half-spaces must be in-
cluded into D. Let γ be such a geodesic and suppose by contradiction that
γ is not included into D. In particular, there exists a hyperplane J inter-
sected twice by γ and a subsegment γ0 ⊂ γ with endpoints in N(J) such
that γ0 does not intersect twice any hyperplane. By linking two consecu-
tive vertices of γ0 by a combinatorial geodesic, we produce a combinatorial
path γ0 with the same endpoints as γ0; moreover, since γ0 does not inter-
sect twice any hyperplane, so does γ0, i.e., γ0 is a combinatorial geodesic.
This implies that

γ0 ⊂ γ0 ⊂ ∂N(J),

by the combinatorial convexity of the components of ∂N(J). Let γ′ be the
d∞-path obtained from γ by replacing the subsegment γ0 with its image
in N(J) by the reflection with respect to J . Noticing that length(γ′) 6
length(γ), we deduce that γ′ is a new d∞-geodesic with the same endpoints
as γ. On the other hand, the number of half-spaces intersected by γ′ is
strictly smaller than the same number for γ, a contradiction. Therefore, γ
is included into D. �
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Convention

In all this article, unless mentioned explicitly, every
CAT(0) cube complex will be endowed with its combinatorial metric.

Combinatorial projection

In CAT(0) spaces, and so in particular in CAT(0) cube complexes with
respect to the CAT(0) distance, the existence of a well-defined projection
onto a given convex subspace provides a useful tool. Similarly, with respect
to the combinatorial distance, it is possible to introduce a combinatorial
projection onto a combinatorially convex subcomplex, defined by the fol-
lowing result.

Proposition 2.6 ([13, Lemma 1.2.3]). — Let X be a CAT(0) cube
complex, C ⊂ X be a combinatorially convex subspace and x ∈ X\C be a
vertex. Then there exists a unique vertex y ∈ C minimizing the distance
to x. Moreover, for any vertex of C, there exists a combinatorial geodesic
from it to x passing through y.

For example, we are able to deduce the following result:

Proposition 2.7. — LetX be a CAT(0) cube complex and C1, C2 ⊂ X
two combinatorially convex subspaces. If x ∈ C1 and y ∈ C2 minimize the
distance between C1 and C2 then the hyperplanes separating x and y are
precisely those separating C1 and C2.

Lemma 2.8. — Let X be a CAT(0) cube complex and N ⊂ X a com-
binatorially convex subspace. Let p : X → N denote the combinatorial
projection onto N . Then every hyperplane separating x and p(x) separates
x and N .

Proof. — According to Proposition 2.6, for all z ∈ N there exists a com-
binatorial geodesic γ between x and z passing through p(x). Of course, any
hyperplane separating x and p(x) meets γ, so any such hyperplane cannot
meet [p (x), z] ⊂ γ. Thus, we have proved that no hyperplane separating x
and p(x) separates p(x) and some vertex of N . �

Proof of Proposition 2.7. — Clearly, a hyperplane separating C1 and C2
separates x and y. Conversely, let J be a hyperplane separating x and y, and
let p : X → C1 and q : X → C2 denote the combinatorial projection onto
C1 and C2 respectively. Because x and y minimize the distance between C1

TOME 71 (2021), FASCICULE 4
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and C2, it follows that x = p(y) and y = q(x). According to Lemma 2.8,
we deduce that J separates x and C2, and y and C1. Thus, J separates C1
and C2. �

We conclude this paragraph with this last result:

Proposition 2.9. — LetX be a CAT(0) cube complex and C1, C2 ⊂ X
two combinatorially convex subcomplexes. Let p : X → C2 denote the
combinatorial projection onto C2. Then p(C1) is a geodesic subcomplex of
C2. Moreover, the hyperplanes intersecting p(C1) are precisely those which
intersect both C1 and C2.

Lemma 2.10. — Let X be a CAT(0) cube complex and C a combina-
torially convex subcomplex. Let p : X → C denote the combinatorial pro-
jection onto C. For any vertices x, y ∈ X and any hyperplane J separating
p(x) and p(y), J separates x and y. In particular, d(p(x), p(y)) 6 d(x, y).

Proof. — Because the hyperplane J separates two vertices of C, namely
p(x) and p(y), it follows from Lemma 2.8 that J cannot separate neither x
and p(x) nor y and p(y). Necessarily, J separates x and y. �

Proof of Proposition 2.9. — Because d(p(x), p(y)) 6 d(x, y), two adja-
cent vertices in C1 are sent by p onto the same vertex or onto two adjacent
vertices. Thus, the image by p of a combinatorial geodesic γ in C1 between
two vertices x and y defines a combinatorial path p(γ) in C2 between p(x)
and p(y). Using the previous lemma, we deduce that the length of p(γ)
is precisely the number of hyperplanes separating p(x) and p(y). There-
fore, p(γ) is a combinatorial geodesic between p(x) and p(y) included into
p(C1). �

Disc diagrams

A fundamental tool to study CAT(0) cube complexes is the theory of
disc diagrams. For example, they were extensively used by Sageev in [29]
and by Wise in [37]. The rest of this section is dedicated to basic definitions
and properties of disc diagrams.

Definition 2.11. — Let X be a nonpositively curved cube complex. A
disc diagram is a continuous combinatorial map D → X, where D is a
finite contractible square complex with a fixed topological embedding into
S2; notice that D may be non-degenerated, i.e., homeomorphic to a disc, or
may be degenerated. In particular, the complement of D in S2 is a 2-cell,
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Figure 2.2. From left to right: a nogon, a monogon, an oscugon and a
bigon.

whose attaching map will be referred to as the boundary path ∂D → X

of D → X; it is a combinatorial path. The area of D → X, denoted by
Area(D), corresponds to the number of squares of D.

Given a combinatorial closed path P → X, we say that a disc diagram
D → X is bounded by P → X if there exists an isomorphism P → ∂D

such that the following diagram is commutative:

∂D // X

P

OO 77

According to a classical argument due to van Kampen [35], there exists a
disc diagram bounded by a given combinatorial closed path if and only if
this path is null-homotopic. Thus, if X is a CAT(0) cube complex, then
any combinatorial closed path bounds a disc diagram.
As a square complex, a disc diagram contains hyperplanes: they are called

dual curves. Equivalently, they correspond to the connected components
of the reciprocal images of the hyperplanes of X. Given a disc diagram
D → X, a nogon is a dual curve homeomorphic to a circle; a monogon is
a subpath, of a self-intersecting dual curve, homeomorphic to a circle; an
oscugon is a subpath of a dual curve whose endpoints are the midpoints of
two adjacent edges; a bigon is a pair of dual curves intersecting into two
different squares. See Figure 2.2.

Theorem 2.12 ([37, Lemma 2.2]). — Let X be a nonpositively curved
cube complex and D → X a disc diagram. If D contains a nogon, a mono-
gon, a bigon or an oscugon, then there exists a new disc diagram D′ → X

such that:
(i) D′ is bounded by ∂D,
(ii) Area(D′) 6 Area(D)− 2.

TOME 71 (2021), FASCICULE 4



1546 Anthony GENEVOIS

Figure 2.3. Replacing Pi with P ′i .

Let X be a CAT(0) cube complex. A cycle of subcomplexes C is a se-
quence of subcomplexes C1, . . . , Cr such that C1∩Cr 6= ∅ and Ci∩Ci+1 6= ∅
for every 1 6 i 6 r − 1. A disc diagram D → X is bounded by C if
∂D → X can be written as the concatenation of r combinatorial geodesics
P1, . . . , Pr → X such that Pi ⊂ Ci for every 1 6 i 6 r. The complexity of
such a disc diagram is defined by the couple (Area(D), length(∂D)), and a
disc diagram bounded by C will be of minimal complexity if its complexity
is minimal with respect to the lexicographic order among all the possible
disc diagrams bounded by C (allowing modifications of the paths Pi).

Our main technical result on disc diagrams is the following, inspired by
a result due to Hagen [16, Lemma 2.11]. The arguments used here are
essentially the same, and mainly come from [37].

Theorem 2.13. — Let X be a CAT(0) cube complex, C = (C1, . . . , Cr)
a cycle of subcomplexes, and D → X a disc diagram bounded by C. For
convenience, write ∂D as the concatenation of r combinatorial geodesics
P1, . . . , Pr → X with Pi ⊂ Ci for every 1 6 i 6 r. If the complexity of
D → X is minimal, then:

(i) if Ci is combinatorially convex, two dual curves intersecting Pi are
disjoint;

(ii) if Ci and Ci+1 are combinatorially convex, no dual curve intersects
both Pi and Pi+1.

Proof. — Suppose that Ci is combinatorially convex and that there ex-
ist two transverse dual curves c1 and c2 intersecting Pi. Any dual curve
intersecting Pi between c1 and c2 necessarily intersects either c1 or c2, so
we may suppose without loss of generality that c1 and c2 intersect Pi along
two adjacent edges. If these two edges bound a square inside D, then we
replace Pi with P ′i as shown by Figure 2.3. Because Ci is combinatorially
convex, P ′i ⊂ Ci. Thus, we have constructed a new disc diagram D′ → X

ANNALES DE L’INSTITUT FOURIER
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Figure 2.4. Creating a bigon.

bounded by C, such that Area(D′) = Area(D) − 1, so that c(D′) < c(D).
This contradicts the minimality of the complexity of D. Now, suppose that
the edges of Pi dual to c1 and c2 do not bound a square inside D. Because
the hyperplanes of X do not inter-osculate, the images of these two edges
bound a square inside X, so that it is possible to construct a new disc
diagram D′ → X as shown by Figure 2.4. Similarly, by the combinatorial
convexity of Ci, we have P ′i ⊂ Ci so that D′ → X is bounded by C. Noticing
thatD′ contains a bigon, Theorem 2.12 allows us to construct a new disc di-
agram D′′ → X bounded by ∂D′ and satisfying Area(D′′) 6 Area(D′)− 2.
Therefore, we have Area(D′′) 6 Area(D)− 1, so that c(D′′) < c(D) which
contradicts the minimality of the complexity of D. This concludes the proof
of the point (i).
In fact, we have proved a more precise statement which will be useful

later:

Fact 2.14. — Let X be a CAT(0) cube complex, C = (C1, . . . , Cr) a
cycle of subcomplexes, and D → X a disc diagram bounded by C. For
convenience, write ∂D as the concatenation of r combinatorial geodesics
P1, . . . , Pr → X with Pi ⊂ Ci for every 1 6 i 6 r. If there exists an
index 1 6 i 6 r such that there exist two transverse dual curves in-
tersecting Ci, then there exists a new disc diagram D′ → X satisfying
Area(D′) 6 Area(D) − 2 and whose path boundary is the concatenation
of P1, . . . , Pi−1, P

′
i , Pi+1, . . . , Pr where P ′i is a combinatorial geodesic with

the same endpoints as Pi.

Now, suppose that Ci and Ci+1 are combinatorially convex and that
there exists a dual curve c intersecting both Pi and Pi+1; let ei and ei+1
denote respectively the edges of Pi and Pi+1 dual to c. Because two dual
curves intersecting either Pi or Pi+1 are necessarily disjoint according to
the point (i), no dual curve intersecting Pi ∪ Pi+1 between ei and ei+1
can intersect c, so we may suppose without loss of generality that ei and
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Figure 2.5. Removing a round-trip.

ei+1 are adjacent. If ei 6= ei+1, then D contains an oscugon so that it is
possible to decrease the area of D without disturbing its boundary path
according to Theorem 2.12, contradicting the minimality of the complexity
of D. Thus, ei = ei+1. Now, replace Pi and Pi+1 respectively with P ′i and
P ′i+1 as shown by Figure 2.5.
We have constructed a new disc diagram D′ → X bounded by C and

satisfying Area(D′) = Area(D), length(∂D′) = length(∂D)− 1. In particu-
lar, we have c(D′) < c(D), contradicting the minimality of the complexity
of D. �

We conclude the section by a last result on disc diagrams which will be
useful later.

Proposition 2.15. — Let X be a CAT(0) cube complex and D → X

a disc diagram which does not contain any bigon. With respect to the
combinatorial metrics, ϕ : D → X is an isometric embedding if and only if
every hyperplane of X induces at most one dual curve of D.

Lemma 2.16. — Let D → X be a disc diagram which does not contain
any bigon and x, y ∈ D two vertices. The combinatorial distance between
x and y in D is equal to the number of dual curves separating x and y.

Proof. — Let c(x, y) denote the number of dual curves separating x and
y. Of course, any combinatorial path between x and y must intersect each
of the c(x, y) dual curves separating x and y, hence d(x, y) > c(x, y). Con-
versely, to prove that d(x, y) 6 c(x, y), it is sufficient to show that any
combinatorial path of minimal length between x and y intersects each dual
curve at most once. Let us consider a combinatorial path γ between x and
y which intersects a dual curve at least twice; in particular, there exist two
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Figure 2.6. Configuration from the proof of Lemma 2.16.

edges e and f of this path dual to the same dual curve. We choose this dual
curve innermost, so that, if γ2 denotes the subpath of γ between e and f ,
then no dual curve intersects γ2 twice. Let γ0, γ1 denote the two combina-
torial paths fellow-traveling our dual curve between the endpoints of e and
f . See Figure 2.6. In particular, any dual curve intersecting γ2 intersects γ1.
Conversely, because D does not contain any bigon, any dual curve inter-
secting γ1 intersects necessarily γ2. Consequently, length(γ1) = length(γ2).
By replacing the subpath e ∪ γ2 ∪ f with γ0 in our path, we get a new
combinatorial path whose length is smaller, since

length(e ∪ γ2 ∪ f) = length(γ2) + 2 = length(γ1) + 2
= length(γ0) + 2 > length(γ0).

We have proved that any combinatorial path between x and y which inter-
sects a dual curve twice may be shortened. This concludes the proof. �

Proof of Proposition 2.15. — Suppose that there exist two dual curves
c1 and c2 induced by the same hyperplane of X. Let x, y ∈ D be two
vertices separated by c1 and c2. The combinatorial distance between ϕ(x)
and ϕ(y) corresponds to the number of hyperplanes separating them; each
of these hyperplanes induces a dual curve in D separating x and y, so
there exist at least d(ϕ(x), ϕ(y)) dual curves separating x and y, hence
d(x, y) > d(ϕ(x), ϕ(y)). On the other hand, we know that at least two of
these dual curves, namely c1 and c2, are induced by the same hyperplane,
hence d(x, y) > d(ϕ(x), ϕ(y)). Consequently, ϕ : D → X is not an isometric
embedding.
Conversely, suppose that each hyperplane of X induces at most one dual

curve on D. Now fix two vertices x, y ∈ D together with a combinatorial
path γ of minimal length between x and y in D. According to the previous
lemma, any dual curve intersects γ at most once. Thus, the only possibility
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for a hyperplane of X to intersect ϕ(γ) twice is to induce two different dual
curve intersecting γ, which is impossible by our hypothesis. We conclude
that ϕ(γ) is a combinatorial geodesic in X, i.e., d(ϕ(x), ϕ(y)) > d(x, y).
We have already noticed in the previous paragraph the inequality d(x, y) >
d(ϕ(x), ϕ(y)), so d(x, y) = d(ϕ(x), ϕ(y)). Consequently, ϕ : D → X is an
isometric embedding. �

Corollary 2.17. — Let X be a CAT(0) cube complex and C a cycle
of four combinatorially convex subcomplexes. If D → X is a disc diagram
of minimal complexity bounded by C, then D is combinatorially isometric
to a rectangle [0, a]× [0, b] ⊂ R2 and D → X is an isometric embedding.

Proof. — By definition, the boundary path ∂D → X can be written as
the concatenation of four combinatorial geodesics P1, P2, P3, P4 → X. It
follows directly from Theorem 2.13 that two dual curves intersecting Pi
are necessarily disjoint and that any dual curve intersecting Pi necessarily
intersects Pi+2 (taking i modulo 4). In particular, length(P1) = length(P3)
and length(P2) = length(P4); let us say that a dual curve intersecting P1
(resp. P2) is vertical (resp. horizontal) and let x0 denote the common end-
point of P1 and P4. Now, the map x 7→ (v(x), h(x)), where v(x) (resp. h(x))
denotes the number of vertical (resp. horizontal) dual curves separating x0
and x, defines a combinatorial isometric embedding D ↪→ Z2 and its image
is a rectangle. Finally, it follows easily from Proposition 2.15 that D → X

is an isometric embedding: two dual curves in D either intersects the same
Pi, so they are necessarily induced by two different hyperplanes since Pi
is a combinatorial geodesic, or they are transverse, so that they map onto
two transverse hyperplanes, which are necessarily distinct since a CAT(0)
cube complex does not contain self-intersecting hyperplanes. �

3. Hyperbolicity with respect to the `1 and `2 metrics

In this section, we are interested in determining when a CAT(0) cube
complex is hyperbolic with respect to the combinatorial or CAT(0) dis-
tance. It is worth noticing that an n-cube contains a geodesic triangle
which is not (n− 1)-thin with respect to the combinatorial distance, and a
geodesic triangle which is not (

√
n/2− 1)-thin with respect to the CAT(0)

metric; therefore, an infinite-dimensional CAT(0) cube complex is hyper-
bolic neither with respect to the combinatorial distance nor with respect
to the CAT(0) distance. Thus, the hyperbolicity happens only in finite
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dimension, where these two distances are quasi-isometric, so that being hy-
perbolic does not depend on the metric we choose. For convenience, we will
use the combinatorial distance.

Definition 3.1. — A grid of hyperplanes is the data of two families of
hyperplanes V = {V1, . . . , Vp} and H = {H1, . . . ,Hq}, such that any Vi is
transverse to any Hj , and any Vi (resp. Hj) separates Vi−1 and Vi+1 (resp.
Hj−1 and Hj+1); such a grid is said δ-thin if min(#V,#H) 6 δ.

Definition 3.2. — Let X be a CAT(0) cube complex. A flat rectangle
is a combinatorially geodesic subcomplex ofX isomorphic to some rectangle
[0, a] × [0, b] ⊂ R2, with a, b > 1, endowed with its canonical structure of
square complex; it is L-thick if a, b > L and L-thin if min(a, b) 6 L.

Our main criterion is the following:

Theorem 3.3. — Let X be a CAT(0) cube complex. The following are
equivalent:

(i) X is hyperbolic;
(ii) the flat rectangles in X are uniformly thin;
(iii) X is finite-dimensional and the grids of hyperplanes of X are uni-

formly thin.

Remark 3.4. — The equivalence (i) ⇔ (iii) may be compared with [16,
Theorem 7.3], where Hagen proves that a cocompact CAT(0) cube complex
is hyperbolic if and only if its crossing graph does not contain a complete
bipartite subgraph K∞,∞. Recall that the crossing graph of a CAT(0) cube
complex X is the graph whose vertices are the hyperplanes of X and whose
edges link two transverse hyperplanes.

In fact, a simple criterion of hyperbolicity for median graphs has al-
ready been proved by Sigarreta, expressed in terms of bigons [31]. (Notice
that Papasoglu proved that the same statement holds for every graph [27],
but the argument of Sigarreta, reproduced below for completeness, is com-
pletely elementary.) A fortiori, this produces a criterion of hyperbolicity
for CAT(0) cube complexes, which will be used to prove the implication
(iii)⇒ (i) of Theorem 3.3.

Definition 3.5. — A bigon is a pair of combinatorial geodesics γ1, γ2
with the same endpoints. It is δ-thin if the Hausdorff distance between γ1
and γ2 is at most δ.

Lemma 3.6 ([31, Theorem 2.5]). — A CAT(0) cube complex is hyper-
bolic if and only if its bigons are uniformly thin.
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Proof. — It is known that, in a δ-hyperbolic geodesic space, the Haus-
dorff distance between two geodesics with the same endpoints is bounded
by a constant C(δ) depending only on δ. Therefore, the bigons in a hyper-
bolic graph are uniformly thin.
Conversely, suppose there exists some δ > 0 such that the bigons of X

are all δ-thin. Let [x, y, z] be a geodesic triangle. Let m denote the median
point of {x, y, z}. Let p ∈ [x, y, z] be a point on our triangle, say p ∈ [x, y].
Because the bigon {[x, y], [x,m] ∪ [m, y]} is δ-thin, there exists a point
p′ ∈ [x,m] ∪ [m, y], say p′ ∈ [x,m], such that d(p, p′) 6 δ. Again, because
the bigon {[x,m] ∪ [m, z] ∪ [x, z]} is δ-thin, there exists a point p′′ ∈ [x, z]
such that d(p′, p′′) 6 δ. Thus,

d(p, [x, z]) 6 d(p, p′′) 6 d(p, p′) + d(p′, p′′) 6 2δ.

Therefore, the triangle [x, y, z] is 2δ-thin. We conclude that X is 2δ-hyper-
bolic. �

Let Ram(d) denote the Ramsey number defined by: if K is a complete
graph with at least Ram(d) vertices, then any label of the vertices ofK with
two colors contains a unicolor subgraph containing at least d + 1 vertices.
A simple and well-known application of Ramsey numbers in the context of
CAT(0) cube complexes is:

Lemma 3.7. — Let X be a CAT(0) cube complex and let H be a col-
lection of hyperplanes which does not contain d + 1 pairwise transverse
hyperplanes. (For instance, this happens when dimX 6 d.) If H has at
least Ram(d) hyperplanes, then its contains a family of at least d+ 1 pair-
wise disjoint hyperplanes.

Proof. — Let H be a collection of at least Ram(d) hyperplanes. Let K
be the complete graph whose set of vertices is H and whose edges are
red (resp. blue) if they link two transverse (resp. disjoint) hyperplanes. By
definition of Ram(d), K contains a unicolor subgraph with at least d + 1
vertices, i.e., H has to contain at least d+ 1 hyperplanes which are either
pairwise transverse or pairwise disjoint. But the first possibility is excluded
by our hypotheses (which is a consequence of [29, Theorem 4.14] when X
has dimension 6 d), so that our lemma follows. �

Proof of Theorem 3.3. — The implication (i)⇒ (ii) is clear.
Let us prove (ii)⇒ (iii). Suppose that all flat rectangles in X are L-thin

and let (V = {V1, . . . , Vn},H = {H1, . . . ,Hm}) be an (n,m)-grid of hyper-
planes. In particular, C = (N(V1), N(H1), N(Vn), N(Hm)) defines a cycle
of subcomplexes. Let D → X be a disc diagram of minimal complexity
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bounded by C. According to Corollary 2.17, we find a combinatorial iso-
metric embedding [0, a] × [0, b] ↪→ X. Furthermore, because V2, . . . , Vn−1
(resp. H1, . . . ,Hm−1) separate V1 and Vn (resp. H1 and Hm), we deduce
that a > n− 1 (resp. b > m− 1). We conclude that

min(n,m) 6 1 + min(a, b) 6 L+ 1.

Thus, the grid of hyperplanes in X are uniformly thin. Finally, to prove
that X is necessarily finite-dimensional, it is sufficient to notice that the
cube [0, 1]n contains a flat rectangle which is not bn/2c-thin. For instance, if

ep(i) = ( 1, . . . , 1︸ ︷︷ ︸
i coordinates

, 0, . . . , 0︸ ︷︷ ︸
p−i coordinates

),

then the vertices (ebn/2c(i), en−bn/2c(j)) ∈ [0, 1]n, where 0 6 i 6 bn/2c and
0 6 j 6 n−bn/2c, span a flat rectangle [0, bn/2c]× [0, n−bn/2c] ↪→ [0, 1]n.

Finally, we prove (iii) ⇒ (i). Suppose that dimX < +∞ and that the
grid of hyperplanes in X are all C-thin for some C > 1; without loss of
generality, we may suppose that C > dimX. According to Lemma 3.6, it
is sufficient to prove that the bigons of X are uniformly thin in order to
deduce that X is hyperbolic. So let γ1, γ2 be two combinatorial geodesics
with the same endpoints x, y. If a ∈ γ1, let b ∈ γ2 denote the vertex of γ2
satisfying d(x, a) = d(x, b). Let H1 denote the set of hyperplanes meeting
[x, a] ⊂ γ1 and separating a and b, H2 the set of hyperplanes meeting
[x, b] ⊂ γ2 and separating a and b, and finally H3 the set of hyperplanes
separating x and {a, b}. See Figure 3.1. Because the hyperplanes of H1
separate b and {a, y}, and the hyperplanes of H2 separate a and {b, y}, we
deduce that any hyperplane of H1 is transverse to any hyperplane of H2.
Now, notice that

#H3 + #H1 = d(x, a) = d(x, b) = #H3 + #H2,

whence #H1 = #H2. Let p denote this common cardinality. If p > Ram(C),
then Lemma 3.7 implies thatH1 andH2 each contain a subfamily of at least
C + 1 pairwise disjoint hyperplanes, producing a (C + 1, C + 1)-grid of hy-
perplanes and thus contradicting our hypotheses. Therefore, p 6 Ram(C).
We conclude that

d(a, b) = #H1 + #H2 = 2p 6 2 Ram(C).

We have proved that the bigons of X are all 2 Ram(C)-thin, so that X is
hyperbolic (in fact, 4 Ram(C)-hyperbolic). �
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Figure 3.1. Configuration from the proof of Theorem 3.3.

In particular, an immediate corollary of Theorem 3.3 is that a CAT(0)
cube complex whose transversality graph is uniformly locally finite is hy-
perbolic. In fact, we can even prove more:

Proposition 3.8. — A CAT(0) cube complex whose transversality
graph is uniformly locally finite is quasi-isometric to a tree.

This statement follows for instance from the observation that, when the
transversality graph is uniformly locally finite, hyperplanes are uniformly
bounded, so that the cube complex turns out to be quasi-isometric to its
cone-off over the neighborhoods of its hyperplanes. In other words, the cube
complex must be quasi-isometric to its contact graph, which is a quasi-tree.
Below is a short argument, based on the bottleneck criterion.

Proof of Proposition 3.8. — Let X be a CAT(0) cube complex whose
transversality graph is uniformly locally finite, i.e., there exists a constant
N such that any hyperplane of X is transverse to at most N other hyper-
planes. This implies that the diameter of any hyperplane J is at most N .
Indeed, if x, y are two vertices which belongs to the same connected com-
ponent of ∂N(J), then any hyperplane separating x and y is transverse to
J , hence d(x, y) 6 N . Now, it is easy to apply the following criterion:

Bottleneck criterion ([21]). — A geodesic metric space (S, d) is
quasi-isometric to a tree if and only if there exists a constant δ > 0 such
that, any pair of points x, y ∈ S admits a midpoint m = m(x, y) with
the property that any continuous path between x and y intersects the ball
B(m, δ).

Indeed, if x, y ∈ X are two points then fix any midpoint m = m(x, y)
and let J denote a hyperplane separating x and y such that m ∈ N(J).
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Now, let γ be any continous path between x and y. Of course, γ has to
pass through J , so that it finally intersects the ball B(m,N) ⊃ J . �

Remark 3.9. — When X is a CAT(0) cube complex obtained by cubu-
lating a codimension-one subgroup, Niblo characterized the (uniform) lo-
cal finiteness of the transversality graph of X from an algebraic viewpoint
thanks to its splitting obstruction [24, Proposition 7], and used it to estab-
lish a splitting result in the spirit of Stallings Theorem [24, Theorem B].

Remark 3.10. — The hypothesis of uniform local finiteness in the state-
ment of Proposition 3.8 cannot be weakened into a hypothesis of local
finiteness. Indeed, let X be a subcomplex of R2 delimited by two combina-
torial rays r = (rx, ry) and ρ = (ρx, ρy) with

• rx, ry, ρx, ρy : N→ N,
• rx(0) = ry(0) = ρx(0) = ρy(0) = 0,
• rx(t), ry(t), ρx(t), ρy(t) −→

t→+∞
+∞,

• the Hausdorff distance between r and ρ is infinite.
Then the transversality graph of X is locally finite but X is not hyperbolic.

4. Killing flat rectangles

In this section, we prove that a cone-off of a CAT(0) cube complex
“killing” the flat rectangles of Theorem 3.3 is hyperbolic. This is the main
result of this section.

Theorem 4.1. — For every C,L > 1, there exists some δ > 0 such that
the following holds. Let X be a CAT(0) cube complex and Y a cone-off of
X over a collection of combinatorially convex subcomplexes. Assume that
the diameter of any L-thick flat rectangle of X is at most C in Y . Then Y is
δ-hyperbolic and, for every x, y ∈ X, the Hausdorff distance in Y between
a geodesic in X from x to y and a geodesic in Y from x to y is at most δ.

To prove the hyperbolicity, we will use the following criterion:

Lemma 4.2. — For every C > 1, there exists some δ > 0 such that the
following holds. Let X be a CAT(0) cube complex and Y a cone-off of X
over a collection of combinatorially convex subcomplexes. Assume that the
bigons of X are all C-thin in Y . Then Y is δ-hyperbolic and, for every
x, y ∈ X, the Hausdorff distance in Y between a geodesic in X from x to
y and a geodesic in Y from x to y is at most δ.
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Proof. — For any vertices x, y ∈ Y , let η(x, y) ⊂ Y denote the union of
all the combinatorial geodesics between x and y in X. Now, we want to
apply the following criterion, due to Bowditch [8, Proposition 3.1]:

Proposition 4.3. — For everyD > 0, there exists some δ > 0 such that
the following holds. Let T be a graph. Assume that a connected subgraph
η(x, y), containing x and y, is associated to any pair of vertices (x, y) ∈ T 2

such that:
• for any vertices x, y ∈ T , d(x, y) 6 1 implies diam η(x, y) 6 D;
• for any vertices x, y, z ∈ T , we have η(x, y) ⊂ (η(x, z) ∪ η(z, y))+D.

Then T is δ-hyperbolic and, for every x, y ∈ T , the Hausdorff distance
between η(x, y) and a geodesic between x and y is at most δ.

The first condition is immediate: if dY (x, y) 6 1, either x = y and η(x, y)
is a vertex; or x and y are linked by an edge in X, so that they are the
only vertices of η(x, y); or x and y are linked by an edge in Y which does
not belong to X, so that there exists a combinatorially convex subcomplex
Q ⊂ X containing x and y, and a fortiori η(x, y), whose vertices are pairwise
linked by an edge in Y . Therefore, dY (x, y) 6 1 implies diamY η(x, y) 6 1.
Let x, y, z ∈ Y be three vertices. The second condition of Bowditch’s

criterion is trivially satisfied if x, y, z are not pairwise distinct. Thus, we
may suppose without loss of generality that they are pairwise distinct. Let
m = m(x, y, z) denote their median vertex, and fix three combinatorial
geodesics [m,x], [m, y] and [m, z] in X. Let w ∈ η(x, y), i.e., w belongs to
some combinatorial geodesic [x, y] between x and y inX. By our hypothesis,
the bigon {[x,m] ∪ [m, y], [x, y]} is C-thin in Y , so there exists a vertex
w′ ∈ [x,m] ∪ [m, y] such that dY (w,w′) 6 C. Without loss of generality,
say that w′ ∈ [x,m]; otherwise, just switch the names of x and y. Similarly,
the bigon {[x,m] ∪ [m, z], [x, z]} is C-thin in Y , so there exists a vertex
w′′ ∈ [x, z] ⊂ η(x, z) such that dY (w′, w′′) 6 C. Thus,

dY (w, η(x, z)) 6 dY (w,w′′) 6 dY (w,w′) + dY (w′, w′′) 6 2C.

We have proved that η(x, y) ⊂ (η(x, z) ∪ η(z, y))+2C . This concludes the
proof. �

Proof of Theorem 4.1. — According to the previous lemma, it is suffi-
cient to prove that any bigon of X is max(2L,C)-thin in Y .

Let x, y ∈ Y be two vertices and γ1, γ2 two combinatorial geodesics
between x and y in X. Fix some vertex z ∈ γ1 and let z′ ∈ γ2 be the
vertex of γ2 defined by dX(x, z′) = dX(x, z). We claim that dY (z, z′) 6
max(2L,C).
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Figure 4.1. Configuration from the proof of Theorem 4.1.

Let p (resp. q) denote the median vertex of {x, z, z′} (resp. {y, z, z′}),
and let r (resp. s) be the median vertex of {z, p, q} (resp. {z′, p, q}). See
Figure 4.1. Notice that

dX(x, z) = dX(x, p) + dX(p, z) = dX(x, p) + dX(p, r) + dX(r, z).

Therefore, if we fix three combinatorial geodesics [x, p], [p, r], [r, z], and if
[x, z] denotes the subsegment of γ1 between x and z, then {[x, p] ∪ [p, r] ∪
[r, z], [x, z]} is a bigon in X. Thus, if J is a hyperplane separating z and
r, necessarily J intersects [x, z] ⊂ γ1. The same argument with respect to
y, r, q, z shows that J must intersect [z, y] ⊂ γ1. In particular, J intersects
γ1 twice: this is impossible since γ1 is a combinatorial geodesic. We conclude
that no hyperplane separates z and r, i.e., r = z. Similarly, we prove that
s = z′. In fact, we have proved:

Fact 4.4. — For any bigon {γ1, γ2} with endpoints x, y and for any z ∈
γ1, z′ ∈ γ2, we have

m(z,m(x, z, z′),m(y, z, z′)) = z.

Consequently, for any choices of four combinatorial geodesics [p, z], [z, q],
[q, z′] and [z′, p], the concatenations [p, z]∪ [z, q], [z, q]∪ [q, z′], [q, z′]∪ [z′, p]
and [z′, p] ∪ [p, z] are combinatorial geodesics.
Let D → X be a disc diagram bounded by a 4-gon P = P (p, z, q, z′), i.e.,

bounded by four combinatorial geodesics [p, z], [z, q], [q, z′] and [z′, p]; sup-
pose that its complexity is minimal among all the disc diagrams bounded
by a similar 4-gon. According to Fact 2.14, if there exist two transverse dual
curves in D both intersecting the same side of P , then it is possible to find
a new disc diagram D′ → X bounded by another 4-gon P ′ = P ′(p, z, q, z′)
such that Area(D′) < Area(D). Thus, two dual curves in D intersecting
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the same side of P are necessarily disjoint. Furthermore, because the con-
catenations [p, z] ∪ [z, q], [z, q] ∪ [q, z′], [q, z′] ∪ [z′, p] and [z′, p] ∪ [p, z] are
combinatorial geodesics, no dual curve in D intersects two adjacent sides
of P . Consequently, D is a rectangle. In particular, two dual curves in D
either are transverse or intersect the same side of P , so that a hyperplane
of X cannot induce two dual curves in D: we deduce from Proposition 2.15
that D → X is an isometric embedding.

Let ` = dX(p, z) = dX(q, z′). Notice that

dX(p, z′) = dX(x, z′)− dX(x, p) = dX(x, z)− dX(x, p) = dX(p, z) = `,

and similarly dX(q, z) = `. Thus, D defines an `-thick flat rectangle in X.
Two cases may happen: either ` < L and dY (z, z′) 6 dX(z, z′) = 2` < 2L;
or ` > L and dY (z, z′) 6 C. Therefore, dY (z, z′) 6 max(2L,C). �

5. Relative hyperbolicity

5.1. Weak relative hyperbolicity

In the previous section, we have seen how a CAT(0) cube complex be-
comes hyperbolic when some of its subcomplexes are coned-off. In this
section, we apply this criterion to cone-off hyperplanes and finally deduce
a weak relative hyperbolicity of cubulable groups.

Definition 5.1. — Let X be a CAT(0) cube complex. A hyperplane J
is n-combinatorially contracting if dim J < n and J does not belong to an
(n, n)-grid of hyperplanes in X.

Definition 5.2. — LetX be a CAT(0) cube complex and n > 0 an inte-
ger. The n-th contracting graph of X, denoted by ΓnX, is the cone-off of X
over the neighborhoods of the hyperplanes which are not n-combinatorially
contracting.
If X has finitely-many orbits of hyperplanes under the action of Aut(X),
then the sequence (ΓnX) is eventually constant to some graph Γ∞X, which
will be called the contracting graph of X.

Proposition 5.3. — Let X be a CAT(0) cube complex. Its n-th con-
tracting graph ΓnX is δ(n)-hyperbolic, where δ(n) depends only on n.

Proof. — According to Theorem 4.1, it is sufficient to prove that any
Ram(n)-thick flat rectangle in X has diameter at most 4 Ram(n) + 3 in
ΓnX. For convenience, let dn denote the distance in ΓnX.
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Let Q be a Ram(n)-thick flat rectangle in X. The set of the hyperplanes
intersecting Q can be naturally written as a disjoint union H t V where
two hyperplanes both in H or V are disjoint in Q.
Case 1: H or V contains n pairwise transverse hyperplanes. — Say that

H contains n pairwise transverse hyperplanes H1, . . . ,Hn. A fortiori, for
any hyperplane V ∈ V, {V,H1, . . . ,Hn} is a collection of n + 1 pairwise
transverse hyperplanes, hence dimV > n; therefore, no hyperplane of V is
n-combinatorially contracting. If x1, x2 ∈ Q are two vertices, let V1, V2 ∈ V
be two hyperplanes adjacent to x1, x2 respectively, and let y1 ∈ N(V1) ∩
N(H1), y2 ∈ N(V2) ∩ N(H1) be two vertices. Because V1, V2, H1 are not
n-combinatorially contracting, we deduce that

dn(x1, x2) 6 dn(x1, y1) + dn(y1, y2) + dn(y2, x2) 6 3.

Therefore, diamn(Q) 6 3.
Case 2: Neither H nor V contains n pairwise transverse hyperplanes. —

Naturally,H (resp. V) can be written as the disjoint unionH = H1t· · ·tHr
(resp. V = V1t · · ·tVs) where Hi (resp. Vi) is a set of Ram(n) consecutive
hyperplanes for all 1 6 i 6 r (resp. for all 1 6 i 6 s), and #Hr 6
Ram(n) (resp. #Vs 6 Ram(n)). Notice that, since Q is Ram(n)-thick,
necessarily r, s > 2 hold. Now, for every 1 6 i 6 r − 1 and 1 6 j 6 s − 1,
Hi and Vj contain n pairwise disjoint hyperplanes; in particular, each of
these hyperplanes belongs to an (n, n)-grid of hyperplanes, and so is not
n-combinatorially contracting. Therefore, for every vertex a ∈ Q, there
exists a vertex v(a) belonging to a hyperplane V (a) ∈ V which is not n-
combinatorially contracting, such that d(a, v(a)) 6 2 Ram(n). Let us fix
a hyperplane H ∈ H which is not n-combinatorially contracting, and for
every vertex a ∈ Q, let w(a) be a vertex in V (a) ∩ H. Finally, for every
x, y ∈ Q, we get

dn(x, y) 6 dn(x, v(x)) + dn(v(x), w(x)) + dn(w(x), w(y))
+ dn(w(y), v(y)) + dn(v(y), y)

6 2 Ram(n) + 1 + 1 + 1 + 2 Ram(n) = 4 Ram(n) + 3

Thus, diamn(Q) 6 4 Ram(n) + 3. �

Thus, looking at the induced action on the contracting graph, as a con-
sequence of Proposition 5.3 we obtain:

Corollary 5.4. — Let G be a group acting geometrically on a CAT(0)
cube complex X. Then G is weakly hyperbolic relative to the stabilizers of
the non-contracting hyperplanes of X.
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Recall that a group G is weakly hyperbolic relative to a collection of
subgroups H = {H1, . . . ,Hn} if G acts by isometries on a graph Γ such
that:

• Γ is hyperbolic,
• Γ contains finitely-many orbits of edges,
• each vertex-stabilizer is either finite or contains a finite-index sub-
group conjugated to some Hi,

• any Hi stabilizes a vertex.
Proof of Corollary 5.4. — Let Y be the graph obtained from X(1) by

adding a vertex for each non-contracting hyperplanes J and linking by an
edge this vertex with any vertex of N(J): this is the usual cone-off we will
introduce in Definition 5.6, which is clearly quasi-isometric to the cone-off of
Definition 1.1. Thus, because Y is quasi-isometric to the contracting graph
Γ∞X, we deduce from Proposition 5.3 that Y is hyperbolic. Furthermore,
the action G y X induces an action G y Y with finitely-many orbits of
edges, and the stabilizer of a vertex is either finite if it belongs to X or it
is the stabilizer of a non-contracting hyperplane. �

As an application of Corollary 5.4, we will be able to deduce a weak
relative hyperbolicity of right-angled Coxeter groups in Section 5.3.

5.2. Strong relative hyperbolicity

After considering weak relative hyperbolicity, it is natural to focus on
strong relative hyperbolicity. We recall the definition as introduced by
Bowditch in [7].

Definition 5.5. — A finitely-generated group G is (strongly) hyper-
bolic relative to a collection of subgroups H = {H1, . . . ,Hn} if G acts by
isometries on a graph Γ such that:

• Γ is hyperbolic,
• Γ contains finitely-many orbits of edges,
• each vertex-stabilizer is either finite or contains a finite-index sub-
group conjugated to some Hi,

• any Hi stabilizes a vertex,
• Γ is fine, i.e., any edge belongs only to finitely-many simple loops
(or cycles) of a given length.

A subgroup conjugated to some Hi is peripheral. G is just said relatively
hyperbolic if it is relatively hyperbolic with respect to a finite collection of
proper subgroups.
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Thus, a natural question is: when is a cone-off of a CAT(0) cube complex
fine? With the definition of a cone-off we used in the previous sections, it
is not difficult to notice that essentially a cone-off will never be fine. So we
first have to modify our definition:

Definition 5.6. — LetX be a CAT(0) cube complex andQ a collection
of subcomplexes. The usual cone-off of X over Q is the graph obtained from
X(1) by adding a vertex for each subcomplex Q ∈ Q and linking it by an
edge Q to each vertex belonging to Q.

Now, we are able to prove the following criterion.

Theorem 5.7. — Let X be a uniformly locally finite CAT(0) cube com-
plex and Y a usual cone-off of X over a collection Q of combinatorially
convex subcomplexes. If Q is locally finite (i.e., there exist only finitely-
many subcomplexes of Q containing a given edge of X) and if there exists
a constant C > 0 such that two subcomplexes of Q are both intersected
by at most C hyperplanes, then Y is fine. Conversely, if Q is not locally
finite or if it contains two subcomplexes both intersected by infinitely many
hyperplanes, then Y is not fine.

Proof. — Suppose that Q is locally finite and that there exists a constant
C > 0 such that two subcomplexes of Q are both intersected by at most C
hyperplanes. Let e ∈ Y be an edge and fix one of its endpoints a ∈ X. To
a given cycle γ ⊂ Y of length n containing e, we associate a loop γ̄ ⊂ X

containing a in the following way: The cycle γ passes through a sequence
of cones C1, . . . , Ck. For every 1 6 j 6 k, let xj , yj ∈ X be the two vertices
of γ ∩Cj ∩X, and choose a combinatorial geodesic [xj , yj ] between xj and
yj in X. Also, for every 1 6 j 6 k − 1, choose a combinatorial geodesic
[yj , xj+1] between yj and xj+1 in X. Finally, choose two combinatorial
geodesics [a, x1] and [yn, a] in X, respectively between a and x1, and yn
and a. Now we set

γ̄ = [a, x1] ∪ [x1, y1] ∪ · · · ∪ [xk, yk] ∪ [yk, a].

Fix some 1 6 j 6 k. Notice that a hyperplane separating xj and yj must
intersect γ̄\[xj , yj ], i.e., must separate either a and x1, or a and y1, or xi
and yi for some 1 6 i 6= j 6 k, or yi and xi+1 for some 1 6 i 6 k − 1.
But a hyperplane separating xj and yj and, for some 1 6 i 6 k, xi and yi,
necessarily intersects both Cj and Ci. Because there exist at most C such
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hyperplanes, we deduce that

dX(xj , yj) 6 Ck + dX(a, x1) + dX(a, yk) +
k−1∑
j=1

dX(yj , xj+1)

6 Cn+ n = (C + 1)n

Therefore, we get

diamX(γ̄) 6 dX(a, x1) +
k∑
j=1

dX(xj , yj) +
k−1∑
j=1

dX(yj , xj+1) + dX(a, x1)

6 k(C + 1)n+ n 6 (C + 2)n2

We have proved that γ̄ is included into the ball B = BX(a, (C+ 2)n2). Let
Ḃ denote the cone-off of this ball over {Q ∩ B |Q ∈ Q}, so that γ̄ ⊂ B

implies γ ⊂ Ḃ. It is worth noticing that Ḃ depends only on the edge e,
the constant C and the integer n, so Ḃ contains all the cycles of length n
passing through e. Since Ḃ is finite by the local finiteness of X and Q, we
conclude that there exist only finitely many such cycles. This proves that
Y is fine.
Conversely, if Q is not locally finite, then there exist an edge e ∈ X

and infinitely-many subcomplexes Q1, Q2, . . . ∈ Q containing e. For each
i > 1, e belongs to a cycle of length three passing through the cone as-
sociated to Qi. Therefore, Y is not fine. Now, suppose that Q contains
two subcomplexes C1, C2 both intersected by infinitely-many hyperplanes
of X. Let p : X → C1 denote the combinatorial projection onto C2. Ac-
cording to Proposition 2.9, p(C2) is a geodesic subcomplex of C1 containing
infinitely-many hyperplanes, say J1, J2, . . . . Choose a basepoint x ∈ p (C2)
and, for every i > 1, fix a vertex xi ∈ J ⊂ p (C2) and a combinato-
rial geodesic [x, xi] ⊂ p (C2). Because X is locally finite, the sequence of
geodesics ([x, xi]) contains a subsequence converging to some infinite ray
r : [0,+∞) → p (C2). Because X is finite dimensional, we deduce from
the infinite Ramsey Theorem that the set of hyperplanes intersected by
r must contain an infinite sequence of pairwise disjoint hyperplanes, say
V1, V2, . . . ; notice that, according to Proposition 2.9, the Vi’s intersect C1
as well as C2. For every n > 1, let Cn denote the cycle of combinatorially
convex subcomplexes (N(V1), C1, N(Vn), C2). From Corollary 2.17, we get
a flat rectangle Dn bounded by C. Once again, because X is locally finite,
the sequence of subcomplexes (Dn) contains a subsequence converging to
some subcomplexes D∞. Notice that D∞ ∩ Ci is an infinite ray ri (with
i = 1, 2) and that D∞ ∩ N(Vi) is a combinatorial geodesic γi between r1
and r2 whose length ` does not depend on i (with i > 1). For every n > 2,
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let cn ⊂ Y denote the cycle passing through γ1, γn and the two cones over
C1 and C2. If e is any edge of γ1, then cn is a sequence of infinitely-many
cycles with the same length containing e. Therefore, Y is not fine. �

Now, we would like to combine Theorem 4.1 and Theorem 5.7 to deduce
some criterion of relative hyperbolicity. Although it seems to be difficult
to state a general criterion, this sketches a general approach to study the
strong relative hyperbolicity of cubulable groups. Roughly speaking:

Let G be a group acting geometrically on a CAT(0) cube complex X.
If we are able to find a G-equivariant collection of combinatorially con-
vex subcomplexes C such that any thick flat rectangle of X is included
into a subcomplex of C, and two subcomplexes of C do not fellow-travel,
then, by looking at the induced action of G on the usual cone-off of X
over the collection Q, we should be able to deduce that G is strongly
hyperbolic relative to {stab(Q) |Q ∈ Q}. In order to construct Q, a possi-
bility could be to start with the collection F0 of the “combinatorial flats”
of X, and then to define inductively the sequence (Fn) by: if C1, . . . , Ck
denote the connected components of the graph whose set of vertices is
Fn and whose edges link two subcomplexes which fellow-travel, we set
Fn+1 = (co(

⋃
F∈C1

F ), . . . , co(
⋃
F∈Ck

F )), where co( · ) denotes the combi-
natorial convex hull. Finally, because X is cocompact, the sequence (Fn)
should be eventually constant to some collection F∞, and this is our can-
didate for Q.

A similar idea can be found in [10], and is successfully applied to Coxeter
groups [6, Theorem A.1]. In the next section, following the argument we
have sketched above, we will be able to give a direct proof of the second
part of [6, Theorem I], characterizing the strong relative hyperbolicity of
right-angled Coxeter groups.

5.3. Application to right-angled Coxeter groups

Our plan is to apply the results established in the two previous sections
to the class of right-angled Coxeter groups. We begin with some basic
definitions.

Definition 5.8. — Let Γ be a simplicial graph. The right-angled Cox-
eter group C(Γ) is defined by the presentation

〈v ∈ V (Γ) |u2 = 1, [v, w] = 1, u ∈ V (Γ), (v, w) ∈ E(Γ)〉,

where V (Γ) and E(Γ) denote respectively the sets of vertices and edges
of Γ.
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If Λ 6 Γ is an induced subgraph (i.e., two vertices of Λ are adjacent in Λ
if and only if they are adjacent in Γ), then the subgroup 〈Λ〉 generated by
the vertices of Λ is naturally isomorphic to the right-angled Coxeter group
C(Λ). For instance, if Λ is a clique of Γ (i.e., a complete subgraph) with n
vertices, then 〈Λ〉 is isomorphic to direct product of n copies of Z2: such a
subgroup is referred to as a clique subgroup. Another interesting class of
subgroups is:

Definition 5.9. — The join Λ1 ∗ Λ2 of two graphs Λ1 and Λ2 is the
graph obtained from the disjoint union Λ1tΛ2 by adding an edge between
any vertex of Λ1 and any vertex of Λ2. By extension, if a given simplicial
graph Γ contains a subgraph Λ which splits as a join of two non empty
subgraphs, we say that the subgroup 〈Λ〉 of the right-angled Coxeter group
C(Γ) is a join subgroup.

Given a simplicial graph Γ, the right-angled Coxeter group C(Γ) natu-
rally acts on a CAT(0) cube complex X(Γ) whose:

• vertices are the elements of C(Γ),
• edges link two vertices g, h if h = gv for some v ∈ V (Γ),
• n-cubes are generated by the vertices

{gvi1 . . . vir | 0 6 r 6 n, 1 6 i1 < · · · < ir 6 n},

where g ∈ C(Γ) and v1, . . . , vn ∈ V (Γ) are pairwise adjacent.
Notice that the 1-skeleton of X(Γ) is the Cayley graph of C(Γ) with respect
to the generating set V (Γ). In particular, if Jv denotes the hyperplane
dual to the edge (1, v) where v ∈ V (Γ), then the hyperplanes of X(Γ) are
precisely the translates of the Jv’s.
The two following lemmas on the geometry of X(Γ) are elementary, and

their proofs are left to the reader. In the case of right-angled Artin groups,
the analogous results have been proved in [5, Section 3].

Lemma 5.10. — If the hyperplanes gJa and hJb are transverse, then
a 6= b and [a, b] = 1.

Lemma 5.11. — The stabilizer of the hyperplane gJa is g〈star(a)〉g−1.

Recall that, given a graph Γ and a vertex v, the link of v, denoted by
link(v), is defined as the subgraph generated by the vertices of Γ adjacent
to v; and its star, denoted by star(v), is defined as the subgraph generated
by {v} ∪ link(v).
We begin our study of the relative hyperbolicity of right-angled Coxeter

groups by determining precisely when a hyperplane of our cube complex is
contracting.
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Figure 5.1. Flat rectangle in X(Γ).

Proposition 5.12. — Let Γ be a finite graph and u ∈ V (Γ). The hy-
perplane Ju of X(Γ) is contracting if and only if u does not belong to an
induced square in Γ.

Proof. — Suppose that the vertices u, v, w, x ∈ V (Γ) generate a square
in Γ (with u and x both adjacent to v and w). Then, for every n > 1,
X(Γ) contains the subcomplex illustrated by Figure 5.1. It follows from
Lemma 5.10 that the hyperplanes

({Ju, uJx, uxJu, . . . , (ux)n−1uJx}, {Jv, vJw, vwJv, . . . , (vw)n−1vJw})

define a (2n, 2n)-grid of hyperplanes. Thus, Ju is not contracting.
Conversely, suppose that Ju is not contracting. In particular, Ju belongs

to a (L,L)-grid of hyperplanes (H,V) satisfying L > n, where n is the max-
imal cardinality of a clique subgroup of C(Γ). To fix the notation, say that
H = {A1, . . . , Ar, Ju, B1, . . . , Bs} and V = {V1, . . . , VL}, with the conven-
tion that each of these hyperplanes separates its two adjacent hyperplanes
in the list it belongs. Without loss of generality, we may suppose that
s > 1. Let J−u (resp. B+

s ) denote the half-space delimited by Ju (resp. Bs)
not containing Bs (resp. Ju) and V −1 (resp. V +

L ) the half-space delimited by
V1 (resp. VL) not containing VL (resp. V1). According to Corollary 2.17, a
disc diagram of minimal complexity bounded by the cycle of subcomplexes
(J−u , V +

L , B
+
s , V

−
1 ) will define a subcomplex Q isomorphic to a rectangle.

By translating Q by an element of 〈star(u)〉 if necessary, we may suppose
without loss of generality that 1 is the corner of Q in V −1 ∩J−u . Let p1 . . . pi
denote the corner of Q in J−u ∩V +

2L and uq1 . . . qj the corner of Q in V −1 ∩B+
s ,

where p1, . . . , pi, q1, . . . , qj ∈ V (Γ).
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Suppose by contradiction that u is adjacent to q1, . . . , qj in Γ. Let B1
be the hyperplane dual to the edge (uq1 . . . qk, uq1 . . . qk+1), i.e., B1 =
uq1 . . . qkJqk+1 . Now, notice that Ju and B1 are transverse if and only if
qk . . . q1uJu = Ju and Jqk+1 are transverse if and only if u and qk+1 are
adjacent vertices in Γ. On the other hand, Ju and B1 are disjoint by as-
sumption, so there exists 1 6 h 6 s such that u and qh are not adjacent
in Γ.
Moreover, we deduce from the definition of n that 〈p1, . . . , pL〉 is an

infinite subgroup, so that there exist 1 6 ` < m 6 L such that p` and pm
are not adjacent in Γ.

Finally, noticing that u, q1, . . . , qj are all adjacent to p1, . . . , pi according
to Lemma 5.10, we conclude that u belongs to the induced square generated
by u, qh, p`, pm in Γ. �

Thus, if �(Γ) denote the set of the vertices of a graph Γ which belong to
an induced square, we obtain by combining Corollary 5.4, Proposition 5.12
and Lemma 5.11:

Proposition 5.13. — Let Γ be a finite graph. The right-angled Coxeter
group C(Γ) is weakly hyperbolic relative to {〈star(u)〉 |u ∈ �(Γ)}.

In fact, during the proof of Proposition 5.12, we have shown:

Fact 5.14. — Let Γ be a finite graph. If n denotes the maximal cardinality
of a clique subgroup of C(Γ), then any n-thick flat rectangle in X(Γ) is
included into a subcomplex X(Γ1 ∗ Γ2) ⊂ X(Γ), where Γ1,Γ2 ⊂ Γ are not
complete subgraphs.

Therefore, combined with Theorem 4.1, we deduce that right-angled Cox-
eter groups are also weakly hyperbolic relative to their join subgroups.

Proposition 5.15. — Let Γ be a finite graph. The right-angled Cox-
eter group C(Γ) is weakly hyperbolic relative to {C(Γ1 ∗ Γ2) |Γ1 ∗ Γ2 ⊂
Γ where Γ1,Γ2 are not complete}.

Remark 5.16. — Proposition 5.13 and Proposition 5.15 should be com-
pared with the weak relative hyperbolicity established in [3].

From now on, let us focus on the strong relative hyperbolicity. We begin
with some preliminary definitions.

Definition 5.17. — Let Γ be a simplicial graph. A join Γ1 ∗ Γ2 in Γ is
large if neither Γ1 nor Γ2 is a complete subgraph.
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Definition 5.18. — Let Γ be a finite graph. A join decomposition of
Γ is a collection of subgraphs (Γ1, . . . ,Γn), with n > 0, such that:

• any large join of Γ is included into Γi for some 1 6 i 6 n,
• Γi ∩ Γj is complete for every 1 6 i < j 6 n,
• for every vertex v, link(v) ∩ Γi not complete implies v ∈ Γi.

There exists at least one join decomposition: the trivial decomposition (Γ).

According to the following proposition, join decompositions lead to strong
relative hyperbolicity.

Proposition 5.19. — Let Γ be a finite graph and (Γ1, . . . ,Γn) a join
decomposition. Then the right-angled Coxeter group C(Γ) is hyperbolic
relative to {C(Γ1), . . . , C(Γn)}.

We first need to prove the following lemma:

Lemma 5.20. — Let X be a uniformly locally finite CAT(0) cube com-
plex. For every N > 1, there exists a constant M > 1 such that, for any
collection H of at least M hyperplanes, H contains two hyperplanes sepa-
rated by at least N hyperplanes of X.

Proof. — Let J1, . . . , Jr be r hyperplanes such that, for every 1 6 i 6=
j 6 r, Ji and Jj are not separated by N hyperplanes. For every 1 6 i 6 r,
let Ni denote the N -neighborhood of Ji with respect to d∞ (see Section 6);
according to [18, Corollary 3.5], Ni is combinatorially convex. Furthermore,
our assumption implies that Ni ∩ Nj 6= ∅ for every 1 6 i, j 6 r, hence⋂r
i=1Ni 6= ∅. Noticing that

d∞ 6 d 6 dim(X) · d∞,

we deduce that, if we fix some vertex c∈
⋂r
i=1Ni, the hyperplanes J1, . . . , Jr

intersect the ball B(c,N · dim(X)). On the other hand, X is uniformly
locally finite, so the cardinality of this ball is bounded above by a constant
depending only on N , and a fortiori the number of hyperplanes intersecting
this ball is bounded above by a constant κ(N). Therefore, setting M =
κ(N) + 1 proves our lemma. �

Proof of Proposition 5.19. — Let Y denote the cone-off of X(Γ) over
the translates of the X(Γi)’s. Combining Fact 5.14 and Theorem 4.1, we
know that Y is hyperbolic. To conclude, it is sufficient to deduce from
Theorem 5.7 that Y is fine.
First, we will show that this collection of subcomplexes is locally finite.

Indeed, if an edge (g, gu) belongs to subcomplexes h1C(Λ1), h2C(Λ2), . . . ,
where Λi ∈ {Γ1, . . . ,Γn} for i > 1, then u ∈

⋂
i>1 Λi and g ∈

⋂
i>1 hiC(Λi).
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Since two different cosets of a given subgroup are necessarily disjoint, we
deduce that the Λi’s have to be pairwise distinct, otherwise the intersection⋂
i>1 hiC(Λi) would be empty. Because we have only n subgraphs in our

join decomposition, this means that our collection h1C(Λ1), h2C(Λ2), . . .
is necessarily finite.
Now, we want to prove the separation property. Let N denote the max-

imal order of a finite subgroup of C(Γ) and let M be the constant given
by Lemma 5.20. Suppose that there exist M hyperplanes intersecting both
gX(Γi) and hX(Γj). By definition ofM , there exist two hyperplanes V1, V2,
intersecting both gX(Γi) and hX(Γj), separated by N hyperplanes. There-
fore, since C = (V1, gX(Γi), V2, hX(Γj)) is a cycle of four combinatori-
ally convex subcomplexes, we deduce from Corollary 2.17 that there ex-
ists a flat rectangle D bounded by C. Let g1, g2, g3, g4 denote the corners
of D cyclically ordered, with g1, g2 ∈ hC(Γj) and g3, g4 ∈ gC(Γi). Set
w1 = g−1

1 g2 and w2 = g−1
1 g4, so that g2 = g1w1 and g4 = g1w2; notice that

w1 and w2 commute, the product w1w2 = w2w1 is reduced in C(Γ) and
g3 = g1w1w2 = g1w2w1. Let supp(wi) denote the set of letters (or equiva-
lently, vertices) used to write the word wi (i = 1, 2). Because V1 and V2 are
separated by N hyperplanes, we deduce that 〈supp(w1)〉 has cardinality at
least N ; by the definition of N , this implies that 〈supp(w1)〉 is infinite, i.e.,
supp(w1) contains two non-adjacent vertices v1, v2.
From g1, g2 ∈ hC(Γj), we deduce that w1 = g−1

1 g2 ∈ C(Γj); from g3, g4 ∈
gC(Γi), we deduce that w1 = g−1

4 g3 ∈ C(Γi). Therefore,

{v1, v2} ⊂ supp(w1) ⊂ Γi ∩ Γj .

This implies i = j.
Because w2 commute with w1 and because the product w1w2 is reduced

in C(Γ), any vertex v ∈ supp(w2) satisfies

link(v) ∩ Γj ⊃ link(v) ∩ supp(w1) ⊃ {v1, v2}.

This implies v ∈ Γj . A fortiori, we get w2 ∈ Γj hence g4 = g1w2 ∈ hC(Γj) =
hC(Γi). Thus, g4 ∈ gC(Γi) ∩ hC(Γi), so gC(Γi) = hC(Γi).
We have proved that if two subcomplexes of our collection are both

intersected by N hyperplanes then they are equal. This concludes the
proof. �

Although finding a non trivial join decomposition implies that our right-
angled Coxeter group is relatively hyperbolic, a priori we do not know how
to find such a decomposition; and even if these decompositions actually
exist, some of them may be better than others. For instance, if a graph
Γ contains cut-vertices, then any choice of a set S of these cut-vertices
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produces a join decomposition (Γ1, . . . ,Γr), where, for every i 6= j, Γi ∩ Γj
is either empty or a single vertex of S; clearly, the decomposition seems to
be “finer” when S is the set of all the cut-points of Γ. This is the motivation
to introduce the following canonical join decomposition of a graph:

Definition 5.21. — Let Γ be a finite graph. For every subgraph Λ ⊂ Γ,
let cp(Λ) denote the subgraph of Γ generated by Λ and the vertices v ∈ Γ
such that link(v)∩Λ is not complete. Now, define the collection of subgraphs
Jn(Γ) of Γ by induction in the following way:

• J0(Γ) is the collection of all the large joins in Γ;
• if C1, . . . , Ck denote the connected components of the graph whose
set of vertices is Jn(Γ) and whose edges link two subgraphs
with non-complete intersection, Jn+1(Γ) = (cp(

⋃
Λ∈C1

Λ), . . . ,
cp(

⋃
Λ∈Ck

Λ)).
Because Γ is finite, the sequence (Jn(Γ)) must be eventually constant to
some collection J∞(Γ); see Example 5.26. By construction, it is clear that
J∞(Γ) is a join decomposition of Γ. Furthermore, according to the next
lemma, it may be thought of as the minimal join decomposition.

Lemma 5.22. — Let Γ be a finite graph and (Γ1, . . . ,Λm) a join decom-
position. For every Λ ∈ J∞(Γ), there exists some 1 6 i 6 m such that
Λ ⊂ Γi.

Proof. — We prove the statement by induction on n. If n = 0, this is true
by the definition of a join decomposition. Now, suppose that the statement
is true for Jn(Γ) and let Λ ∈ Jn+1(Γ). The subgraph Λ corresponds to a
connected component C = {Λ1, . . . ,Λk} of the graph whose set of vertices is
Jn(Γ) and whose edges link two subgraphs with non-complete intersection,
i.e., Λ = cp(Λ1∪· · ·∪Λk). By our induction hypothesis, for every 1 6 s 6 k,
there exists 1 6 is 6 m such that Λs ⊂ Γis . Noticing that, for every
1 6 r < s 6 k, Γik ∩Γis contains the non-complete subgraph Λik ∩Λis , we
deduce that ik = is; let ι be this common value. We have

Λ = cp(Λ1 ∪ · · · ∪ Λk) ⊂ cp(Γι) = Γι.

This concludes the proof. �

Remark 5.23. — In Definition 5.21, setting J0(Γ) as the collection of the
induced squares in Γ does not affect J∞(Γ). In practice, it may be simpler
to determine the decomposition J∞(Γ) in this way. Moreover, it turns out
that the subgraphs of J∞(Γ) are precisely the maximal subgraphs of Γ
which belong to the class T introduced in [6].
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Finally, we are able to characterize the strong relative hyperbolicity of
right-angled Coxeter groups, reproving the second part of [6, Theorem I].

Theorem 5.24. — Let Γ be a finite graph. The right-angled Coxeter
group C(Γ) is relatively hyperbolic if and only if J∞(Γ) is not the triv-
ial decomposition. If so, then C(Γ) is hyperbolic relative to the collection
{C(Λ) |Λ ∈ J∞(Γ)}.

Proof. — Suppose that J∞(Γ) is the trivial decomposition and that C(Γ)
is hyperbolic relative to some collection of subgroups H. We will argue by
induction on n that, for any n > 0 and Λ ∈ Jn(Γ), the subgroup C(Λ) is
included into a peripheral subgroup. Because any subgroup isomorphic to
a direct product of two infinite groups has to be included into a peripheral
subgroup, the statement holds for n = 0. Now suppose that this statement
holds for some n > 0, and let Λ ∈ Jn+1(Γ). The subgraph Λ corresponds
to a connected component C = {Λ1, . . . ,Λk} of the graph whose set of
vertices is Jn(Γ) and whose edges link two subgraphs with non-complete
intersection, i.e., Λ = cp(Λ1 ∪ · · · ∪ Λk). By our induction hypothesis, for
every 1 6 i 6 k, the subgroup C(Λi) is included into some peripheral
subgroup Hi. Notice that, for every 1 6 i < j 6 k, Hi ∩ Hj contains
C(Λi) ∩ C(Λj) = C(Λi ∩ Λj), which is infinite, hence Hi = Hj . Therefore,
the C(Λi)’s are all included into the same peripheral subgroup H. Then,
for every vertex v ∈ cp(Λ1 ∪ · · · ∪ Λk), we have

H ∩Hv ⊃ C(Λ1 ∪ · · · ∪ Λk) ∩ C(Λ1 ∪ · · · ∪ Λk)v = C(Λ1 ∪ · · · ∪ Λk),

so H ∩Hv is infinite, and this implies v ∈ H. Therefore,

C(Λ) = C(cp(Λ1 ∪ · · · ∪ Λk)) ⊂ H.

This concludes the proof of our claim. Finally, because J∞(Γ) = (C(Γ)), we
deduce that some peripheral subgroup of H is not proper. Consequently,
C(Γ) is not relatively hyperbolic.

The converse is a consequence of Proposition 5.19. �

Remark 5.25. — It is worth noticing that the previous proof shows that
the collection of subgroups {C(Λ) |Λ ∈ J∞(Γ)} is a minimal collection of
peripheral subgroups, i.e., if C(Γ) hyperbolic relative to H, then, for every
Λ ∈ J∞(Γ), there exists H ∈ H such that C(Λ) ⊂ H.

Example 5.26. — Figure 5.2 gives an example of a graph Γ and its canoni-
cal join decomposition J∞(Γ). In particular, we deduce from Theorem 5.24
that the associated right-angled Coxeter group C(Γ) is relatively hyper-
bolic.
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Figure 5.2. A graph and its canonical join decomposition.

6. Hyperbolicity with respect to the `∞ metric

Recall that the distance d∞ on a CAT(0) cube complex X is the ex-
tension on the whole cube complex of the `∞-norm defined on each cube.
Alternatively, the restriction of d∞ over X(0) corresponds to the graph met-
ric associated to the cone-off of X over its cubes. Since, loosely speaking,
d∞ “kills” the dimension of X, it may be expected, following Theorem 3.3,
that (X, d∞) is hyperbolic precisely when its grids of hyperplanes cannot
be too large. This is precisely what we prove.

Theorem 6.1. — Let X be a CAT(0) cube complex. Then (X, d∞)
is hyperbolic if and only if the grids of hyperplanes in X are uniformly
thin. If so, for every x, y ∈ X, the Hausdorff distance in (X, d∞) between
a geodesic in X from x to y and a geodesic in (X, d∞) from x to y is
uniformly bounded.

It is worth noticing that, although (X, d∞) coincides with the cone-off
of X over its cubes, the hyperbolicity claimed in our theorem cannot be
deduced from Theorem 4.1. For instance, consider the product X := Q×R
where Q is the infinite cube whose vertices are the finitely-supported se-
quences of {0, 1}N and whose edges link two sequences whenever they dif-
fer exactly on one coordinate. Then X contains an isometrically embedded
copy of R× [0,+∞) which has infinite diameter with respect to d∞. How-
ever, (X, d∞) is quasi-isometric to a line, so it defines a hyperbolic space.
Consequently, we really need to understand the metric d∞ in order to show
the hyperbolicity of (X, d∞) as claimed in our theorem. We begin by prov-
ing a preliminary lemma.
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Figure 6.1. Configuration from the proof of Theorem 6.1.

Lemma 6.2. — Let X be a CAT(0) cube complex and x, y, z, z′ ∈ X

four pairwise distinct vertices. Let m = m(x, y, z) and m′ = m(x, y, z′) be
the associated median vertices. Then any hyperplane separating m and m′
separates z and z′ as well. In particular, d∞(m,m′) 6 d∞(z, z′).

Proof. — Fix eight combinatorial geodesics [x,m], [y,m], [z,m], [x,m′],
[y,m′], [z,m′], [m,m′], [z, z′]. We get a bigon B = {[x,m]∪ [m, y], [x,m′]∪
[m′, y]} and a 4-gon P = {[m,m′], [m′, z′], [z′, z], [z,m]}. Given a hyper-
plane J separating m and m′, in B necessarily either J intersects [x,m′]
and [y,m] or it intersects [x,m] and [y,m′]. Say we are in the first case,
the second one being completely similar. In particular, J cannot intersect
neither [m, z] nor [m′, z′] since otherwise J would intersect the combinato-
rial geodesic [y,m] ∪ [m, z] or [x,m′] ∪ [m′, z′] twice. On the other hand, J
has to intersect the 4-gon P since it separates m and m′, so we conclude
that J must separate z and z′. �

Proof of Theorem 6.1. — Suppose that the grids of hyperplanes in X

are all C-thin for some C > 1. According to Lemma 4.2, it is sufficient to
prove that the bigons in X are all (C + 3)-thin with respect to d∞.

Let {γ1, γ2} ⊂ X be a bigon with endpoints x, y; for convenience, let
` = dX(x, y). Let us fix some vertex z ∈ γ1, and, for any 0 6 t 6 `, let z(t)
denote the vertex of γ2 defined by dX(x, z(t)) = t. We may suppose that
d∞(x, z), d∞(z, y) > C + 2, otherwise there is nothing to prove. Finally,
let m1(t) and m2(t) be the median points associated to {x, z, z(t)} and
{y, z, z(t)} respectively, and let F denote the function t 7→ d∞(z,m1(t))−
d∞(z,m2(t)).

Notice that, using Lemma 6.2, we get

d∞(m2(1), z = m(x, y, z)) 6 d∞(x, z(1)) = 1.
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Similarly, d∞(m1(`− 1), z) 6 1. Furthermore, we have

d∞(z,m1(1)) > d∞(z, x)− d∞(x,m1(1)) > C + 2− 1 = C + 1.

Similarly, d∞(z,m2(`−1)) > C+ 1. Therefore, we conclude that F (1) > C
and F (`− 1) 6 −C. On the other hand, for all 1 6 t 6 d(x, y)− 1, we have

|F (t+ 1)− F (t)| = |d∞(z,m1(t+ 1))− d∞(z,m2(t+ 1))
− d∞(z,m1(t)) + d∞(z,m2(t))|

6 |d∞(z,m1(t+ 1))− d∞(z,m1(t))|
+ |d∞(z,m2(t+ 1))− d∞(z,m2(t))|

6 d∞(m1(t),m1(t+ 1)) + d∞(m2(t),m2(t+ 1))
6 d∞(z(t), z(t+ 1)) + d∞(z(t), z(t+ 1)) = 2

where the last inequality is justified by Lemma 6.2. Consequently, there
exists some 1 6 t0 6 d(x, y) such that |F (t0)| 6 3. That is to say, if
V1, . . . , Vr (resp. H1, . . . ,Hs) is a maximal collection of pairwise disjoint
hyperplanes separating z and m1(t0) (resp. z and m2(t0)), i.e., with r =
d∞(z,m1(t0)) (resp. s = d∞(z,m2(t0))), then |r − s| 6 3.
Applying Fact 4.4, we notice that z is the median point m(z,m1(t0),

m2(t0)), and similarly z(t0) is the median point m(z(t0),m1(t0),m2(t0)).
Thus, no hyperplane can separate z or z(t0) from {m1(t0),m2(t0)}; we
deduce that the Vi’s separate {z,m2(t0)} and {m1(t0), z(t0)}, and similarly
the Hj ’s separate {z,m1(t0)} and {m2(t0), z(t0)}. It follows that Vi and Hj

are transverse for any 1 6 i 6 r and 1 6 j 6 s, and our hypothesis implies
that min(r, s) 6 3. Finally, we conclude that

d∞(z, γ2) 6 d∞(z, z(t0)) = max(r, s) 6 C + 3,

i.e., the bigon {γ1, γ2} is (C + 3)-thin.
Conversely, suppose that (X, d∞) is δ-hyperbolic. Let (H,V) be a grid of

hyperplanes inX. We want to prove that min(#H,#V) 6 4δ+2. Of course,
if #V 6 4δ+3, there is nothing to prove, so we may suppose without loss of
generality that #V > 4δ+ 3. For convenience, let H = {H1, . . . ,Hr} (resp.
V = {V1, . . . , Vs}) such that Hi separates Hi−1 and Hi+1 for all 1 6 i 6 r

(resp. Vj separates Vj−1 and Vj+1 for all 1 6 j 6 s); let H−1 and H+
r (resp.

V −1 and V +
s ) be the two disjoint half-spaces delimited respectively by H1

and Hr (resp. V1 and Vs).
Let x ∈ H+

r ∩ V −1 , y ∈ V +
s ∩ H+

r , z ∈ V +
s ∩ H−1 and w ∈ V −1 ∩ H

−
1

be four vertices, and fix five d∞-geodesics γ(x, y), γ(y, z), γ(z, w), γ(w, x)
and γ(y, w). According to Proposition 2.5, we may suppose without loss of
generality that γ(x, y) ⊂ H+

r , γ(y, z) ⊂ V +
s , γ(z, w) ⊂ H−1 and γ(w, x) ⊂
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V −1 . Let p ∈ γ(x, y) be a vertex satisfying |d∞(x, p) − d∞(x, y)/2| 6 1/2.
Notice that

d∞(p, γ(x,w)) > s

2 − 2 > δ,

since V1, . . . , Vbs/2c−1 separates p and γ(x,w). Thus, because the geodesic
triangle γ(x, y) ∪ γ(y, w) ∪ γ(w, x) is δ-thin by assumption, there exists a
vertex p′ ∈ γ(y, w) such that d∞(p, p′) 6 δ. Similarly, noticing that

d∞(p′, γ(y, z)) > d∞(p, γ(y, z))− d∞(p, p′) > s

2 − 1− δ > δ,

since Vbs/2c+1, . . . , Vs separates p and γ(y, z), we deduce that there exists a
vertex p′′ ∈ γ(z, w) satisfying d∞(p′, p′′) 6 δ, because the geodesic triangle
γ(w, y)∪γ(y, z)∪γ(z, w) is δ-thin. On the other hand, H1, . . . ,Hr separates
p and γ(w, z) (by d∞-convexity of half-spaces), hence

r 6 d∞(p, γ(z, w)) 6 d∞(p, p′′) 6 d∞(p, p′) + d∞(p′, p′′) 6 2δ.

We have proved that either #V 6 4δ + 2 or #H 6 2δ. A fortiori, we have
min(#V,#H) 6 4δ + 2. �

7. Acylindrical actions

The main result of this section is the following criterion, establishing
the equivalence between several acylindrical properties of an action. Notice
however that the acylindrical property we consider is weaker from acylin-
drical actions as defined in [25] (see Definition 8.17), because of a lack of
uniformity on the constants.

Theorem 7.1. — Let G be a group acting on a complete CAT(0) cube
complex X. Suppose (X, d∞) hyperbolic. The following statements are
equivalent:

(i) for every d > 0, there exists R > 0 such that, for every vertices
x, y ∈ X,

d∞(x, y) > R⇒ #{g ∈ G | d∞(x, gx), d∞(y, gy) 6 d} < +∞;

(ii) there exists R > 0 such that, for every vertices x, y ∈ X,

d∞(x, y) > R⇒ #{g ∈ G | gx = x, gy = y} < +∞;

(iii) there exists R > 0 such that, for any hyperplanes J1, J2 separated
by at least R pairwise disjoint hyperplanes, stab(J1) ∩ stab(J2) is
finite.

The following lemma will be needed to prove this theorem:
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Lemma 7.2. — Let G be a group acting on a complete CAT(0) cube
complex X. If Gy (X, d∞) has a bounded orbit, then G stabilizes a cube.

It is a consequence of [28, Theorem A], stating that a bounded Helly
graph without infinite clique contains a clique invariant by any automor-
phism, since it is proved in [4, Proposition 2.6] that the cone-off associated
to (X, d∞) is a Helly graph.

Proof of Theorem 7.1. — The implication (i)⇒ (ii) is clear.
Now, we want to prove (ii)⇒ (iii). According to Theorem 6.1, there ex-

ists a constant C > 1 such that any grid of hyperplanes inX is C-thin; let R
denote the constant given by (ii). Let J1, J2 be two hyperplanes separated
by at least max(C+1, R) pairwise disjoint hyperplanes, say V1, . . . , Vr. Sup-
pose thatK = stab(J1)∩stab(J2) is infinite and that the actionK y J1 has
unbounded orbits (with respect to d∞). Thus, if x ∈ N(J1) and y ∈ N(J2)
are two vertices minimizing the combinatorial distance between N(J1) and
N(J2), there exists k ∈ K such that d∞(x, kx) > C, i.e., there exist C + 1
pairwise disjoint hyperplanesH1, . . . ,HC+1 separating x and kx. A fortiori,
the vertices kx and ky also minimize the combinatorial distance between
N(J1) and N(J2), so that, according to Proposition 2.7, the hyperplanes
separating x and y, and kx and ky, are the same: namely, the hyperplanes
separating J1 and J2. As a consequence, any hyperplane separating x and
kx necessarily separates y and ky, because otherwise it would separate x
and y or kx and ky, but this is impossible; in particular, the Hi’s separate
y and ky. Therefore, the Hi’s and the Vj ’s define a grid of hyperplanes
which is not C-thin, contradicting the definition of C. Consequently, the
action K y J1 has a bounded orbit (with respect to d∞); of course, the
same statement holds for K y J2. Now, Lemma 7.2 implies that K con-
tains a finite-index subgroup K0 fixing pointwise two cubes Q1 ⊂ N(J1)
and Q2 ⊂ N(J2): this contradicts (ii) since K0 is infinite.

Finally, we want to prove (iii)⇒ (i). Let R > 1 denote the constant given
by (iii). Let d > 1 and let x, y ∈ X be two vertices satisfying d∞(x, y) >
R+ 2d+ 2. Our aim is to prove that the set

F = {g ∈ G | d∞(x, gx), d∞(y, gy) 6 d}

is finite. Let W be a collection of R+ 2d+ 2 pairwise disjoint hyperplanes
separating x and y. We claim that, for every g ∈ F , the images by g of all
but at most 2d hyperplanes of W separate x and y. Indeed, obviously any
hyperplane of gW must separate gx and gy, so that if such a hyperplane
does not separate x and y, necessarily it has to separate either x and gx
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or y and gy. Therefore, the hypothesis d∞(x, gx), d∞(y, gy) 6 d proves our
claim.
Thus, if we let L denote the set of functions from a subset of W whose

cardinality is at least R + 2 to the set of hyperplanes separating x and
y, then any element of F naturally induces an element of L. Therefore,
because L is finite, if F is infinite there exist infinitely many elements
g0, g1, g2, . . . ∈ F inducing the same element of L; in particular, we get in-
finitely many elements g−1

0 g1, g
−1
0 g2, . . . ∈ G stabilizing each hyperplane of

a subfamilyW0 ⊂ W of cardinality at least R+2. Finally,W0 contains two
hyperplanes J1, J2 separated by at least R pairwise disjoint hyperplanes,
such that stab(J1) ∩ stab(J2) is infinite, contradicting (iii). Consequently,
(iii) implies that F is necessarily finite. �

8. Acylindrical hyperbolicity of infinitely-presented groups

8.1. Small cancellation polygonal complexes

In the following, a polygonal complex X will be a two-dimensional CW-
complex whose cells, which are polygons, embed. In this context, a disc
diagram is a continuous combinatorial map D → X, where D is a finite
contractible polygonal complex with a fixed topological embedding into
S2; notice that D may be non-degenerate, i.e., homeomorphic to a disc, or
may be degenerate. In particular, the complement of D in S2 is a 2-cell,
whose attaching map will be referred to as the boundary path ∂D → X of
D → X; it is a combinatorial path.

A disc diagram D → X is reduced if, for any polygons P,Q ⊂ D meeting
along an edge e, whenever we think of the boundaries of P,Q as two combi-
natorial paths ∂P, ∂Q→ X with e as the first edge, then these boundaries
are different.
Given a combinatorial closed path P → X, we say that a disc diagram

D → X is bounded by P → X if there exists an isomorphism P → ∂D

such that the following diagram is commutative:

∂D // X

P

OO 77

According to a classical argument due to van Kampen and Lyndon, there
exists a reduced disc diagram bounded by a given combinatorial closed
path if and only if this path is null-homotopic.
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Definition 8.1. — Let X be a polygonal complex. A piece in X is a
combinatorial path p included into the intersection of two distinct polygons;
let |p| denote its length. We say that X satisfies

• the condition C ′(λ) if any piece p between two polygons P,Q sat-
isfies |p| < λ|P |;

• the condition C(n) if the boundary of a polygon cannot be covered
by k pieces with k < n;

• the condition T (n) if the length of a cycle in the link of a vertex of
X is either two or at least n.

Notice that the condition C ′(1/n) implies the condition C(n).

The basic idea is that a reduced disc diagram D → X in a small can-
cellation polygonal complex X necessarily contains a polygon with a large
part of its boundary in ∂D. This is the meaning of the next result.

Definition 8.2. — Let X be a polygonal complex and D → X a disc
diagram. A spur in D is a vertex of degree one. An i-shell is a polygon P
of D whose boundary can be written as the concatenation of an outer path
∂outP and an inner path ∂innP such that ∂outP = ∂P ∩ ∂D, ∂innP ∩ ∂D
does not contain edges and ∂innP is covered by at most i pieces.

It is worth noticing that a non-degenerate disc diagram containing at
least one polygon cannot contain a spur.

Theorem 8.3 ([23, Theorem 9.4]). — Let X be a C(4)−T (4) polygonal
complex and D → X a reduced disc diagram. Then either D contains two
spurs and/or i-shells with i 6 2, or D is a single vertex or a single 2-cell.

From now on, we will suppose that any polygon of a polygonal complex
has an even number of sides. This assumption is not really restrictive since
any polygonal complex satisfies it up to a subdivision of its edges; never-
theless, it is worth noticing that this process does not disturb the small
cancellation condition. We want to sketch how Wise associates a CAT(0)
cube complex to some small cancellation polygon complexes in [36].

Definition 8.4. — Let X be a polygonal complex. A hypergraph Λ is
an equivalence class of edges with respect to the relation: two edges e, e′ are
equivalent if there exists a sequence of edges e0 = e, e1, . . . , en−1, en = e′

such that, for every 0 6 i 6 n − 1, ei and ei+1 are opposite edges in
a polygon of X. Alternatively, Λ may be thought of as a graph included
into X whose vertices are the midpoints of the edges which belong to the
associated equivalence class and whose edges are segments between two
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opposite cells in a polygon. The hypercarrier of Λ, denoted by Y (Λ), is the
union of all the polygons of X intersected by Λ.

In [36], Wise shows that the hypergraphs and their hypercarriers have
good properties. In particular, they embed into the associated polygonal
complex, hypercarriers are combinatorially convex, and hypergraphs dis-
connect the polygonal complex into exactly two connected components.
The latter property allows us to define a halfcarrier of a hypergraph Λ as
the union of the hypercarrier Y (Λ) of Λ with a connected component of
the complement of Λ.
The following description of hypercarriers is especially useful:
Proposition 8.5 ([36, Lemma 3.6]). — Let X be a C(4) polygonal

complex and Λ a hypergraph. Then,
• the boundary of each polygon of Y (Λ) contains a pair of disjoint

non-trivial arcs, called isolated rails, and the interior of each isolated
rail is disjoint from any other polygon of Y (Λ);

• for each dual edge there is a tree, called a rung tree, such that
distinct dual edges have disjoint rung trees;

• the 1-skeleton of Y (Λ) is the union of rung trees and isolated rails
such that rung trees corresponding to adjacent vertices of Λ are
attached together by a pair of isolated rails corresponding to the
edge of Λ connecting these vertices.

Let us mention a consequence of this result which will be useful in the
next section.
Corollary 8.6. — Let X be a C(4) polygonal complex, R ⊂ X a

polygon, a and b two opposite edges in R, and f * R an edge adjacent
to R. Let Y denote the hypercarrier of the hypergraph dual to a and b. If
f ⊂ Y , then there exists a polygon S ⊂ X such that either a and f , or b
and f , are included into ∂S.

Proof. — If f ⊂ Y , a fortiori there exists a polygon S containing f .
It follows directly from Proposition 8.5 that the intersection between two
polygons in Y is either empty or contains an edge dual to the associated
hypergraph. Therefore, R ∩ S 6= ∅ implies that ∂S contains a or b. �

As already mentioned, the hypergraphs of a polygonal complex X dis-
connect the complex into exactly two connected components. In fact, the
set of hypergraphs endows X with a structure of a wallspace, so that there
exists a CAT(0) cube complex C(X) associated to X, which is constructed
by cubulating this wallspace. See [36, Section 5] for more information. In
particular, we have a nice description of the maximal cubes in C(X).
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Definition 8.7. — An isolated edge in X, i.e., an edge which does not
belong to any polygon, gives rise to an edge in C(X), which we call an
edge-cube. A polygon with 2n sides in X gives rise to an n-cube in C(X),
which we call a cell-cube.

Proposition 8.8 ([36, Lemma 9.4]). — Let X be a C(4)−T (4) polyg-
onal complex and C(X) its associated CAT(0) cube complex. Then any
cube in C(X) is contained into an edge-cube or into a cell-cube.

Corollary 8.9. — The CAT(0) cube complex associated to a C(4)−
T (4) polygonal complex is complete, i.e., it does not contain any infinite
increasing sequence of cubes.

8.2. A fixed point theorem

In order to link the stabilisers in a small cancellation polygonal complex
and in its associated cube complex, we need the following result:

Theorem 8.10. — Let G be a group acting on a C ′(1/4)−T (4) polygo-
nal complex X and let C(X) denote the associated CAT(0) cube complex.
There exists a G-equivariant projection p : C(X) → X. Moreover, if two
points x, y ∈ C(X) are separated by at least R + 2 pairwise disjoint hy-
perplanes, then p(x) and p(y) are separated by at least R pairwise disjoint
hypergraphs.

We begin by proving several preliminary lemmas. From now on, we fix a
C ′(1/4)− T (4) polygonal complex X.

Lemma 8.11. — The intersection between two polygons in X is con-
nected.

Proof. — Suppose by contradiction that X contains two polygons P1, P2
whose intersection is not connected. In particular, there exist two combi-
natorial paths γ1 ⊂ P1 and γ2 ⊂ P2 with the same endpoints, and such
that the concatenation γ = γ1 ∪ γ2 defines a simple loop in X. Let D → X

be a reduced non-degenerate disc diagram bounded by γ. If D is a single
cell, then its image in X defines a polygon whose boundary is included
into ∂P1 ∪ ∂P2: this clearly contradicts the condition C ′(1/4). According
to Theorem 8.3, D must contain a shell; let R denote its image in X. The
outer path of R is covered by at most two pieces, namely ∂P1 and ∂P2,
and its inner path is covered by at most two pieces by definition, so ∂R is
covered by at most four pieces: this contradicts the condition C ′(1/4). �
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The previous lemma will be used frequently in what follows, without any
further reference.

Lemma 8.12. — For any collection of pairwise intersecting polygons
P1, . . . , Pn, the intersection

⋂n
i=1 Pi is non-empty.

Proof. — We argue by induction on n. For n = 1, 2, there is nothing to
prove. For n = 3, suppose by contradiction that there exist three pairwise
intersecting polygons P1, P2, P3 such that P1 ∩ P2 ∩ P3 = ∅. In particular,
there exist three combinatorial paths γ1 ⊂ ∂P1, γ2 ⊂ ∂P2, and γ3 ⊂ ∂P3,
such that γi ∩ γi+1 is a single vertex {vi,i+1} for every i ∈ Z3. Thus, the
concatenation γ = γ1 ∪ γ2 ∪ γ3 defines a simple loop in X, and bounds a
reduced non-degenerate disc diagram D → X. If D is a single cell, then its
image in X is a polygon whose boundary is covered by three pieces, namely
∂P1, ∂P2 and ∂P3: this contradicts the condition C ′(1/4). We deduce from
Theorem 8.3 that D contains two shells; let R1, R2 denote their images
in X. Because, by definition, the inner path of ∂R1 is covered by at most
two pieces, the condition C ′(1/4) implies that the outer path of ∂R1 must
be covered by at least three pieces: therefore, the outer path of ∂R1 must
contain some γi and intersect the two other subpaths of γ along at least one
edge. Of course, the same statement holds for R2. But this contradicts the
fact that the intersection between the outer paths of R1 and R2 contains
no edges. Thus, necessarily P1 ∩ P2 ∩ P3 6= ∅.
Now, let n > 4 be some integer and suppose that our lemma holds

for every k < n. By our induction hypothesis, for every 1 6 k 6 n, the
intersection

Ik = P1 ∩ · · · ∩ Pk−1 ∩ Pk+1 ∩ · · · ∩ Pn
is non-empty. Suppose by contradiction that

⋂n
i=1 Pi is empty, i.e., Ii∩Ij =

∅ for every i 6= j. For every k > 2, Ik is a subsegment in ∂P1 whose comple-
ment contains ∂Pk∩∂P1; notice furthermore that ∂Pk∩∂P1 contains Ij for
every j 6= k. Therefore, ∂P1 is covered by ∂P2, ∂P3, and ∂P4, contradicting
the condition C’(1/4). We conclude that

⋂n
i=1 Pi is non-empty. �

Lemma 8.13. — Two disjoint polygons are separated by a hypergraph.

Proof. — Let us say that a halfcarrier contains strictly a polygon if this
polygon does not belong to the hypercarrier of the associated hypergraph.
For any polygon P , let K(P ) denote the intersection of all the halfcarriers
containing strictly P and star(P ) the union of all the closed cells intersect-
ing P . To prove our lemma, it is sufficient to show that K(P ) = star(P )
for every polygon P ⊂ X.
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Figure 8.1. Case 2 in the proof of Lemma 8.13.

The inclusion star(P ) ⊂ K(P ) is clear since star(P ) is included into any
halfcarrier containing strictly P . Conversely, notice thatK(P ) is connected,
as an intersection of combinatorially convex subcomplexes; therefore, to
prove that K(P ) ⊂ star(P ), it is sufficient to show that, for any edge
f * star(P ) adjacent to star(P ), we have f * K(P ), i.e., there exists a
hypergraph Λ separating f and P such that f * Y (Λ).
Case 1: There exists an edge e adjacent to both P and f . — It follows

from Proposition 8.5 that the hypergraph Λ dual to e does not intersect f
nor P : Λ separates f and P . Let R denote a polygon in Y (Λ) containing e
and e′ ⊂ R the edge parallel to e. According to Corollary 8.6, if f ⊂ Y (Λ)
there exists a polygon S containing e and f , but this implies f ⊂ star(P ), or
containing e′ and f , so that ∂S covers at least one half of ∂R, contradicting
the condition C ′(1/4). Therefore, f * Y (Λ).

Case 2: There exists a polygon R0 adjacent to both P and f . — Let R be
a cell containing f and such that the length of the intersection |∂R0∩∂R| is
maximal. Let γ1, γ2 denote the two subsegments of ∂R0 between ∂P ∩∂R0
and ∂R0 ∩ ∂R. See Figure 8.1. Notice that f * star(P ) implies that the
lengths of γ1 and γ2 are positive.
Suppose by contradiction that no hypergraph intersects both γ1 and γ2.

Let γ1 denote the subsegment of R0 opposite to γ1. Our assumption implies
that the intersection γ1 ∩γ2 contains no edges; in particular, γ1 is included
into ∂R or ∂P , say γ1 ⊂ ∂R. Then ∂R covers at least one half of ∂R0,
contradicting the condition C ′(1/4). Therefore, there exists a hypergraph
Λ intersecting both γ1 and γ2.
If follows from Proposition 8.5 that Λ does not intersect P nor f , i.e.,

Λ separates P and f . Let e1 (resp. e2) denote the edge of γ1 ⊂ R0 (resp.
γ2 ⊂ R0) dual to Λ. If f ⊂ Y (Λ), Corollary 8.6 implies that there exists a
polygon S containing either f and e1 or f and e2. If S contains f and e1,
then the three polygons R0, R and S define a disc diagram in which the
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vertex f ∩R0 is interior of degree three, contradicting the condition T(4).
If S contains f and e2, then this contradicts the choice of R since

length(∂R0 ∩ ∂S) > length(∂R0 ∩ ∂R1).

Therefore, f * Y (Λ). This concludes the proof. �

Proof of Theorem 8.10. — Let x ∈ C(X). If x belongs to an edge-cube
Q, there exists an isolated edge e in X with endpoints y, z ∈ X(0) such that
Q is an edge between the principal ultrafilters v(y) and v(z) respectively
defined by y and z. Now, we define p(x) as the only point of e such that
d(x, v(y)) = d(p(x), y) and d(x, v(z)) = d(p(x), z).
From now on, suppose that x does not belong to any edge-cube. Thus,

according to Proposition 8.8, there is a family of polygons {Pi | i ∈ I}
naturally associated to the collection of the maximal cubes {Qi | i ∈ I}
containing x. It follows from Lemma 8.13 that two polygons Pi and Pj
intersect if and only if the associated cubes Qi and Qj intersect. Therefore,
{Pi | i ∈ I} is a collection of pairwise intersecting polygons in X. Because
the 0-skeleton of a polygon is finite, necessarily there exists a finite subset
J ⊂ I satisfying ⋂

i∈I
Pi =

⋂
j∈J

Pj .

It follows from Lemma 8.12 that this intersection M(x) ⊂ X is non-empty.
IfM(x) is a polygon, we define p(x) as the center of this polygon. Otherwise,
M(x) is a segment, and we define p(x) as its midpoint.
The G-equivariance of p : C(X)→ X follows by construction.
Finally, suppose that two points x, y ∈ C(X) are separated by at least

R + 2 pairwise disjoint hyperplanes. Let Q(x) (resp. Q(y)) be a maximal
cube containing x (resp. y) and let P (x) (resp. P (y)) denote the corre-
sponding edge or polygon in X. Because the hyperplanes intersecting a
cube are pairwise transverse, we deduce that Q(x) and Q(y) are separated
by at least R pairwise disjoint hyperplanes; a fortiori, P (x) and P (y) are
separated by at least R pairwise disjoint hypergraphs. Since p(x) ∈ P (x)
and p(y) ∈ P (y), the conclusion follows. �

As a consequence of Theorem 8.10, we are able to deduce the following
fixed point theorem:

Corollary 8.14. — Let G be a group acting by isometries on a
C ′(1/4)−T (4) polygonal complex X. If G has a bounded orbit, then it has
a global fixed point.
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Proof. — If G y X has a bounded orbit, then the associated action
G y C(X) on the CAT(0) cube complex C(X) has also a bounded or-
bit. Therefore, C(X) contains a global fixed point x ∈ C(X). Now, if
p : C(X)→ X denotes theG-equivariant projection given by Theorem 8.10,
then G fixes p(x). �

A second fixed point theorem is:

Theorem 8.15. — Let G be a finitely-generated group acting by isome-
tries on a C ′(1/4)− T (4) polygonal complex X. If every element of G has
a bounded orbit, then G has a global fixed point.

Essentially, this result will be a consequence of the following statement.

Proposition 8.16. — Let G be a finitely-generated group acting on a
CAT(0) cube complex C. If G y (C, d∞) contains an unbounded orbit,
then there exists a half-space D and an element g ∈ G such that gD ( D.

A similar statement was proved by Sageev during the proof of [29, The-
orem 5.1]. We follow his argument below.

Proof. — Let S = {s1, . . . , sr} be a finite generating set of G satisfying
S−1 = S and v ∈ C a base vertex. By assumption, the orbit G · v is
unbounded with respect to d∞, so there exists some g ∈ G such that
d∞(v, gv) > 3M where M =

∑r
i=1 d(v, siv). Let us write g as a product

of elements of S: g = si(1) . . . si(m). If, for every 1 6 i 6 r, we fix a
combinatorial geodesic γi between v and siv, then the concatenation

α = γi(1) ∪ si(1)γi(2) ∪ si(1)si(2)γi(3) ∪ · · · ∪ si(1) . . . si(m−1)γi(m)

defines a combinatorial path between v and gv. Now, because d∞(v, gv) >
3M , there exists a collection of pairwise disjoint hyperplanes V1, . . . , VL
separating v and gv, with L > 3M . Of course, any of these hyperplanes
separates α, so any Vi is a translate of some Hk

j . Because the number of
Hk
j ’s is at most M and L > 3M , we deduce that there exist three Vi’s

which belong to the orbit of the same Hk
j .

We have proved that there exist a hyperplane J and two elements g, h ∈
G such that J, gJ, hJ are three pairwise disjoint hyperplanes separating v
and gv. For convenience, say that gJ separates J and hJ , and let D be the
half-space delimited by J which contains hJ . If gD ⊂ D or hD ⊂ D, we
have done. Suppose that this not the case, i.e., X\D ⊂ gD and X\D ⊂ hD
or equivalently D ⊃ X\gD and D ⊃ X\hD. Then

hgD = X\h(X\gD) ⊂ X\hD ⊂ D.

This concludes the proof. �
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Proof of Theorem 8.15. — Let C(X) denote the CAT(0) cube complex
associated toX. Because any element ofG has a bounded orbit with respect
to the action G y X, the same assertion holds with respect to G y
(C(X), d∞). Now, the previous proposition implies that the action G y
(C(X), d∞) itself has a bounded orbit. Since C(X) is complete, Lemma 7.2
implies that G has a global fixed point x ∈ C(X). Finally, if p : C(X)→ X

denotes the projection given by Theorem 8.10, then p(x) defines a global
fixed point in X. �

8.3. Application to small cancellation quotients

By combining the different results established in the previous sections,
we are able to establish a general criterion allowing us to prove that some
groups acting on small cancellation polygonal complexes turn out to be
acylindrically hyperbolic. We begin with some preliminaries on acylindri-
cally hyperbolic groups.

Definition 8.17. — An action by isometries Gy (S, d) is acylindrical
if, for every d > 0, there exist two constants R,N > 0 such that, for every
x, y ∈ S,

d(x, y) > R⇒ #{g ∈ G | d(x, gx), d(y, gy) 6 d} 6 N.

A group is acylindrically hyperbolic if it admits an action on a (Gromov-)
hyperbolic space which is acylindrical and non-elementary (i.e., with an
infinite limit set).

In [25], Osin gives several equivalent definitions of the acylindrical hy-
perbolicity of a group. The one we will be interested in is (AH3) in [25,
Theorem 1.2]. This is because we will use Theorem 7.1 to produce actions
on hyperbolic spaces such that any loxodromic isometries will be WPD.

Definition 8.18. — Let G be a group acting by isometries on a metric
space (S, d). An element g ∈ G is WPD if, for every d > 0 and every x ∈ S,
there exists M > 1 such that

#{h ∈ G | d(x, hx), d(gMx, hgMx) 6 d} < +∞.

Theorem 8.19 ([25, Theorem 1.2]). — A group acting by isometries
on a hyperbolic space with a WPD isometry is either virtually cyclic or
acylindrically hyperbolic.

Our main criterion is the following:
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Theorem 8.20. — Let G be a group acting on a C ′(1/4)−T (4) polyg-
onal complex X. Suppose that there exists a constant R > 0 such that, for
any points x, y ∈ X, the intersection stab(x) ∩ stab(y) is finite whenever
x and y are separated by at least R pairwise disjoint hypergraphs. Either
the action Gy X is elliptic (i.e., any element of G has a fixed a point), or
G is virtually cyclic or acylindrically hyperbolic.

The idea is to look at the induced action Gy (C(X), d∞) on the CAT(0)
cube complex C(X) associated to X. Then, we want to show that the small
cancellation properties of X imply that C(X) does not contain thick grids
of hyperplanes, so that (C(X), d∞) will be hyperbolic, and then use the
assumption on the stabilisers in X to deduce an acylindrical property for
the action on C(X) by applying Theorem 7.1 thanks to Theorem 8.10.
Finally, if we are able to find a loxodromic isometry for the action G y
(C(X), d∞), we can deduce that G acts on a hyperbolic space with a WPD
isometry. The fist step of this argument is achieved by the following lemma:

Lemma 8.21. — Let X be C ′(1/4) − T (4) polygonal complex and let
C(X) denote its associated CAT(0) cube complex. Then C(X) does not
contain (4, 4)-grids of hyperplanes.

Proof. — Suppose by contradiction that C(X) contains a (4, 4)-grid of
hyperplanes. In particular, X contains eight hypergraphs V1, . . . , V4 and
H1, . . . ,H4 such that Vi and Hj are transverse for every 1 6 i, j 6 4 and
Vi (resp. Hi) separates Vi−1 and Vi+1 (resp. Hi−1 and Hi+1) for i = 2, 3.
Let Pi,j be a polygon in which the hypergraphs Vi and Hj meet. Because
P1,1 and P1,4 belong to the hypercarrier Y (V1), there exists a sequence of
successively adjacent polygons in Y (V1) between P1,1 and P1,4; a similar
assertion holds for P1,4 and P4,4, P4,4 and P4,1, P4,1 and P1,1. Let B denote
the union of all these polygons, which we call a band of polygons. A polygon
in B will be a corner if it belongs to {P1,1, P1,4, P4,4, P4,1} and interior
otherwise.
Let γ1 ⊂ B (resp. γ2, γ3, γ4 ⊂ B) be a combinatorial path of minimal

length between P1,1 and P1,4 (resp. P1,4 and P4,4, P4,4 and P4,1, P4,1 and
P1,1) strictly included into the halfcarrier associated to V1 (resp. H4, V4,
H1) which does not contain V4 (resp. H1, V1, H4). Finally, let c1 (resp. c2,
c3, c4) be the combinatorial path of minimal length in P1,4 (resp. P4,4, P4,1,
P1,1) between γ1 and γ2 (resp. γ2 and γ3, γ3 and γ4, γ4 and γ1). We define
the loop γ as the concatenation

γ = γ1 ∪ c1 ∪ γ2 ∪ c2 ∪ γ3 ∪ c3 ∪ γ4 ∪ c4.
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Figure 8.2. Configuration from the proof of Lemma 8.21.

See Figure 8.2. A vertex of γ will be called angular if it belongs to two
polygons of B.
Notice that the intersection between c1 and γ1 or γ2 is a single vertex,

because we have chosen γ1 and γ2 of minimal length; furthermore, c1 is
disjoint from c2, c4, γ3 and γ4, because they are separated by V2 or H3.
A similar statement holds for c2, c3 and c4. Finally, notice that two γi’s
are always separated by a hypergraph so that they are pairwise disjoint.
We conclude that γ is a simple loop in X. Let D → X be a reduced
non-degenerate disc diagram bounded by γ.
The reciprocal images in D of the hypergraphs V2, V3, H2 and H3 must

separate D. In particular, these hypergraphs intersect in different 2-cells
in D so that D cannot be a single 2-cell. According to Theorem 8.3, D
necessarily contains a shell; let R denote its image in X.

We first notice that an interior vertex v of the outer path of R (which is
included into γ) cannot be angular. Otherwise, v belongs to two polygons
P1, P2 ⊂ B and the triple (P1, P2, R) defines a disc diagram with v as an
interior vertex of degree three, contradicting the condition T (4). Therefore,
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the outer path of R is included into the boundary of some polygon P ∈ B.
If P 6= R, then ∂R is covered by at most three pieces, contradicting the
condition C ′(1/4). Thus, R ∈ B.

Case 1: R is a corner. — Then R ∈ {P1,1, P1,4, P4,4, P4,1}, say R = P1,4,
and the outer path of R is c1. During the construction of γ, we have chosen
c1 so that length(c1) 6 1

2 length(∂P1,4). Consequently, the length of the
inner path of R is at least 1

2 length(∂R). By definition, this inner path is
covered by at most two pieces, contradicting the condition C ′(1/4).
Case 2: R is interior. — Then there exist a hypergraph Λ ∈ {V1, V4,

H1, H4} intersecting two edges of the inner path of R. Because Λ intersects
two opposite edges of the polygon R, this implies that length of the inner
path of R is at least 1

2 length(∂R). By definition, this inner path is covered
by at most two pieces, contradicting the condition C ′(1/4).
Therefore, we conclude that C(X) does not contain a (4, 4)-grid of hy-

perplanes. �

Proof of Theorem 8.20. — Let C(X) denote the CAT(0) cube complex
associated to X. According to the previous lemma, C(X) does not contain
(4, 4)-grids of hyperplanes, so we deduce from Theorem 6.1 that (C(X), d∞)
is hyperbolic. Let x, y ∈ C(X) be two vertices satisfying d∞(x, y) > R+ 2.
If p : C(X) → X denotes the projection provided by Theorem 8.10, then,
because x and y are separated by R+ 2 pairwise disjoint hyperplanes, p(x)
and p(y) are separated by R pairwise disjoint hypergraphs, so that

|stab(x) ∩ stab(y)| 6 |stab(p(x)) ∩ stab(p(y))| < +∞.

We deduce from Theorem 7.1 that, with respect to G y (C(X), d∞), any
loxodromic isometry is WPD. If any element of G has a bounded orbit in
(C(X), d∞), then any element has a fixed a point in C(X), and a fortiori
in X using Theorem 8.10: thus, the action Gy X is elliptic. Otherwise, G
has contains an element with an unbounded orbit in (C(X), d∞).

Claim 8.22. — If g ∈ G has an unbounded orbit in (C(X), d∞), then
it defines a loxodromic isometry of (C(X), d∞).

As g has an unbounded orbit in C(X), it must define a combinatorially
hyperbolic isometry of (the subdivision of) C(X), i.e., there exists a com-
binatorial bi-infinite geodesic γ ⊂ C(X) on which g acts by translations.
Fix two infinite subrays ρ1, ρ2 ⊂ γ such that ρ1 ∩ ρ2 is reduced to a single
vertex. By assumption, γ has infinite diameter with respect to d∞, so, for
every n > 1, there exist two vertices x, y ∈ γ which are separated by at
least n pairwise disjoint hyperplanes. Let J denote this collection of hyper-
planes. Up to translating along γ by powers of g, we may suppose without
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loss of generality that x ∈ ρ1 and y ∈ ρ2. Because γ cannot intersect twice a
hyperplane, we know that there exist infinite subrays ρ′1 ⊂ ρ1 and ρ′2 ⊂ ρ2
which are separated by all the hyperplanes of J , hence d∞(a, b) > n for
every a ∈ ρ′1 and b ∈ ρ′2. As a consequence, if z ∈ γ is a fixed vertex,
d∞(giz, g−jz) does not tend to zero as i, j → +∞. Therefore, g defines an
isometry of (C(X), d∞) which has an unbounded orbit and which is not
parabolic. It has to be a loxodromic isometry, concluding the proof of our
claim.
Thus, we have proved that G acts on the hyperbolic space (C(X), d∞)

with at least one WPD isometry. We conclude that G is either virtually
cyclic or acylindrically hyperbolic. �

The first examples of groups acting on small cancellation polygonal com-
plexes are the small cancellation groups acting on their Cayley complexes.
We develop this example below.

Lef F be a free group of rank at least two with a fixed free basis S.
Every non-trivial element g of F can be written uniquely as a reduced
word g = g1 . . . gn, where each gi belongs to S ∪ S−1 and gi 6= g±1

i+1. We
refer to the integer n as the length of g, denoted by |g|. This reduced word
is cyclically reduced if g1 6= g−1

n . If two elements h, k ∈ G, with reduced
words h = h1 . . . hr and k = k1 . . . ks, satisfy hr = k−1

s , we say that hn and
ks cancel in the product hk; otherwise, the product is reduced.

Let R ⊂ F be a symmetrised family, i.e., R is stable by taking cyclic
conjugates and inverses. Notice that, up to adding all cyclic conjugates of
elements of R and their inverses, we can always suppose that R is sym-
metrised. An element p ∈ G is a piece (with respect to R) if there exist two
distinct elements r1, r2 ∈ R such that the products r1 = pu1 and r2 = pu2
are reduced for some u1, u2 ∈ G.

Definition 8.23. — Let R ⊂ F be a family of cyclically reduced ele-
ments and let R denote its symmetrised. Then R satisfies

• the condition C ′(λ) if for every piece p and every element r ∈ R,
such that the product r = pu is reduced, we have |p| < λ|r|;

• the condition T (q) if, for every 3 6 h < q and every elements
r0, . . . , rh−1 ∈ R with ri 6= r−1

i+1 for i ∈ Zh, at least one of the
product r1r2, . . . , rh−2rh−1, rh−1r1 is reduced.

Theorem 8.24. — Infinitely-presented C ′(1/4) − T (4) groups are
acylindrically hyperbolic.

Proof. — Let G be an infinitely-presented C ′(1/4)− T (4) group, i.e., G
admits a presentation 〈S |R〉 where R is an infinite subset of the free group
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F (S) satisfying the condition C ′(1/4) − T (4). Let X denote the Cayley
complex associated to this presentation. Notice that X is a C ′(1/4)−T (4)
polygonal complex, so that G acts freely on a C ′(1/4) − T (4) polygonal
complex. It follows easily from Theorem 8.20 that G is either virtually
cyclic or acylindrically hyperbolic. On the other hand, as a consequence
of Greendlinger Lemma for C ′(1/4)− T (4) groups [20, Theorem V.4.4], no
relation of Rmay be deduced from the others, so G is not finitely-presented,
and a fortiori G cannot be virtually cyclic. �

Remark 8.25. — Hyperbolic behaviors of small cancellation groups were
noticed a long time ago. For instance, finitely presented C ′(1/6) and
C ′(1/4) − T (4) groups are known to be hyperbolic [33]. More generally,
it follows from [26] that small cancellation quotients of free products are
relatively hyperbolic, which was generalised to graphical small cancellation
in [32, Theorem 1] and [14, Theorem 2.9]. Finally, it was proved in [15] that
some infinitely presented graphical small cancellation groups are acylindri-
cally hyperbolic, including the C ′(1/6) groups (in fact, the C(7) groups),
and the more general cubical small cancellation groups were studied in [2].

Example 8.26. — In [34], the following group presentation is introduced:

GI,k = 〈a, b | (anbn)k = 1, n ∈ I〉,

with k > 1 and I ⊂ N\{0} infinite. This presentation always satisfies the
condition T (4), and the condition C ′(1/4) is satisfied precisely when k > 5.
Therefore, GI,k is acylindrically hyperbolic provided that k > 5.

The small cancellation theory we have described has been generalised
for graphs of groups, where we are also able to deduce an action on a
small cancellation polygonal complex. Indeed, if G is a graph of groups
with R ⊂ π1(G) a family satisfying some small cancellation condition, then
π1(G) acts on the Bass–Serre tree T associated to G, and, if Ṫ denotes the
usual cone-off of T over the axes of the conjugates of the elements of R, then
the quotient π1(G)/〈〈R〉〉 acts on the quotient Ṫ /〈〈R〉〉 which is naturally a
small cancellation polygonal complex. Below, we describe the situation for
free products.
Lef G = G1 ∗· · ·∗Gm be a free product. Every non-trivial element g of G

can be written uniquely as an alternating product g = g1 . . . gn, where each
gi is a non-trivial element of a free factor and no two consecutive gi, gi+1
belong to the same free factor. The integer n is called the free product
length of g, denoted by |g|. This alternating product is weakly cyclically
reduced if |g| 6 1 or g1 6= g−1

n . If two elements h, k ∈ G, with alternating
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products h = h1 . . . hr and k = k1 . . . ks, satisfy hr = k−1
s , we say that hn

and ks cancel in the product hk; otherwise, the product is weakly reduced.
Let R ⊂ G be a symmetrised family, i.e., R is stable by taking cyclic

conjugates and inverses. Notice that, up to adding all cyclic conjugates of
elements of R and their inverses, we can always suppose that R is sym-
metrised. An element p ∈ G is a piece (with respect to R) if there exist two
distinct elements r1, r2 ∈ R such that the products r1 = pu1 and r2 = pu2
are weakly reduced for some u1, u2 ∈ G.

Definition 8.27. — Let R ⊂ G be a family of weakly cyclically reduced
elements and let R denote its symmetrised. Then R satisfies

• the condition C ′(λ) if for every piece p and every element r ∈ R,
such that the product r = pu is weakly reduced, we have |p| < λ|r|;

• the condition T (4) if the two following conditions are satisfied:
– if r, s, t ∈ R then at least one of the products rs, st, tr is weakly

reduced;
– if each of y1, y2, y3 is a letter occurring in the alternating prod-

ucts of elements r, s, t ∈ R, then y1y2y3 6= 1 in G.
If R satisfies the condition C ′(λ), in order to avoid pathological cases, we
will use the convention that |r| > λ for every r ∈ R.

Theorem 8.28. — Let G = G1 ∗ · · · ∗ Gn be a finitely-generated free
product and R ⊂ G a family satisfying the condition C ′(1/4)−T (4). Then
the quotient Q = G/〈〈R〉〉 is either virtually cyclic or acylindrically hyper-
bolic.

Proof. — The group G acts on the Bass–Serre tree T associated to its
decomposition as a free product. Let Ṫ denote the usual cone-off of T over
the axes of the conjugates of the elements of R. Then the quotient Q =
G/〈〈R〉〉 naturally acts on X = Ṫ /〈〈R〉〉. Naturally, X has the structure of a
polygonal complex, and because R satisfies the condition C ′(1/4)−T (4), X
turns out to be a C ′(1/4)−T (4) polygonal complex. As a direct consequence
of the well-known Greendlinger Lemma [30, Theorem 1], we get:

Fact 8.29. — If w ∈ G\{1} satisfies |w| 6 2, then w /∈ 〈〈R〉〉.

As a consequence, the free factors of G embed in the quotient Q, so that
we may identify them with their images into Q.
Now, we want to apply Theorem 8.20. We first notice that the stabiliser

of an edge e in X is the image of 〈〈R〉〉 stab(e′) ⊂ G into Q, where the
edge e′ ⊂ T is a lift of e in Ṫ ; because edge-stabilisers in T are trivial,
we deduce that edge-stabilisers in X are trivial. Similarly, if u is a vertex
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of X and v is a lift in T , then the stabiliser of u in Q is the image of
〈〈R〉〉 stab(v) ⊂ G into Q, i.e., it is a conjugate of a free factor. Finally, the
stabiliser of a polygon P in X is the image of 〈〈R〉〉 stab(P ′) ⊂ G into Q,
where the cone P ′ ⊂ Ṫ is a lift of P in Ṫ . By construction, the basis of the
cone P ′ corresponds to the axis γ of a conjugate f of an element r ∈ R.
For every 1 6 i 6 |r| − 1, let gi be an element of the oriented stabiliser
stab+(γ) such that the translation length of gi is i modulo |r|; if such an
element does not exist, set gi = 1. Now, if g is any element of stab+(γ) such
that its translation length is k modulo |r|, then the translation length of
g±1
k g is a multiple of |r|, which is also the translation length of f ; because
edge-stabilisers in T are trivial, we conclude that g±1

k g is a power of f ,
so in particular we have g ∈ g∓1

k 〈f〉. Consequently, the index of 〈f〉 in
stab(γ) = stab(P ′) is at most 4|r|. A fortiori, since 〈f〉 ⊂ 〈〈R〉〉, the stabiliser
of our polygon P in X has cardinality at most 4|r|. We have proved:

Fact 8.30. — Edge-stabilisers in X are trivial. The stabiliser of a polygon
in X associated to an element r ∈ R has cardinality at most 4|r|. The
vertex-stabilisers in X correspond to the conjugates of the free factors in Q.

Let x, y ∈ X be two distinct points. We want to prove that the cardinality
of stab(x) ∩ stab(y) is bounded above by 4|r| for some r ∈ R. If x or y is
not a vertex, then stab(x) or stab(y) is included into an edge-stabiliser
or a polygon-stabiliser, and the conclusion follows from the previous fact.
Therefore, we may suppose that x and y are two vertices. Let u (resp. v) be
a lift of x (resp. y) in T . Notice that, because x 6= y, u and v are necessarily
distinct; in particular, the intersection stab(u)∩stab(v) in G is trivial. Now
the intersection stab(x) ∩ stab(y) in Q is precisely the image of

〈〈R〉〉 stab(u) ∩ 〈〈R〉〉 stab(v) ⊂ G

in the quotient Q. Let g ∈ G be an element of this intersection. So there
exist r1, r2 ∈ 〈〈R〉〉, g1 ∈ stab(u) and g2 ∈ stab(v) such that r1g1 = g =
r2g2. We deduce that g1g

−1
2 = r−1

1 r2 ∈ 〈〈R〉〉. It follows from Fact 8.29 that
g1 = g2 ∈ stab(u)∩ stab(v) = {1}, hence g ∈ 〈〈R〉〉. Thus, stab(x)∩ stab(y)
is trivial. We have proved:

Fact 8.31. — For any two distinct points x, y ∈ X, there exists some
r ∈ R such that stab(x) ∩ stab(y) has cardinality at most 4|r|.

To conclude, it is sufficient to prove that the action Qy X is not elliptic.
Suppose by contradiction that this is the case. According to Theorem 8.15,
Q has a global fixed point. So Q contains a finite-index subgroup fixing a
vertex x ∈ X. Let u be a lift of x in T . Up to a conjugation, we may suppose
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that stab(u) is a free factor, say G1. We deduce that 〈〈R〉〉G1 is a finite-
index subgroup in G. On the other hand, our previous fact implies that
〈〈R〉〉G1 ∩G2 = {1}. Thus, the free product G is finite, a contradiction. �

Example 8.32. — Let us introduce, for every k, p, r, q, s > 1 and I ⊂
N\{0} infinite, the following group presentation

HI,k = 〈a, b, c, d | [(ab)n, (cd)n]k = 1, ap = bq = cr = ds = 1, n ∈ I〉.

The group HI,k is the quotient of the free product

〈a | ap = 1〉 ∗ 〈b | bq = 1〉 ∗ 〈c | cr = 1〉 ∗ 〈d | ds = 1〉

by the normal closure of the family R = {[(ab)n, (cd)n]k, n ∈ I}. The
condition T (4) is satisfied if p, q, r, s > 4, and the condition C ′(1/4) is
satisfied if k > 5. Thus, HI,k is acylindrically hyperbolic provided that
p, q, r, s > 4 and k > 5.

8.4. A note on universal actions

Given an acylindrically hyperbolic group G, an element g ∈ G is a gener-
alised loxodromic element if g is loxodromic with respect to some acylindri-
cal action of G on a hyperbolic space; equivalently, g ∈ G is a generalised
loxodromic element if it is a WPD element with respect to an action of
G on a hyperbolic space [25, Theorem 1.4]. An action of G on a hyper-
bolic space S is a universal action if any generalised loxodromic element
of G turns out to be WPD; if G y S is moreover acylindrical, this is an
acylindrical universal action. In [25, Question 6.7], Osin asks whether any
finitely-generated group admits an acylindrical universal action. A negative
answer was given in [1], by proving that Dunwoody’s inaccessible group
does not admit an acylindrical universal action. However, the question is
still open for finitely-presented groups.
The action we used for small cancellation quotients satisfies the acylin-

drical property given by Theorem 7.1, which implies that any loxodromic
isometry turns out to be WPD. Thus, we deduce:

Theorem 8.33. — Any infinitely-presented C ′(1/4)−T (4) group G ad-
mits a universal action. Furthermore, the generalised loxodromic elements
of G are the infinite-order elements.

Proof. — We know that G acts on the CAT(0) cube complex C(X)
dual to the Cayley complex associated to the small cancellation presen-
tation; and we saw that (C(X), d∞) is hyperbolic, and that the action
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G y (C(X), d∞) is free and satisfies the acylindrical property given by
Theorem 7.1. Moreover, an infinite-order element of G must have an un-
bounded orbit in C(X), and so in (C(X), d∞), so that it follows from
Claim 8.22 that infinite-order elements of G are loxodromic isometries of
(C(X), d∞). The WPD property follows from the acylindrical property of
the action. �

Unfortunately, we do not know if Theorem 7.1 may be improved to de-
duce a true acylindricity in general. However such a generalisation is possi-
ble in finite dimension (where d∞ may be replaced with the combinatorial
distance):

Theorem 8.34. — LetG be a group acting on an unbounded hyperbolic
CAT(0) cube complex X. The following are equivalent:

(i) Gy X is acylindrical,
(ii) there exist two constants L and R such that, for any vertices x, y ∈

X satisfying d(x, y) > L, the set {g ∈ G | gx = x, gy = y} has
cardinality at most R,

(iii) there exist N and K such that, for any hyperplanes J1, J2 separated
by at least N hyperplanes, the intersection stab(J1) ∩ stab(J2) has
cardinality at most K.

Proof. — Without loss of generality, we may suppose that X is δ-hyper-
bolic for some δ ∈ N. According to Theorem 3.3, there exists a constant C
such that any grid of hyperplanes in X is C-thin.

The implication (i)⇒ (ii) is clear.
Now we prove (ii) ⇒ (iii): we suppose that there exist constants L and

R such that, for any x, y ∈ X satisfying d(x, y) > L, the set {g ∈ G | gx =
x, gy = y} has cardinality at most R. Without loss of generality, we may
assume L > max(C + 1,dim(X)). Let N > Ram(L) and J1, J2 be two
hyperplanes separated by at least N hyperplanes. We want to prove that
|stab(J1) ∩ stab(J2)| is bounded above by a constant which depends only
on R and dim(X).

According to Lemma 3.7, there exist L pairwise disjoint hyperplanes, say
V1, . . . , VL, separating J1 and J2. Let x ∈ N(J1) and y ∈ N(J2) be two
vertices minimizing the distance between the two neighborhoods N(J1) and
N(J2).

Let H denote the subgroup stab(J1)∩ stab(J2) and let g ∈ H. Of course,
because d(x, y) = d(gx, gy), gx and gy minimize also the distance between
N(J1) and N(J2), so it follows from Proposition 2.7 that exactly the same
hyperplanes separate x and y, and gx and gy, namely those which separate
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J1 and J2. If J is a hyperplane separating x and gx, then it cannot separate
x and y or gx and gy, so it has to separate y and gy, and in particular it has
to be transverse to the Vk’s. Thus, V1, . . . , VL together with the hyperplanes
separating x and gx define a (L, d∞(x, gx))-grid of hyperplanes. Because
we have supposed L > C + 1, the definition of C implies d∞(x, gx) 6 C,
hence d(x, gx) 6 C dim(X). Similarly, we prove that d(y, gy) 6 C dim(X).
We have proved that the orbits of H on N(J1) and N(J2) are bounded.

Because these neighborhoods are themselves CAT(0) cube complexes, this
implies that H fixes a point in each one. Furthermore, H stabilizes the
maximal cubes which contain these global fixed points, so that H contains
a subgroup H0 of index at most 2 dim(X)! which fixes pointwise these two
maximal cubes. In particular, H0 has two global fixed vertices a ∈ N(J1)
and b ∈ N(J2). Because V1, . . . , VL separate J1 and J2, we deduce that
d(a, b) > L. By our hypotheses, this implies that H0 has cardinality at
most R. Therefore,

|stab(J1) ∩ stab(J2)| = |H| 6 2 dim(X)! · |H0| 6 2R dim(X)!.

This complete the proof.
Now we prove (iii)⇒ (i): we suppose there exist two constants N and K

such that, for any hyperplanes J1, J2 separated by at least N hyperplanes,
the intersection stab(J1) ∩ stab(J2) has cardinality at most K. Let ε ∈
N\{0} and let x, y ∈ X be two vertices satisfying

d(x, y) > Ram(N + 2) + 2(C dim(X) + ε+ Ram(1 + C + ε+ 8δ)).

We want to prove that the cardinality of the set

F = {g ∈ G | d(x, gx), d(y, gy) 6 ε}

is bounded above by a constant which depends only on δ, C, N , K, ε and
dim(X). Thus, the acylindricity of the action will follow.
Fix a combinatorial geodesic [x, y] and let z ∈ [x, y] be its midpoint.

For convenience, we will suppose in the following that z is a vertex. Let
p, r ∈ [x, z] and q, s ∈ [z, y] denote the points of [x, y] defined by

d(p, z) = d(q, z) = C dim(X) + ε+ bRam(N + 2)/2c

and

d(r, z) = d(s, z) = Ram(C + ε+ 8δ) + C dim(X) + ε+ bRam(N + 2)/2c.

Along the geodesic [x, y], we fix our points in the following order: x, r, p,
z, q, s and finally y.
Without loss of generality, we may suppose that C+ ε+8δ > dimX. Let

g ∈ F . We claim that for all but 2(ε+C dim(X)) hyperplanes J separating
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p and q, gJ separates r and s. If J is a hyperplane separating p and q such
that gJ does not separate r and s, three cases may happen.
Case 1: the hyperplane gJ does not meet [x, y]. — Because J separates

x and y, gJ must separate gx and gy. Therefore, since gJ does not sep-
arate x and y, necessarily gJ separates either y and gy or x and gx. But
d(x, gx), d(y, gy) 6 ε, so that there exist at most 2ε such hyperplanes J .

Case 2: the hyperplane gJ meets [s, y]. — Let u ∈ [p, q] be a vertex
adjacent to J . Then, because in a δ-hyperbolic space the distance is 8δ-
convex and that d(x, gx), d(y, gy) 6 ε, we deduce that d(u, gu) 6 ε + 8δ.
Let v ∈ [s, y] be a vertex adjacent to gJ . Because d(q, s) > Ram(C+ε+8δ),
Lemma 3.7 implies that there exist k > 1 + C + ε + 8δ pairwise disjoint
hyperplanes V1, . . . , Vk separating q and s; say that Vi separates Vi−1 and
Vi+1 for all 2 6 i 6 k − 1. Then, each hyperplane Vi separates either u
and gu or v and gu; in the latter case, Vi is transverse to gJ . Because
d(u, gu) 6 ε + 8δ, there are at most ε + 8δ hyperplanes in the first case.
On the other hand, because Vi and Vj are disjoint for any i 6= j, we deduce
that, if Vi is transverse to gJ for some i, then Vj is transverse to gJ for all
j > i. Therefore, the hyperplanes Vε+8δ, . . . , Vk are transverse to gJ . Thus,
because k > C + 1 + ε + 8δ, if there exist M hyperplanes J such that gJ
meets [s, y], the images by g of these M hyperplanes (which separate gx
and gy) together with Vε+8δ, . . . , Vk define a (bM/dimXc, C + 1)-grid of
hyperplanes. From the definition of C, we deduce that M 6 C dim(X).
Case 3: the hyperplane gJ meets [r, x]. — This case is symmetric to the

previous one. There are at most C dim(X) such hyperplanes J .
We have just proved that there exist at most 2(ε+C dim(X)) hyperplanes

J separating p and q such that gJ does not separate r and s, as claimed.
Therefore, if H(a, b) denotes the set of hyperplanes separating two ver-

tices a and b, any element g ∈ F defines a function (Sg ⊂ H(p, q))→ H(r, s)
where H(p, q)\Sg has cardinality at most 2(ε+C dim(X)). The cardinality
of the set L of these functions is bounded above by a constant κ which
depends only on d(p, q), d(r, s), C and ε; from our choices of d(p, q) and
d(r, s), in fact it depends only on δ, C, N , ε and dim(X).
If #F > (K + 1)κ, then F contains K + 1 pairwise distinct elements

g1, . . . , gK+1 inducing the same function of L. Therefore, for all 1 6 i 6
K + 1, g−1

1 gi stabilizes each hyperplane of a family S ⊂ H(p, q) such
that H(p, q)\S has cardinality at most 2(ε + C dim(X)). On the other
hand, #H(p, q) = d(p, q) > Ram(N + 2) + 2(ε + C dim(X)) hence #S >
Ram(N + 2). According to Lemma 3.7, the collection S contains N + 2
pairwise disjoint hyperplanes; because they all separate p and q, it makes
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sense to claim the two extremal hyperplanes J1, J2 of this subcollection are
separated by at least N hyperplanes, hence |stab(J1) ∩ stab(J2)| 6 K by
definition of N . A fortiori, the intersection

⋂
J∈S stab(J) has cardinality at

most K, so we conclude that there exist i 6= j such that g−1
1 gi = g−1

1 gj ,
that is gi = gj , a contradiction.
Therefore, #F is bounded above by the constant (K+1)κ which depends

only on δ, C, N , K, ε and dim(X). �

Remark 8.35. — The equivalence (i) ⇔ (ii) of Theorem 8.34 has been
proved recently in [22] for hyperbolic CAT(0) square complexes. In his
article, Martin introduces the terminology weakly acylindrical action for an
action satisfying the condition (ii), so that weakly acylindrical actions and
acylindrical actions turn out to be equivalent notions in our context. This
statement is especially useful because it is definitely easier to verify whether
an action is weakly acylindrical than acylindrical. Therefore, Theorem 8.34
generalises [22, Theorem A] to higher dimensions.

Thus, if the CAT(0) cube complex dual to the small cancellation polygo-
nal complex is finite-dimensional, Theorem 7.1 may be replaced with The-
orem 8.34 in the arguments of the previous section in order to produce an
acylindrical action. According to Proposition 8.8, we know that our cube
complex is finite-dimensional precisely when the lengths of the elements of
the small cancellation family we are considering are uniformly bounded.
Of course, with respect to the classical small cancellation conditions, this
may happen only for finitely-presented groups, which are hyperbolic. On
the other hand, for free products we can state:

Theorem 8.36. — Let G be a free product of finitely-generated groups
which are neither acylindrically hyperbolic nor virtually cyclic, and let
R ⊂ G be a family satisfying the condition C ′(1/4)− T (4) whose elements
have uniformly bounded free product lengths. Then the quotient G/〈〈R〉〉
admits an acylindrical universal action.

Proof. — The group G acts on the Bass–Serre tree T associated to its
decomposition as a free product. Let Ṫ denote the usual cone-off of T
over the axes of the conjugates of the elements of R. Then the quotient
Q = G/〈〈R〉〉 naturally acts on X = Ṫ /〈〈R〉〉. Naturally, X has the structure
of a polygonal complex, and because R satisfies the condition C ′(1/4) −
T (4), X turns out to be a C ′(1/4) − T (4) polygonal complex. Let C(X)
denote the CAT(0) cube complex associated toX. We know that C(X) does
not contain (4, 4)-grids of hyperplanes and it is finite-dimensional. Thus,
according to Theorem 3.3, C(X) is hyperbolic. Furthermore, combining
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Fact 8.31 and Theorem 8.34, we deduce that the action Q y C(X) is
acylindrical.
Now, because an element of Q inducing an elliptic isometry of C(X)

has to fix a point in C(X), and so fixes a point in X as a consequence
of Theorem 8.10, and so stabilises a vertex or an edge or a polygon in
X, we notice thanks to Fact 8.30 that an element of Q is elliptic for the
action Q y C(X) if and only if it belongs to a conjugate of a free factor
or it has finite order. To conclude our proof, it is sufficient to notice that a
free factor in Q cannot contain a generalised loxodromic element, but this
follows from the assumption that the free factors are neither acylindrically
hyperbolic nor virtually cyclic. �

Example 8.37. — For k > 1 and I ⊂ N\{0} infinite, let us introduce the
group presentation

Kk,I = 〈a, b, c, d | [a, b] = [c, d] = 1, (anbncndn)k = 1, n ∈ I〉.

The groupKk,I is the quotient of the free product of two free abelian groups

〈a, b | [a, b] = 1〉 ∗ 〈c, d | [c, d] = 1〉

by the normal closure of the family R = {(anbncndn)k, n ∈ I}. The condi-
tion C ′(1/4) − T (4) is satisfied if k > 5. Therefore, Kk,I is acylindrically
hyperbolic and admits an acylindrical universal action whenever k > 5.
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