A note on Loewner energy, conformal restriction and Werner’s measure on self-avoiding loops
[Note sur l’énergie de Loewner, la restriction conforme et la mesure de Werner sur les boucles auto-évitantes]
Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1791-1805.

Nous établissons une expression de l’énergie de Loewner d’une courbe de Jordan en termes de la mesure de Werner sur les boucles auto-évitantes du type SLE 8/3 . La preuve est basée sur la variation de l’énergie de Loewner sous l’effet des transformations conformes. Cette formule rappelle la propriété de la restriction conforme de SLE.

We establish an expression of the Loewner energy of a Jordan curve in terms of Werner’s measure on simple loops of SLE 8/3 type. The proof is based on a formula for the change of the Loewner energy under a conformal map that is reminiscent of SLE processes’ conformal restriction property.

Reçu le :
Révisé le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/aif.3427
Classification : 30C55, 60J67
Keywords: Loewner energy, conformal restriction, Werner’s measure, Schramm–Loewner evolution
Mot clés : énergie de Loewner, restriction conforme, mesure de Werner, evolution Schramm–Loewner

Wang, Yilin 1

1 Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge MA (USA)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2021__71_4_1791_0,
     author = {Wang, Yilin},
     title = {A note on {Loewner} energy, conformal restriction and {Werner{\textquoteright}s} measure on self-avoiding loops},
     journal = {Annales de l'Institut Fourier},
     pages = {1791--1805},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {4},
     year = {2021},
     doi = {10.5802/aif.3427},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3427/}
}
TY  - JOUR
AU  - Wang, Yilin
TI  - A note on Loewner energy, conformal restriction and Werner’s measure on self-avoiding loops
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 1791
EP  - 1805
VL  - 71
IS  - 4
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3427/
DO  - 10.5802/aif.3427
LA  - en
ID  - AIF_2021__71_4_1791_0
ER  - 
%0 Journal Article
%A Wang, Yilin
%T A note on Loewner energy, conformal restriction and Werner’s measure on self-avoiding loops
%J Annales de l'Institut Fourier
%D 2021
%P 1791-1805
%V 71
%N 4
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3427/
%R 10.5802/aif.3427
%G en
%F AIF_2021__71_4_1791_0
Wang, Yilin. A note on Loewner energy, conformal restriction and Werner’s measure on self-avoiding loops. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1791-1805. doi : 10.5802/aif.3427. https://aif.centre-mersenne.org/articles/10.5802/aif.3427/

[1] de Branges, Louis A proof of the Bieberbach conjecture, Acta Math., Volume 154 (1985) no. 1-2, pp. 137-152 | DOI | MR | Zbl

[2] Dubédat, Julien Commutation relations for Schramm-Loewner evolutions, Commun. Pure Appl. Math., Volume 60 (2007) no. 12, pp. 1792-1847 | DOI | MR | Zbl

[3] Dubédat, Julien SLE and the free field: partition functions and couplings, J. Am. Math. Soc., Volume 22 (2009) no. 4, pp. 995-1054 | DOI | MR | Zbl

[4] Friz, Peter K.; Shekhar, Atul On the existence of SLE trace: finite energy drivers and non-constant κ, Probab. Theory Relat. Fields, Volume 169 (2017) no. 1-2, pp. 353-376 | DOI | MR | Zbl

[5] Kemppainen, Antti; Werner, Wendelin The nested simple conformal loop ensembles in the Riemann sphere, Probab. Theory Relat. Fields, Volume 165 (2016) no. 3-4, pp. 835-866 | DOI | MR | Zbl

[6] Lawler, Gregory; Schramm, Oded; Werner, Wendelin Conformal restriction: the chordal case, J. Am. Math. Soc., Volume 16 (2003) no. 4, pp. 917-955 | DOI | MR | Zbl

[7] Lawler, Gregory; Werner, Wendelin The Brownian loop soup, Probab. Theory Relat. Fields, Volume 128 (2004) no. 4, pp. 565-588 | DOI | MR | Zbl

[8] Le Jan, Yves Markov loops, determinants and Gaussian fields (2006) (https://arxiv.org/abs/math/0612112)

[9] Löwner, Karl Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., Volume 89 (1923) no. 1-2, pp. 103-121 | DOI | MR | Zbl

[10] Nacu, Şerban; Werner, Wendelin Random soups, carpets and fractal dimensions, J. Lond. Math. Soc., Volume 83 (2011) no. 3, pp. 789-809 | DOI | MR | Zbl

[11] Osgood, Brad; Phillips, Ralph; Sarnak, Peter Extremals of determinants of Laplacians, J. Funct. Anal., Volume 80 (1988) no. 1, pp. 148-211 | DOI | MR | Zbl

[12] Ray, Daniel B.; Singer, Isadore M. R-torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210 | DOI | MR

[13] Rohde, Steffen; Wang, Yilin The Loewner energy of loops and regularity of driving functions, Volume 2021 (2021) no. 10, pp. 7433-7469 (Int. Math. Res. Not.) | DOI | MR | Zbl

[14] Schramm, Oded Scaling limits of loop-erased random walks and uniform spanning trees, Isr. J. Math., Volume 118 (2000), pp. 221-288 | DOI | MR | Zbl

[15] Takhtajan, Leon A.; Teo, Lee-Peng Weil-Petersson metric on the universal Teichmüller space, Mem. Am. Math. Soc., Volume 183 (2006) no. 861, p. viii+119 | DOI | MR | Zbl

[16] Wang, Yilin The energy of a deterministic Loewner chain: reversibility and interpretation via SLE 0+ , J. Eur. Math. Soc., Volume 21 (2019) no. 7, pp. 1915-1941 | DOI | MR | Zbl

[17] Wang, Yilin Equivalent descriptions of the Loewner energy, Invent. Math., Volume 218 (2019) no. 2, pp. 573-621 | DOI | MR | Zbl

[18] Werner, Wendelin The conformally invariant measure on self-avoiding loops, J. Am. Math. Soc., Volume 21 (2008) no. 1, pp. 137-169 | DOI | MR | Zbl

Cité par Sources :