Nous établissons une expression de l’énergie de Loewner d’une courbe de Jordan en termes de la mesure de Werner sur les boucles auto-évitantes du type SLE. La preuve est basée sur la variation de l’énergie de Loewner sous l’effet des transformations conformes. Cette formule rappelle la propriété de la restriction conforme de SLE.
We establish an expression of the Loewner energy of a Jordan curve in terms of Werner’s measure on simple loops of SLE type. The proof is based on a formula for the change of the Loewner energy under a conformal map that is reminiscent of SLE processes’ conformal restriction property.
Révisé le :
Accepté le :
Première publication :
Publié le :
Keywords: Loewner energy, conformal restriction, Werner’s measure, Schramm–Loewner evolution
Mot clés : énergie de Loewner, restriction conforme, mesure de Werner, evolution Schramm–Loewner
Wang, Yilin 1
@article{AIF_2021__71_4_1791_0, author = {Wang, Yilin}, title = {A note on {Loewner} energy, conformal restriction and {Werner{\textquoteright}s} measure on self-avoiding loops}, journal = {Annales de l'Institut Fourier}, pages = {1791--1805}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {4}, year = {2021}, doi = {10.5802/aif.3427}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3427/} }
TY - JOUR AU - Wang, Yilin TI - A note on Loewner energy, conformal restriction and Werner’s measure on self-avoiding loops JO - Annales de l'Institut Fourier PY - 2021 SP - 1791 EP - 1805 VL - 71 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3427/ DO - 10.5802/aif.3427 LA - en ID - AIF_2021__71_4_1791_0 ER -
%0 Journal Article %A Wang, Yilin %T A note on Loewner energy, conformal restriction and Werner’s measure on self-avoiding loops %J Annales de l'Institut Fourier %D 2021 %P 1791-1805 %V 71 %N 4 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3427/ %R 10.5802/aif.3427 %G en %F AIF_2021__71_4_1791_0
Wang, Yilin. A note on Loewner energy, conformal restriction and Werner’s measure on self-avoiding loops. Annales de l'Institut Fourier, Tome 71 (2021) no. 4, pp. 1791-1805. doi : 10.5802/aif.3427. https://aif.centre-mersenne.org/articles/10.5802/aif.3427/
[1] A proof of the Bieberbach conjecture, Acta Math., Volume 154 (1985) no. 1-2, pp. 137-152 | DOI | MR | Zbl
[2] Commutation relations for Schramm-Loewner evolutions, Commun. Pure Appl. Math., Volume 60 (2007) no. 12, pp. 1792-1847 | DOI | MR | Zbl
[3] SLE and the free field: partition functions and couplings, J. Am. Math. Soc., Volume 22 (2009) no. 4, pp. 995-1054 | DOI | MR | Zbl
[4] On the existence of SLE trace: finite energy drivers and non-constant , Probab. Theory Relat. Fields, Volume 169 (2017) no. 1-2, pp. 353-376 | DOI | MR | Zbl
[5] The nested simple conformal loop ensembles in the Riemann sphere, Probab. Theory Relat. Fields, Volume 165 (2016) no. 3-4, pp. 835-866 | DOI | MR | Zbl
[6] Conformal restriction: the chordal case, J. Am. Math. Soc., Volume 16 (2003) no. 4, pp. 917-955 | DOI | MR | Zbl
[7] The Brownian loop soup, Probab. Theory Relat. Fields, Volume 128 (2004) no. 4, pp. 565-588 | DOI | MR | Zbl
[8] Markov loops, determinants and Gaussian fields (2006) (https://arxiv.org/abs/math/0612112)
[9] Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I, Math. Ann., Volume 89 (1923) no. 1-2, pp. 103-121 | DOI | MR | Zbl
[10] Random soups, carpets and fractal dimensions, J. Lond. Math. Soc., Volume 83 (2011) no. 3, pp. 789-809 | DOI | MR | Zbl
[11] Extremals of determinants of Laplacians, J. Funct. Anal., Volume 80 (1988) no. 1, pp. 148-211 | DOI | MR | Zbl
[12] -torsion and the Laplacian on Riemannian manifolds, Adv. Math., Volume 7 (1971), pp. 145-210 | DOI | MR
[13] The Loewner energy of loops and regularity of driving functions, Volume 2021 (2021) no. 10, pp. 7433-7469 (Int. Math. Res. Not.) | DOI | MR | Zbl
[14] Scaling limits of loop-erased random walks and uniform spanning trees, Isr. J. Math., Volume 118 (2000), pp. 221-288 | DOI | MR | Zbl
[15] Weil-Petersson metric on the universal Teichmüller space, Mem. Am. Math. Soc., Volume 183 (2006) no. 861, p. viii+119 | DOI | MR | Zbl
[16] The energy of a deterministic Loewner chain: reversibility and interpretation via , J. Eur. Math. Soc., Volume 21 (2019) no. 7, pp. 1915-1941 | DOI | MR | Zbl
[17] Equivalent descriptions of the Loewner energy, Invent. Math., Volume 218 (2019) no. 2, pp. 573-621 | DOI | MR | Zbl
[18] The conformally invariant measure on self-avoiding loops, J. Am. Math. Soc., Volume 21 (2008) no. 1, pp. 137-169 | DOI | MR | Zbl
Cité par Sources :