The density of fibres with a rational point for a fibration over hypersurfaces of low degree
[La densité des fibres possédant un point rationnel pour une fibration au-dessus d’une hypersurface de bas degré]
Annales de l'Institut Fourier, Tome 71 (2021) no. 2, pp. 679-709.

Nous établissons une formule asymptotique concernant la proportion de fibres possédant un point rationnel dans le cas d’une fibration en coniques, la base de la fibration étant une hypersurface générique de bas degré.

We prove asymptotics for the proportion of fibres with a rational point in a conic bundle fibration. The base of the fibration is a general hypersurface of low degree.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3413
Classification : 14G05, 14D06, 11P55, 14D10
Keywords: Hardy-Littlewood circle method, Serre’s problem, fibres with a rational point
Mot clés : Méthode du cercle de Hardy-Littlewood, Le problème de Serre, Fibres possédant un point rationnel

Sofos, Efthymios 1 ; Visse-Martindale, Erik 2

1 The Mathematics and Statistics Building University of Glasgow University Place Glasgow, G12 8QQ (Scotland)
2 Universiteit Leiden Mathematisch Instituut Niels Bohrweg 1, Leiden 2333 CA (Netherlands)
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2021__71_2_679_0,
     author = {Sofos, Efthymios and Visse-Martindale, Erik},
     title = {The density of fibres with a rational point for a fibration over hypersurfaces of low degree},
     journal = {Annales de l'Institut Fourier},
     pages = {679--709},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {2},
     year = {2021},
     doi = {10.5802/aif.3413},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3413/}
}
TY  - JOUR
AU  - Sofos, Efthymios
AU  - Visse-Martindale, Erik
TI  - The density of fibres with a rational point for a fibration over hypersurfaces of low degree
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 679
EP  - 709
VL  - 71
IS  - 2
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3413/
DO  - 10.5802/aif.3413
LA  - en
ID  - AIF_2021__71_2_679_0
ER  - 
%0 Journal Article
%A Sofos, Efthymios
%A Visse-Martindale, Erik
%T The density of fibres with a rational point for a fibration over hypersurfaces of low degree
%J Annales de l'Institut Fourier
%D 2021
%P 679-709
%V 71
%N 2
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3413/
%R 10.5802/aif.3413
%G en
%F AIF_2021__71_2_679_0
Sofos, Efthymios; Visse-Martindale, Erik. The density of fibres with a rational point for a fibration over hypersurfaces of low degree. Annales de l'Institut Fourier, Tome 71 (2021) no. 2, pp. 679-709. doi : 10.5802/aif.3413. https://aif.centre-mersenne.org/articles/10.5802/aif.3413/

[1] Birch, Bryan J. Forms in many variables, Proc. R. Soc. Lond., Ser. A, Volume 265 (1962), pp. 245-263 | DOI | MR | Zbl

[2] Browning, Tim; Loughran, Daniel Sieving rational points on varieties, Trans. Am. Math. Soc., Volume 371 (2019) no. 8, pp. 5757-5785 | DOI | MR | Zbl

[3] Frei, Christopher; Loughran, Daniel; Sofos, Efthymios Rational points of bounded height on general conic bundle surfaces, Proc. Lond. Math. Soc., Volume 117 (2018) no. 2, pp. 407-440 | DOI | MR | Zbl

[4] Friedlander, John; Iwaniec, Henryk Opera de cribro, Colloquium Publications, 57, American Mathematical Society, 2010, xx+527 pages | DOI | MR

[5] Hooley, Christopher On ternary quadratic forms that represent zero, Glasg. Math. J., Volume 35 (1993) no. 1, pp. 13-23 | DOI | MR | Zbl

[6] Hooley, Christopher On ternary quadratic forms that represent zero. II, J. Reine Angew. Math., Volume 602 (2007), pp. 179-225 | DOI | MR | Zbl

[7] Loughran, Daniel The number of varieties in a family which contain a rational point, J. Eur. Math. Soc., Volume 20 (2018) no. 10, pp. 2539-2588 | DOI | MR | Zbl

[8] Loughran, Daniel; Smeets, Arne Fibrations with few rational points, Geom. Funct. Anal., Volume 26 (2016) no. 5, pp. 1449-1482 | DOI | MR | Zbl

[9] Loughran, Daniel; Takloo-Bighash, Ramin; Tanimoto, Sho Zero-loci of Brauer group elements on semi-simple algebraic groups, J. Inst. Math. Jussieu, Volume 19 (2020) no. 5, pp. 1467-1507 | DOI | MR | Zbl

[10] Peyre, Emmanuel; Tschinkel, Yuri Tamagawa numbers of diagonal cubic surfaces, numerical evidence, Math. Comput., Volume 70 (2001) no. 233, pp. 367-387 | DOI | MR | Zbl

[11] Poonen, Bjorn; Voloch, José Felipe Random Diophantine equations, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002) (Progress in Mathematics), Volume 226, Birkhäuser, 2004, pp. 175-184 (With appendices by Jean-Louis Colliot-Thélène and Nicholas M. Katz) | DOI | MR | Zbl

[12] Rieger, Georg J. Über die Anzahl der als Summe von zwei Quadraten darstellbaren und in einer primen Restklasse gelegenen Zahlen unterhalb einer positiven Schranke. II, J. Reine Angew. Math., Volume 217 (1965), pp. 200-216 | DOI | MR | Zbl

[13] Schmidt, Wolfgang M. Simultaneous rational zeros of quadratic forms, Seminar on Number Theory (Paris, 1980/1981) (Progress in Mathematics), Volume 22, Birkhäuser, 1982, pp. 281-307 | MR | Zbl

[14] Serre, Jean-Pierre A course in arithmetic, Graduate Texts in Mathematics, 7, Springer, 1973, viii+115 pages (Translated from the French) | DOI | MR

[15] Serre, Jean-Pierre Spécialisation des éléments de Br 2 (Q(T 1 ,,T n )), C. R. Math. Acad. Sci. Paris, Volume 311 (1990) no. 7, pp. 397-402 | MR

[16] Skinner, Christopher M. Forms over number fields and weak approximation, Compos. Math., Volume 106 (1997) no. 1, pp. 11-29 | DOI | MR | Zbl

[17] Sofos, Efthymios Serre’s problem on the density of isotropic fibres in conic bundles, Proc. Lond. Math. Soc., Volume 113 (2016) no. 2, pp. 261-288 | DOI | MR | Zbl

[18] Tenenbaum, Gérald Introduction to analytic and probabilistic number theory, Graduate Studies in Mathematics, 163, American Mathematical Society, 2015, xxiv+629 pages (Translated from the 2008 French edition by Patrick D. F. Ion) | DOI | MR

[19] Visse-Martindale, Erik Counting points on K3 surfaces and other arithmetic-geometric objects, Ph. D. Thesis, Leiden University (Netherlands) (2019) (https://openaccess.leidenuniv.nl/handle/1887/67532)

Cité par Sources :