On signale une lacune dans la preuve de l’existence d’un homomorphisme régulier universel pour les cycles de codimension sur une variété projective lisse par Murre, et on donne deux arguments différents pour combler cette lacune.
We point out a gap in Murre’s proof of the existence of a universal regular homomorphism for codimension cycles on a smooth projective variety, and offer two arguments to fill this gap.
Révisé le :
Accepté le :
Publié le :
Keywords: Algebraic cycles, abelian varieties
Mot clés : Cycles algébriques, variétés abéliennes
Kahn, Bruno 1
@article{AIF_2021__71_2_843_0, author = {Kahn, Bruno}, title = {On the universal regular homomorphism in codimension~$2$}, journal = {Annales de l'Institut Fourier}, pages = {843--848}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {2}, year = {2021}, doi = {10.5802/aif.3408}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3408/} }
TY - JOUR AU - Kahn, Bruno TI - On the universal regular homomorphism in codimension $2$ JO - Annales de l'Institut Fourier PY - 2021 SP - 843 EP - 848 VL - 71 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3408/ DO - 10.5802/aif.3408 LA - en ID - AIF_2021__71_2_843_0 ER -
%0 Journal Article %A Kahn, Bruno %T On the universal regular homomorphism in codimension $2$ %J Annales de l'Institut Fourier %D 2021 %P 843-848 %V 71 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3408/ %R 10.5802/aif.3408 %G en %F AIF_2021__71_2_843_0
Kahn, Bruno. On the universal regular homomorphism in codimension $2$. Annales de l'Institut Fourier, Tome 71 (2021) no. 2, pp. 843-848. doi : 10.5802/aif.3408. https://aif.centre-mersenne.org/articles/10.5802/aif.3408/
[1] On descending cohomology geometrically, Compos. Math., Volume 153 (2017) no. 7, pp. 1446-1478 | DOI | MR | Zbl
[2] Quelques remarques sur la transformation de Fourier dans l’anneau de Chow d’une variété abélienne, Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Mathematics), Volume 1016, Springer, 1982, pp. 238-260 | DOI | Zbl
[3] The Clemens-Griffiths method over non-closed fields, Algebr. Geom., Volume 7 (2020) no. 6, pp. 696-721 | DOI | MR | Zbl
[4] Some elementary theorems about algebraic cycles on Abelian varieties, Invent. Math., Volume 37 (1976) no. 3, pp. 215-228 | DOI | MR | Zbl
[5] The coniveau filtration and non-divisibility for algebraic cycles, Math. Ann., Volume 304 (1996) no. 2, pp. 303-314 | DOI | MR | Zbl
[6] The intermediate Jacobian of the cubic threefold, Ann. Math., Volume 95 (1972), pp. 281-356 | DOI | MR | Zbl
[7] Troisième groupe de cohomologie non ramifiée d’un solide cubique sur un corps de fonctions d’une variable, Épijournal de Géom. Algébr., EPIGA, Volume 2 (2018), 13, 13 pages | Zbl
[8] On the groups , II; methods of computation, Ann. Math., Volume 60 (1954), pp. 49-139 | DOI | MR
[9] New results on weight-two motivic cohomology, The Grothendieck Festschrift, Vol. III (Progress in Mathematics), Volume 88, Birkhäuser, 1990, pp. 35-55 | DOI | MR | Zbl
[10] Jacobian varieties, Arithmetic Geometry (Cornell, G.; H., Silverman J., eds.), Springer, 1998, pp. 167-212 | DOI
[11] Applications of algebraic -theory to the theory of algebraic cycles, Algebraic geometry, Proc. Conf., Sitges (Barcelona)/Spain 1983 (Lecture Notes in Mathematics), Volume 1124, Springer, 1985, pp. 216-261 | DOI | MR | Zbl
[12] Cycles on the generic abelian threefold, Proc. Indian Acad. Sci., Math. Sci., Volume 99 (1989) no. 3, pp. 191-196 | DOI | MR | Zbl
[13] The torsion of the group of -cycles modulo rational equivalence, Ann. Math., Volume 111 (1980) no. 3, pp. 553-569 | DOI | MR | Zbl
[14] The Griffiths group of the generic abelian -fold, Cycles, motives and Shimura varieties. Proceedings of the international colloquium, Mumbai, India, January 3–12, 2008 (Tata Institute of Fundamental Research Studies in Mathematics), Volume 21 (2010), pp. 449-467 | MR | Zbl
[15] On certain exterior product maps of Chow groups, Math. Res. Lett., Volume 7 (2000) no. 2-3, pp. 177-194 | DOI | MR | Zbl
[16] Complex varieties with infinite Chow groups modulo , Ann. Math., Volume 183 (2016) no. 1, pp. 363-375 | DOI | MR | Zbl
Cité par Sources :