Nous étudions les valeurs propres du laplacien avec une condition de Robin fortement attractive dans des polygones curvilignes. Grâce à de précédents travaux, on sait que le comportement asymptotique de quelques premières valeurs propres est essentiellement déterminé par les ouvertures des coins, alors que seules quelques estimées grossières sont disponibles pour les valeurs propres suivantes. Sous certaines hypothèses géométriques, nous allons au-delà du nombre critique de valeurs propres et nous donnons un développement asymptotique précis pour chaque valeur propre individuelle en établissant un lien avec un opérateur effectif de type Schrödinger agissant sur le bord du domaine et muni de conditions aux limites aux coins.
We study the eigenvalues of the Laplacian with a strong attractive Robin boundary condition in curvilinear polygons. It was known from previous works that the asymptotics of several first eigenvalues is essentially determined by the corner openings, while only rough estimates were available for the next eigenvalues. Under some geometric assumptions, we go beyond the critical eigenvalue number and give a precise asymptotics of any individual eigenvalue by establishing a link with an effective Schrödinger-type operator on the boundary of the domain with boundary conditions at the corners.
Révisé le :
Accepté le :
Publié le :
Keywords: Eigenvalue, Laplacian, Robin boundary condition, effective operator, non-smooth domain
Mot clés : Valeur propre, Laplacien, condition aux limites de Robin, opérateur effectif, domaine non-lisse
Khalile, Magda 1 ; Ourmières-Bonafos, Thomas 2 ; Pankrashkin, Konstantin 3
@article{AIF_2020__70_5_2215_0, author = {Khalile, Magda and Ourmi\`eres-Bonafos, Thomas and Pankrashkin, Konstantin}, title = {Effective operators for {Robin} eigenvalues in domains with corners}, journal = {Annales de l'Institut Fourier}, pages = {2215--2301}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {5}, year = {2020}, doi = {10.5802/aif.3400}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3400/} }
TY - JOUR AU - Khalile, Magda AU - Ourmières-Bonafos, Thomas AU - Pankrashkin, Konstantin TI - Effective operators for Robin eigenvalues in domains with corners JO - Annales de l'Institut Fourier PY - 2020 SP - 2215 EP - 2301 VL - 70 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3400/ DO - 10.5802/aif.3400 LA - en ID - AIF_2020__70_5_2215_0 ER -
%0 Journal Article %A Khalile, Magda %A Ourmières-Bonafos, Thomas %A Pankrashkin, Konstantin %T Effective operators for Robin eigenvalues in domains with corners %J Annales de l'Institut Fourier %D 2020 %P 2215-2301 %V 70 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3400/ %R 10.5802/aif.3400 %G en %F AIF_2020__70_5_2215_0
Khalile, Magda; Ourmières-Bonafos, Thomas; Pankrashkin, Konstantin. Effective operators for Robin eigenvalues in domains with corners. Annales de l'Institut Fourier, Tome 70 (2020) no. 5, pp. 2215-2301. doi : 10.5802/aif.3400. https://aif.centre-mersenne.org/articles/10.5802/aif.3400/
[1] Bounds and extremal domains for Robin eigenvalues with negative boundary parameter, Adv. Calc. Var., Volume 10 (2017) no. 4, pp. 357-379 | DOI | MR | Zbl
[2] Discrete spectrum of a cross-shaped waveguide, St. Petersburg Math. J., Volume 28 (2017), pp. 171-180 | DOI | MR
[3] Criteria for the Absence and Existence of Bounded Solutions at the Threshold Frequency in a Junction of Quantum Waveguides (2017) | arXiv
[4] Isoperimetric inequalities for the principal eigenvalue of a membrane and the energy of problems with Robin boundary conditions, J. Convex Anal., Volume 22 (2015) no. 3, pp. 627-640 | MR | Zbl
[5] On an isoperimetric inequality for the first eigenvalue of a boundary value problem, SIAM J. Math. Anal., Volume 8 (1977) no. 2, pp. 280-287 | DOI | MR | Zbl
[6] Introduction to quantum graphs, Mathematical Surveys and Monographs, 186, American Mathematical Society, 2013, xiv+270 pages | MR | Zbl
[7] Spectral theory of selfadjoint operators in Hilbert space, Mathematics and its Applications (Soviet Series), Kluwer Academic Publishers, 1987, xv+301 pages | MR
[8] Asymptotics for the low-lying eigenstates of the Schrödinger operator with magnetic field near corners, Ann. Henri Poincaré, Volume 7 (2006) no. 5, pp. 899-931 | DOI | MR | Zbl
[9] Eigenvalue counting function for Robin Laplacians on conical domains, J. Geom. Anal., Volume 28 (2018) no. 1, pp. 123-151 | DOI | MR | Zbl
[10] On the negative spectrum of the Robin Laplacian in corner domains, Anal. PDE, Volume 9 (2016) no. 5, pp. 1259-1283 | DOI | MR
[11] A Sharp estimate for the first Robin–Laplacian eigenvalue with negative boundary parameter, Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Nat., IX. Ser., Rend. Lincei, Mat. Appl., Volume 30 (2019) no. 4, pp. 665-676 | DOI | MR | Zbl
[12] The Robin problem, Shape optimization and spectral theory, Walter de Gruyter, 2017, pp. 78-119 | DOI | MR | Zbl
[13] On the asymptotics of a Robin eigenvalue problem, C. R. Math. Acad. Sci. Paris, Volume 351 (2013) no. 13-14, pp. 517-521 | DOI | MR | Zbl
[14] The behavior of the principal eigenvalue of a mixed elliptic problem with respect to a parameter, J. Math. Anal. Appl., Volume 377 (2011) no. 1, pp. 53-69 | DOI | MR | Zbl
[15] On the asymptotic behaviour of the eigenvalues of a Robin problem, Differ. Integral Equ., Volume 23 (2010) no. 7-8, pp. 659-669 | MR | Zbl
[16] Spectral asymptotics in the semi-classical limit, London Mathematical Society Lecture Note Series, 268, Cambridge University Press, 1999 | MR | Zbl
[17] Curvature-induced bound states in Robin waveguides and their asymptotical properties, J. Math. Phys., Volume 55 (2014) no. 12, 122101, 19 pages | DOI | MR | Zbl
[18] Asymptotic eigenvalue estimates for a Robin problem with a large parameter, Port. Math., Volume 71 (2014) no. 2, pp. 141-156 | DOI | MR | Zbl
[19] Convergence of spectra of graph-like thin manifolds, J. Geom. Phys., Volume 54 (2005) no. 1, pp. 77-115 | DOI | MR | Zbl
[20] On a conjectured reverse Faber-Krahn inequality for a Steklov-type Laplacian eigenvalue, Commun. Pure Appl. Anal., Volume 14 (2015) no. 1, pp. 63-82 | DOI | MR | Zbl
[21] On the maximal mean curvature of a smooth surface, C. R. Math. Acad. Sci. Paris, Volume 354 (2016) no. 9, pp. 891-895 | DOI | MR | Zbl
[22] Estimates of eigenvalues of a boundary value problem with a parameter, Math. Commun., Volume 19 (2014) no. 3, pp. 531-543 | MR | Zbl
[23] The first Robin eigenvalue with negative boundary parameter, Adv. Math., Volume 280 (2015), pp. 322-339 | DOI | MR | Zbl
[24] Eigenvalue estimates and critical temperature in zero fields for enhanced surface superconductivity, Z. Angew. Math. Phys., Volume 58 (2007) no. 2, pp. 224-245 | DOI | MR | Zbl
[25] Bounds and monotonicity for the generalized Robin problem, Z. Angew. Math. Phys., Volume 59 (2008) no. 4, pp. 600-618 | DOI | MR | Zbl
[26] Spectra of graph neighborhoods and scattering, Proc. Lond. Math. Soc., Volume 97 (2008) no. 3, pp. 718-752 | DOI | MR | Zbl
[27] Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, 24, Pitman Advanced Publishing Program, 1985, xiv+410 pages | MR | Zbl
[28] Théorie spectrale de quelques variétés à bouts, Ann. Sci. Éc. Norm. Supér., Volume 22 (1989) no. 1, pp. 137-160 | DOI | Numdam | MR | Zbl
[29] Semi-classical analysis for the Schrödinger operator and applications, Lecture Notes in Mathematics, 1336, Springer, 1988, vi+107 pages | DOI | MR | Zbl
[30] Eigenvalues for the Robin Laplacian in domains with variable curvature, Trans. Am. Math. Soc., Volume 369 (2017) no. 5, pp. 3253-3287 | DOI | MR | Zbl
[31] Tunneling for the Robin Laplacian in smooth planar domains, Commun. Contemp. Math., Volume 19 (2017) no. 1, 1650030, 38 pages | DOI | MR | Zbl
[32] Tunneling between corners for Robin Laplacians, J. Lond. Math. Soc., Volume 91 (2015) no. 1, pp. 225-248 | DOI | MR | Zbl
[33] Multiple wells in the semiclassical limit. I, Commun. Partial Differ. Equations, Volume 9 (1984) no. 4, pp. 337-408 | DOI | MR
[34] Spectral asymptotics for Dirichlet to Neumann operator (2018) | arXiv
[35] Weyl formulae for the Robin Laplacian in the semiclassical limit, Confluentes Math., Volume 8 (2016) no. 2, pp. 39-57 | DOI | Numdam | MR | Zbl
[36] Spectral asymptotics for Robin Laplacians on polygonal domains, J. Math. Anal. Appl., Volume 461 (2018) no. 2, pp. 1498-1543 | DOI | MR | Zbl
[37] Eigenvalues of Robin Laplacians in infinite sectors, Math. Nachr., Volume 291 (2018) no. 5-6, pp. 928-965 | DOI | MR | Zbl
[38] On the -Laplacian with Robin boundary conditions and boundary trace theorems, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 2, 49, 29 pages | DOI | MR | Zbl
[39] Robin eigenvalues on domains with peaks, J. Differ. Equations, Volume 267 (2019) no. 3, pp. 1600-1630 | DOI | MR | Zbl
[40] Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, II: non-convex domains and higher dimensions (2017) | arXiv | Zbl
[41] Optimisation of the lowest Robin eigenvalue in the exterior of a compact set, J. Convex Anal., Volume 25 (2018) no. 1, pp. 319-337 | MR | Zbl
[42] Multidimensional reaction diffusion equations with nonlinear boundary conditions, SIAM J. Appl. Math., Volume 58 (1998) no. 5, pp. 1622-1647 | DOI | MR | Zbl
[43] On the principal eigenvalue of a Robin problem with a large parameter, Math. Nachr., Volume 281 (2008) no. 2, pp. 272-281 | DOI | MR | Zbl
[44] Sloshing, Steklov and corners I: Asymptotics of sloshing eigenvalues. (2017) | arXiv
[45] A singularly perturbed linear eigenvalue problem in domains, Pac. J. Math., Volume 214 (2004) no. 2, pp. 323-334 | DOI | MR | Zbl
[46] Eigenstructure of the equilateral triangle. IV. The absorbing boundary, Int. J. Pure Appl. Math., Volume 37 (2007) no. 3, pp. 395-422 | MR | Zbl
[47] Laplacian eigenstructure of the equilateral triangle, Hikari Ltd., 2011, x+200 pages | MR | Zbl
[48] Scattering solutions in networks of thin fibers: small diameter asymptotics, Commun. Math. Phys., Volume 273 (2007) no. 2, pp. 533-559 | DOI | MR | Zbl
[49] Bounded solutions in a T-shaped waveguide and the spectral properties of the Dirichlet ladder, Comput. Math. Math. Phys., Volume 54 (2014) no. 8, pp. 1261-1279 | DOI | MR | Zbl
[50] The spectra of rectangular lattices of quantum waveguides, Izv. Math., Volume 81 (2017), pp. 29-90 | DOI | Zbl
[51] Asymptotics of the spectrum of the Dirichlet Laplacian on a thin carbon nano-structure, C. R. Méc. Acad. Sci. Paris, Volume 343 (2015), pp. 360-364
[52] On the asymptotics of the principal eigenvalue for a Robin problem with a large parameter in planar domains, Nanosyst. Phys. Chem. Math., Volume 4 (2013), pp. 474-483 | Zbl
[53] On the Robin eigenvalues of the Laplacian in the exterior of a convex polygon, Nanosyst. Phys. Chem. Math., Volume 6 (2015), pp. 46-56 | DOI
[54] On the discrete spectrum of Robin Laplacians in conical domains, Math. Model. Nat. Phenom., Volume 11 (2016) no. 2, pp. 100-110 | DOI | MR | Zbl
[55] Eigenvalue inequalities and absence of threshold resonances for waveguide junctions, J. Math. Anal. Appl., Volume 449 (2017) no. 1, pp. 907-925 | DOI | MR | Zbl
[56] Mean curvature bounds and eigenvalues of Robin Laplacians, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 2, pp. 1947-1961 | DOI | MR | Zbl
[57] An effective Hamiltonian for the eigenvalue asymptotics of the Robin Laplacian with a large parameter, J. Math. Pures Appl., Volume 106 (2016) no. 4, pp. 615-650 | DOI | MR | Zbl
[58] Branched quantum wave guides with Dirichlet boundary conditions: the decoupling case, J. Phys. A, Math. Gen., Volume 38 (2005) no. 22, pp. 4917-4931 | DOI | MR | Zbl
[59] Spectral analysis on graph-like spaces, Lecture Notes in Mathematics, 2039, Springer, 2012, xvi+431 pages | DOI | MR | Zbl
[60] Methods of modern mathematical physics. IV. Analysis of operators, Academic Press Inc., 1978, xv+396 pages | MR | Zbl
[61] Optimal eigenvalue estimates for the Robin Laplacian on Riemannian manifolds (2019) | arXiv | Zbl
[62] Some remarks on Robin-Laplacian eigenvalues, Rend. Accad. Sci. Fis. Mat., Napoli, Volume 84 (2017), pp. 87-96
Cité par Sources :