Nous montrons la diffusion pour une équation de Schrödinger non linéaire défocalisante avec une somme de deux potentiels répulsifs dont les surfaces de niveau sont strictement convexes. Il s’agit d’un résultat dans une géométrie captante similaire à l’extérieur de deux obstacles strictement convexes.
We prove the scattering for a defocusing nonlinear Schrödinger equation with a sum of two repulsive potentials with strictly convex level surfaces, thus providing a scattering result in a trapped setting similar to the exterior of two strictly convex obstacles.
Révisé le :
Accepté le :
Publié le :
Keywords: nonlinear Schrödinger equation, scattering, trapped trajectories, Morawetz estimates, concentration-compactness/rigidity
Mot clés : équation de Schrödinger non linéaire, diffusion, trajectoires captées, estimées de Morawetz, concentration-compacité/rigidité
Lafontaine, David 1
@article{AIF_2020__70_5_1847_0, author = {Lafontaine, David}, title = {Scattering for {NLS} with a sum of two repulsive potentials}, journal = {Annales de l'Institut Fourier}, pages = {1847--1869}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {70}, number = {5}, year = {2020}, doi = {10.5802/aif.3385}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3385/} }
TY - JOUR AU - Lafontaine, David TI - Scattering for NLS with a sum of two repulsive potentials JO - Annales de l'Institut Fourier PY - 2020 SP - 1847 EP - 1869 VL - 70 IS - 5 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3385/ DO - 10.5802/aif.3385 LA - en ID - AIF_2020__70_5_1847_0 ER -
%0 Journal Article %A Lafontaine, David %T Scattering for NLS with a sum of two repulsive potentials %J Annales de l'Institut Fourier %D 2020 %P 1847-1869 %V 70 %N 5 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3385/ %R 10.5802/aif.3385 %G en %F AIF_2020__70_5_1847_0
Lafontaine, David. Scattering for NLS with a sum of two repulsive potentials. Annales de l'Institut Fourier, Tome 70 (2020) no. 5, pp. 1847-1869. doi : 10.5802/aif.3385. https://aif.centre-mersenne.org/articles/10.5802/aif.3385/
[1] Scattering for NLS with a delta potential, J. Differ. Equations, Volume 260 (2016) no. 5, pp. 4410-4439 | DOI | MR
[2] On semi-classical limit of nonlinear quantum scattering, Ann. Sci. Éc. Norm. Supér., Volume 49 (2016) no. 3, pp. 711-756 | DOI | MR
[3] Rapidly decaying solutions of the nonlinear Schrödinger equation, Commun. Math. Phys., Volume 147 (1992) no. 1, pp. 75-100 | DOI | MR | Zbl
[4] Double scattering channels for NLS in the energy space and its generalization to higher dimensions, J. Differ. Equations, Volume 264 (2018) no. 2, pp. 929-958 | DOI | MR | Zbl
[5] Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., Volume 2 (2005) no. 1, pp. 1-24 | DOI | MR | Zbl
[6] Dispersive estimates for Schrödinger operators in dimensions one and three, Commun. Math. Phys., Volume 251 (2004) no. 1, pp. 157-178 | DOI | MR | Zbl
[7] Scattering for a nonlinear Schrödinger equation with a potential, Commun. Pure Appl. Anal., Volume 15 (2016) no. 5, pp. 1571-1601 | DOI | MR | Zbl
[8] On the energy critical Schrödinger equation in non-trapping domains, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 27 (2010) no. 5, pp. 1153-1177 | DOI | Numdam | MR
[9] Endpoint Strichartz estimates, Am. J. Math., Volume 120 (1998) no. 5, pp. 955-980 | DOI | MR
[10] Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. Math., Volume 166 (2006) no. 3, pp. 645-675 | DOI | MR
[11] Scattering for NLS with a potential on the line, Asymptotic Anal., Volume 100 (2016) no. 1-2, pp. 21-39 | DOI | MR
[12] About the wave equation outside two strictly convex obstacles (2017) (https://arxiv.org/abs/1711.09734)
[13] Scattering for critical nonlinear waves outside some strictly convex obstacles (Work in progress)
[14] Energy scattering for nonlinear Klein–Gordon and Schrödinger equations in spatial dimensions and , J. Funct. Anal., Volume 169 (1999) no. 1, pp. 201-225 | DOI | MR
[15] Bilinear virial identities and applications, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 2, pp. 261-290 | DOI | Numdam | MR
[16] Scattering for solutions of NLS in the exterior of a 2D star-shaped obstacle, Math. Res. Lett., Volume 19 (2012) no. 4, pp. 887-897 | DOI | MR
Cité par Sources :