On the Lipman–Zariski conjecture for logarithmic vector fields on log canonical pairs
[Sur la conjecture de Lipman-Zarisiki pour les champs de vecteurs logarithmiques sur les paires log-canoniques]
Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 407-446.

Nous considérons une version de la conjecture de Lipman–Zariski pour des champs de vecteurs logarithmiques et des 1-formes logarithmiques. Soit (X,D) une paire, où X est une variété complexe normale et D est un diviseur de Weil effectif, tels que le faisceau des champs de vecteurs logarithmiques (ou de façon duale le faisceau des 1-formes logarithmiques réflexives) est localement libre. Nous démontrons le suivant dans ce cas : si (X,D) est dlt, alors X est nécessairement lisse et D est snc. Si (X,D) est lc ou si les 1-formes logarithmiques sont engendrées localement par des formes fermées, alors la paire (X,D) est toroïdale.

We consider a version of the Lipman–Zariski conjecture for logarithmic vector fields and logarithmic 1-forms on pairs. Let (X,D) be a pair consisting of a normal complex variety X and an effective Weil divisor D such that the sheaf of logarithmic vector fields (or dually the sheaf of reflexive logarithmic 1-forms) is locally free. We prove that in this case the following holds: if (X,D) is dlt, then X is necessarily smooth and D is snc. If (X,D) is lc or the logarithmic 1-forms are locally generated by closed forms, then the pair (X,D) is toroidal.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/aif.3366
Classification : 14B05, 32M05, 32M25, 32S05
Keywords: Lipman–Zariski conjecture, logarithmic vector fields, logarithmic 1-forms, toroidal varieties
Mot clés : conjecture de Lipman–Zariski, champs de vecteurs logarithmiques, 1-formes logarithmiques, variétés toroïdales
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{AIF_2021__71_1_407_0,
     author = {Bergner, Hannah},
     title = {On the {Lipman{\textendash}Zariski} conjecture for logarithmic vector fields on log canonical pairs},
     journal = {Annales de l'Institut Fourier},
     pages = {407--446},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {71},
     number = {1},
     year = {2021},
     doi = {10.5802/aif.3366},
     language = {en},
     url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3366/}
}
TY  - JOUR
AU  - Bergner, Hannah
TI  - On the Lipman–Zariski conjecture for logarithmic vector fields on log canonical pairs
JO  - Annales de l'Institut Fourier
PY  - 2021
SP  - 407
EP  - 446
VL  - 71
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - https://aif.centre-mersenne.org/articles/10.5802/aif.3366/
DO  - 10.5802/aif.3366
LA  - en
ID  - AIF_2021__71_1_407_0
ER  - 
%0 Journal Article
%A Bergner, Hannah
%T On the Lipman–Zariski conjecture for logarithmic vector fields on log canonical pairs
%J Annales de l'Institut Fourier
%D 2021
%P 407-446
%V 71
%N 1
%I Association des Annales de l’institut Fourier
%U https://aif.centre-mersenne.org/articles/10.5802/aif.3366/
%R 10.5802/aif.3366
%G en
%F AIF_2021__71_1_407_0
Bergner, Hannah. On the Lipman–Zariski conjecture for logarithmic vector fields on log canonical pairs. Annales de l'Institut Fourier, Tome 71 (2021) no. 1, pp. 407-446. doi : 10.5802/aif.3366. https://aif.centre-mersenne.org/articles/10.5802/aif.3366/

[1] Arnol’d, Vladimir I. Geometrical methods in the theory of ordinary differential equations, Grundlehren der Mathematischen Wissenschaften, 250, Springer, 1988 (Translated from the Russian by J. Szücs) | DOI | MR | Zbl

[2] Druel, Stéphane The Zariski–Lipman conjecture for log canonical spaces, Bull. Lond. Math. Soc., Volume 46 (2014) no. 4, pp. 827-835 | DOI | MR | Zbl

[3] Faber, Eleonore Characterizing normal crossing hypersurfaces, Math. Ann., Volume 361 (2015) no. 3-4, pp. 995-1020 | DOI | MR | Zbl

[4] Fischer, Gerd Complex analytic geometry, Lecture Notes in Mathematics, 538, Springer, 1976 | MR | Zbl

[5] Graf, Patrick Bogomolov–Sommese vanishing on log canonical pairs, J. Reine Angew. Math., Volume 702 (2015), pp. 109-142 | DOI | MR | Zbl

[6] Graf, Patrick; Kovács, Sándor J. An optimal extension theorem for 1-forms and the Lipman–Zariski conjecture, Doc. Math., Volume 19 (2014), pp. 815-830 | MR | Zbl

[7] Graf, Patrick; Kovács, Sándor J. Potentially Du Bois spaces, J. Singul., Volume 8 (2014), pp. 117-134 | MR | Zbl

[8] Granger, Michel; Schulze, Mathias Normal crossing properties of complex hypersurfaces via logarithmic residues, Compos. Math., Volume 150 (2014) no. 9, pp. 1607-1622 | DOI | MR | Zbl

[9] Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J. Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties, Compos. Math., Volume 146 (2010) no. 1, pp. 193-219 | DOI | MR | Zbl

[10] Greb, Daniel; Kebekus, Stefan; Kovács, Sándor J.; Peternell, Thomas Differential forms on log canonical spaces, Publ. Math., Inst. Hautes Étud. Sci. (2011) no. 114, pp. 87-169 | DOI | Numdam | MR | Zbl

[11] Guenancia, Henri Semistability of the tangent sheaf of singular varieties, Algebr. Geom., Volume 3 (2016) no. 5, pp. 508-542 | DOI | MR | Zbl

[12] Heinzner, Peter Geometric invariant theory on Stein spaces, Math. Ann., Volume 289 (1991) no. 4, pp. 631-662 | DOI | MR | Zbl

[13] Jörder, Clemens A weak version of the Lipman–Zariski conjecture, Math. Z., Volume 278 (2014) no. 3-4, pp. 893-899 | DOI | MR | Zbl

[14] Kaup, Wilhelm Infinitesimale Transformationsgruppen komplexer Räume, Math. Ann., Volume 160 (1965), pp. 72-92 | DOI | MR | Zbl

[15] Kollár, János Singularities of pairs, Algebraic geometry–Santa Cruz 1995 (Proceedings of Symposia in Pure Mathematics), Volume 62, American Mathematical Society, 1997, pp. 221-287 | DOI | MR | Zbl

[16] Kollár, János Lectures on resolution of singularities, Annals of Mathematics Studies, 166, Princeton University Press, 2007 | MR | Zbl

[17] Kollár, János Singularities of the minimal model program, Cambridge Tracts in Mathematics, 200, Cambridge University Press, 2013 (With the collaboration of S. Kovács) | DOI | MR | Zbl

[18] Kollár, János; Mori, Shigefumi Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998 (With the collaboration of C. H. Clemens and A. Corti, translated from the 1998 Japanese original) | DOI | MR | Zbl

[19] Lipman, Joseph Free derivation modules on algebraic varieties, Am. J. Math., Volume 87 (1965), pp. 874-898 | DOI | MR | Zbl

[20] Noguchi, Junjiro; Winkelmann, Jörg Nevanlinna theory in several complex variables and Diophantine approximation, Grundlehren der Mathematischen Wissenschaften, 350, Springer, 2014 | DOI | MR | Zbl

[21] Oda, Tadao Convex bodies and algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 15, Springer, 1988 (An introduction to the theory of toric varieties, Translated from the Japanese) | MR | Zbl

[22] Saito, Kyoji Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 27 (1980) no. 2, pp. 265-291 | MR | Zbl

[23] Snow, Dennis M. Reductive group actions on Stein spaces, Math. Ann., Volume 259 (1982) no. 1, pp. 79-97 | DOI | MR | Zbl

[24] Winkelmann, Jörg On manifolds with trivial logarithmic tangent bundle, Osaka J. Math., Volume 41 (2004) no. 2, pp. 473-484 | MR | Zbl

Cité par Sources :