On reduction of moduli schemes of abelian varieties with definite quaternion multiplications
[Sur la réduction des schémas de modules de variétés abéliennes à multiplication quaternionique définie]
Annales de l'Institut Fourier, Online first, 75 p.

Dans cet article, nous faisons une étude initiale sur les espaces de modules de type D en caractéristique positive p2, où le nombre premier p peut être ramifié dans la donnée définissant l’espace de modules. Nous classifions explicitement les classes d’isogénie des groupes p-divisibles avec structures supplémentaires en question. Nous étudions également la réduction des espaces de modules de type D de rang minimal.

In this paper we make an initial study on type D moduli spaces in positive characteristic p2, where we allow the prime p to ramify in the defining datum. We classify explicitly the isogeny classes of p-divisible groups with additional structures in question. We also study the reduction of the type D moduli spaces of minimal rank.

Reçu le :
Révisé le :
Accepté le :
Première publication :
DOI : https://doi.org/10.5802/aif.3349
Classification : 14G35,  11G18
Mots clés : variétés de Shimura de type D, mauvaise réduction, isocristaux
@unpublished{AIF_0__0_0_A50_0,
     author = {Yu, Chia-Fu},
     title = {On reduction of moduli schemes of abelian varieties with definite quaternion multiplications},
     journal = {Annales de l'Institut Fourier},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     year = {2021},
     doi = {10.5802/aif.3349},
     language = {en},
     note = {Online first},
}
Yu, Chia-Fu. On reduction of moduli schemes of abelian varieties with definite quaternion multiplications. Annales de l'Institut Fourier, Online first, 75 p.

[1] Artin, Michael; Winters, Gayn B. Degenerate fibres and stable reduction of curves, Topology, Volume 10 (1971), pp. 373-383 | Zbl 0196.24403

[2] Faltings, Gerd Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983) no. 3, pp. 349-366 | Zbl 0588.14026

[3] Görtz, Ulrich Topological flatness of local models in the ramified case, Math. Z., Volume 250 (2005) no. 4, pp. 775-790 | Zbl 1085.14022

[4] Grothendieck, Alexander Groupes de Barsotti–Tate et Cristaux de Dieudonné, Séminaire de Mathématiques Supérieures, 45, Les Presses de l’Université de Montréal, 1974 | Zbl 0331.14021

[5] Grothendieck, Alexander; Raynaud, Michèle; Rim, Dock Sang Groupes de monodromie en géometrie algébrique I, Lecture Notes in Mathematics, 288, Springer, 1972, pp. 1967-1969 | Zbl 0237.00013

[6] Hartwig, Philippe Kottwitz–Rapoport and p-rank strata in the reduction of Shimura varieties of PEL type, Ann. Inst. Fourier, Volume 65 (2015) no. 3, pp. 1031-1103 | Zbl 1345.14032

[7] He, Xuhua; Rapoport, Michael Stratifications in the reduction of Shimura varieties, Manuscr. Math., Volume 152 (2017) no. 3-4, pp. 317-343 | Zbl 1432.14023

[8] Helgason, Siguldur Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001 | Zbl 0993.53002

[9] Katsura, Toshiyuki; Oort, Frans Families of supersingular abelian surfaces, Compos. Math., Volume 62 (1987) no. 2, pp. 107-167 | Zbl 0636.14017

[10] Kottwitz, Robert E. Isocrystals with additional structure, Compos. Math., Volume 56 (1985) no. 3, pp. 201-220 | Zbl 0597.20038

[11] Kottwitz, Robert E. Points on some Shimura varieties over finite fields, J. Am. Math. Soc., Volume 5 (1992) no. 2, pp. 373-444 | Zbl 0796.14014

[12] Kottwitz, Robert E. Isocrystals with additional structure. II, Compos. Math., Volume 109 (1997) no. 3, pp. 255-339 | Zbl 0966.20022

[13] Manin, Yu I. The theory of commutative formal groups over fields of finite characteristic, Russ. Math. Surv., Volume 18 (1963) no. 6, pp. 1-83 | Zbl 0128.15603

[14] Messing, William The crystals associated to Barsotti–Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, 264, Springer, 1972 | Zbl 0243.14013

[15] Moonen, Ben Group schemes with additional structures and Weyl group cosets, Moduli of Abelian Varieties (Faber, Carel; van der Geer, Gerard; Oort, Frans, eds.) (Progress in Mathematics), Volume 195, Birkhäuser, 2001, pp. 255-298 | Zbl 1084.14523

[16] Moonen, Ben A dimension formula for Ekedahl-Oort strata, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 666-698 | Zbl 1062.14033

[17] Moonen, Ben Serre-Tate Theory for Moduli Spaces of PEL Type, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 2, pp. 223-269 | Zbl 1107.11028

[18] Moret-Bailly, Laurent Familles de courbes et de variétés abéliennes sur P 1 . I. Descente des polarisations. II. Exemples, Séminaire sur les pinceaux de courbes de genre au moins deux (Szpiro, L., ed.) (Astérisque), Volume 86, Société Mathématique de France, 1981, pp. 109-140 | Zbl 0515.14007;0515.14006

[19] Norman, Peter; Oort, Frans Moduli of abelian varieties, Ann. Math., Volume 112 (1980) no. 3, pp. 413-439 | Zbl 0483.14010

[20] O’Meara, O. Timothy Introduction to quadratic forms, Classics in Mathematics, Springer, 2000 | Zbl 1034.11003

[21] Oort, Frans Finite group schemes, local moduli for abelian varieties, and lifting problems, Compos. Math., Volume 23 (1971), pp. 265-296 | Zbl 0223.14024

[22] Oort, Frans The isogeny class of a CM-type abelian variety is defined over a finite extension of the prime field, J. Pure Appl. Algebra, Volume 3 (1973), pp. 399-408 | Zbl 0272.14009

[23] Pappas, Georgios On the arithmetic moduli schemes of PEL Shimura varieties, J. Algebr. Geom., Volume 9 (2000) no. 3, pp. 577-605 | Zbl 0978.14023

[24] Pappas, Georgios; Rapoport, Michael Local models in the ramified case I. The EL-case, J. Algebr. Geom., Volume 12 (2003) no. 1, pp. 107-145 | Zbl 1063.14029

[25] Pappas, Georgios; Rapoport, Michael Local models in the ramified case. III. Unitary groups, J. Inst. Math. Jussieu, Volume 8 (2009) no. 3, pp. 507-564 | Zbl 1185.14018

[26] Pappas, Georgios; Zhu, Xinwen Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math., Volume 194 (2013) no. 1, pp. 147-254 | Zbl 1294.14012

[27] Rapoport, Michael; Richartz, Melanie On the classification and specialization of F-isocrystals with additional structure, Compos. Math., Volume 103 (1996) no. 2, pp. 153-181 | Zbl 0874.14008

[28] Rapoport, Michael; Viehmann, Eva Towards a theory of local Shimura varieties, Münster J. Math., Volume 7 (2014) no. 1, pp. 273-326 | Zbl 1378.11070

[29] Rapoport, Michael; Zink, Thomas Period Spaces for p-divisible groups, Annals of Mathematics Studies, 141, Princeton University Press, 1996 | Zbl 0873.14039

[30] Smithling, Brian D. Admissibility and permissibility for minuscule cocharacters in orthogonal groups, Manuscr. Math., Volume 136 (2011) no. 3-4, pp. 295-314 | Zbl 1229.05290

[31] Smithling, Brian D. Topological flatness of orthogonal local models in the split, even case. I, Math. Ann., Volume 350 (2011) no. 2, pp. 381-416 | Zbl 1232.14015

[32] Tsukamoto, T. On the local theory of quaternionic anti-hermitian forms, J. Math. Soc. Japan, Volume 13 (1961), pp. 387-400 | Zbl 0201.37101

[33] Vasiu, Adrian Integral models in unramified mixed characteristic (0,2) of Hermitian orthogonal Shimura varieties of PEL type. Part I, J. Ramanujan Math. Soc., Volume 27 (2012) no. 4, pp. 425-477 | Zbl 1357.11062

[34] Vasiu, Adrian Integral models in unramified mixed characteristic (0,2) of hermitian orthogonal Shimura varieties of PEL type. Part II, Math. Nachr., Volume 287 (2014) no. 14-15, pp. 1756-1773 | Zbl 1305.11056

[35] Vollaard, Inken On the Hilbert–Blumenthal moduli problem, J. Inst. Math. Jussieu, Volume 4 (2005) no. 4, pp. 653-683 | Zbl 1087.14022

[36] Wedhorn, Torsten Ordinariness in good reductions of Shimura varieties of PEL-type, Ann. Sci. Éc. Norm. Supér., Volume 32 (1999) no. 5, pp. 575-618 | Zbl 0983.14024

[37] Wedhorn, Torsten The dimension of Oort strata of Shimura varieties of PEL-type, Moduli of Abelian Varieties (Faber, Carel; van der Geer, Gerard; Oort, Frans, eds.) (Progress in Mathematics), Volume 195, Birkhäuser, 2001, pp. 441-471 | Zbl 1052.14026

[38] Yu, Chia-Fu Lifting abelian varieties with additional structures, Math. Z., Volume 242 (2002) no. 3, pp. 427-441 | Zbl 1051.14052

[39] Yu, Chia-Fu On reduction of Hilbert-Blumenthal varieties, Ann. Inst. Fourier, Volume 53 (2003) no. 7, pp. 2105-2154 | Zbl 1117.14027

[40] Yu, Chia-Fu The isomorphism classes of abelian varieties of CM-type, J. Pure Appl. Algebra, Volume 187 (2004) no. 1-3, pp. 305-319 | Zbl 1087.14030

[41] Yu, Chia-Fu On the mass formula of supersingular abelian varieties with real multiplications, J. Aust. Math. Soc., Volume 78 (2005) no. 3, pp. 373-392 | Zbl 1137.11323

[42] Yu, Chia-Fu An exact geometric mass formula, Int. Math. Res. Not., Volume 2008 (2008) no. 11, rnn113, 11 pages | Zbl 1213.11129

[43] Yu, Chia-Fu On finiteness of endomorphism rings of abelian varieties, Math. Res. Lett., Volume 17 (2010) no. 2, pp. 357-370 | Zbl 1231.14037

[44] Yu, Chia-Fu Simple mass formulas on Shimura varieties of PEL-type, Forum Math., Volume 22 (2010) no. 3, pp. 565-582 | Zbl 1257.11059

[45] Yu, Chia-Fu Embeddings of fields into simple algebras: generalizations and applications, J. Algebra, Volume 368 (2012), pp. 1-20 | Zbl 1270.11120

[46] Zarhin, Ju. G. Isogenies of abelian varieties over fields of finite characteristics, Math. USSR, Sb., Volume 24 (1974) no. 3, pp. 451-461

[47] Zink, Thomas Cartiertheorie kommutativer formaler Gruppen. Unter Mitarb. von Harry Reimann, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 68, Teubner, 1984, 124 pages | Zbl 0578.14039