Dans cet article, nous faisons une étude initiale sur les espaces de modules de type D en caractéristique positive , où le nombre premier peut être ramifié dans la donnée définissant l’espace de modules. Nous classifions explicitement les classes d’isogénie des groupes -divisibles avec structures supplémentaires en question. Nous étudions également la réduction des espaces de modules de type D de rang minimal.
In this paper we make an initial study on type D moduli spaces in positive characteristic , where we allow the prime to ramify in the defining datum. We classify explicitly the isogeny classes of -divisible groups with additional structures in question. We also study the reduction of the type D moduli spaces of minimal rank.
Révisé le :
Accepté le :
Publié le :
Keywords: Shimura varieties of type D, bad reduction, isocrystals
Mot clés : variétés de Shimura de type D, mauvaise réduction, isocristaux
Yu, Chia-Fu 1
@article{AIF_2021__71_2_539_0, author = {Yu, Chia-Fu}, title = {On reduction of moduli schemes of abelian varieties with definite quaternion multiplications}, journal = {Annales de l'Institut Fourier}, pages = {539--613}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {71}, number = {2}, year = {2021}, doi = {10.5802/aif.3349}, language = {en}, url = {https://aif.centre-mersenne.org/articles/10.5802/aif.3349/} }
TY - JOUR AU - Yu, Chia-Fu TI - On reduction of moduli schemes of abelian varieties with definite quaternion multiplications JO - Annales de l'Institut Fourier PY - 2021 SP - 539 EP - 613 VL - 71 IS - 2 PB - Association des Annales de l’institut Fourier UR - https://aif.centre-mersenne.org/articles/10.5802/aif.3349/ DO - 10.5802/aif.3349 LA - en ID - AIF_2021__71_2_539_0 ER -
%0 Journal Article %A Yu, Chia-Fu %T On reduction of moduli schemes of abelian varieties with definite quaternion multiplications %J Annales de l'Institut Fourier %D 2021 %P 539-613 %V 71 %N 2 %I Association des Annales de l’institut Fourier %U https://aif.centre-mersenne.org/articles/10.5802/aif.3349/ %R 10.5802/aif.3349 %G en %F AIF_2021__71_2_539_0
Yu, Chia-Fu. On reduction of moduli schemes of abelian varieties with definite quaternion multiplications. Annales de l'Institut Fourier, Tome 71 (2021) no. 2, pp. 539-613. doi : 10.5802/aif.3349. https://aif.centre-mersenne.org/articles/10.5802/aif.3349/
[1] Degenerate fibres and stable reduction of curves, Topology, Volume 10 (1971), pp. 373-383 | DOI | MR | Zbl
[2] Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math., Volume 73 (1983) no. 3, pp. 349-366 | DOI | Zbl
[3] Topological flatness of local models in the ramified case, Math. Z., Volume 250 (2005) no. 4, pp. 775-790 | DOI | MR | Zbl
[4] Groupes de Barsotti–Tate et Cristaux de Dieudonné, Séminaire de Mathématiques Supérieures, 45, Les Presses de l’Université de Montréal, 1974 | Zbl
[5] Groupes de monodromie en géometrie algébrique I, Lecture Notes in Mathematics, 288, Springer, 1972, pp. 1967-1969 | Zbl
[6] Kottwitz–Rapoport and p-rank strata in the reduction of Shimura varieties of PEL type, Ann. Inst. Fourier, Volume 65 (2015) no. 3, pp. 1031-1103 | DOI | Numdam | MR | Zbl
[7] Stratifications in the reduction of Shimura varieties, Manuscr. Math., Volume 152 (2017) no. 3-4, pp. 317-343 | MR | Zbl
[8] Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001 | Zbl
[9] Families of supersingular abelian surfaces, Compos. Math., Volume 62 (1987) no. 2, pp. 107-167 | Numdam | MR | Zbl
[10] Isocrystals with additional structure, Compos. Math., Volume 56 (1985) no. 3, pp. 201-220 | Numdam | MR | Zbl
[11] Points on some Shimura varieties over finite fields, J. Am. Math. Soc., Volume 5 (1992) no. 2, pp. 373-444 | DOI | MR | Zbl
[12] Isocrystals with additional structure. II, Compos. Math., Volume 109 (1997) no. 3, pp. 255-339 | DOI | MR | Zbl
[13] The theory of commutative formal groups over fields of finite characteristic, Russ. Math. Surv., Volume 18 (1963) no. 6, pp. 1-83 | DOI | MR | Zbl
[14] The crystals associated to Barsotti–Tate groups: with applications to abelian schemes, Lecture Notes in Mathematics, 264, Springer, 1972 | Zbl
[15] Group schemes with additional structures and Weyl group cosets, Moduli of Abelian Varieties (Faber, Carel; van der Geer, Gerard; Oort, Frans, eds.) (Progress in Mathematics), Volume 195, Birkhäuser, 2001, pp. 255-298 | DOI | MR | Zbl
[16] A dimension formula for Ekedahl-Oort strata, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 666-698 | DOI | Numdam | MR | Zbl
[17] Serre-Tate Theory for Moduli Spaces of PEL Type, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 2, pp. 223-269 | DOI | Numdam | MR | Zbl
[18] Familles de courbes et de variétés abéliennes sur . I. Descente des polarisations. II. Exemples, Séminaire sur les pinceaux de courbes de genre au moins deux (Szpiro, L., ed.) (Astérisque), Volume 86, Société Mathématique de France, 1981, pp. 109-140
[19] Moduli of abelian varieties, Ann. Math., Volume 112 (1980) no. 3, pp. 413-439 | DOI | MR | Zbl
[20] Introduction to quadratic forms, Classics in Mathematics, Springer, 2000 | MR | Zbl
[21] Finite group schemes, local moduli for abelian varieties, and lifting problems, Compos. Math., Volume 23 (1971), pp. 265-296 | Numdam | MR | Zbl
[22] The isogeny class of a CM-type abelian variety is defined over a finite extension of the prime field, J. Pure Appl. Algebra, Volume 3 (1973), pp. 399-408 | DOI | MR | Zbl
[23] On the arithmetic moduli schemes of PEL Shimura varieties, J. Algebr. Geom., Volume 9 (2000) no. 3, pp. 577-605 | MR | Zbl
[24] Local models in the ramified case I. The EL-case, J. Algebr. Geom., Volume 12 (2003) no. 1, pp. 107-145 | DOI | MR | Zbl
[25] Local models in the ramified case. III. Unitary groups, J. Inst. Math. Jussieu, Volume 8 (2009) no. 3, pp. 507-564 | DOI | MR | Zbl
[26] Local models of Shimura varieties and a conjecture of Kottwitz, Invent. Math., Volume 194 (2013) no. 1, pp. 147-254 | DOI | MR | Zbl
[27] On the classification and specialization of -isocrystals with additional structure, Compos. Math., Volume 103 (1996) no. 2, pp. 153-181 | Numdam | MR | Zbl
[28] Towards a theory of local Shimura varieties, Münster J. Math., Volume 7 (2014) no. 1, pp. 273-326 | MR | Zbl
[29] Period Spaces for -divisible groups, Annals of Mathematics Studies, 141, Princeton University Press, 1996 | DOI | Zbl
[30] Admissibility and permissibility for minuscule cocharacters in orthogonal groups, Manuscr. Math., Volume 136 (2011) no. 3-4, pp. 295-314 | DOI | MR | Zbl
[31] Topological flatness of orthogonal local models in the split, even case. I, Math. Ann., Volume 350 (2011) no. 2, pp. 381-416 | DOI | MR | Zbl
[32] On the local theory of quaternionic anti-hermitian forms, J. Math. Soc. Japan, Volume 13 (1961), pp. 387-400 | DOI | MR | Zbl
[33] Integral models in unramified mixed characteristic (0,2) of Hermitian orthogonal Shimura varieties of PEL type. Part I, J. Ramanujan Math. Soc., Volume 27 (2012) no. 4, pp. 425-477 | MR | Zbl
[34] Integral models in unramified mixed characteristic (0,2) of hermitian orthogonal Shimura varieties of PEL type. Part II, Math. Nachr., Volume 287 (2014) no. 14-15, pp. 1756-1773 | DOI | MR | Zbl
[35] On the Hilbert–Blumenthal moduli problem, J. Inst. Math. Jussieu, Volume 4 (2005) no. 4, pp. 653-683 | DOI | MR | Zbl
[36] Ordinariness in good reductions of Shimura varieties of PEL-type, Ann. Sci. Éc. Norm. Supér., Volume 32 (1999) no. 5, pp. 575-618 | DOI | Numdam | MR | Zbl
[37] The dimension of Oort strata of Shimura varieties of PEL-type, Moduli of Abelian Varieties (Faber, Carel; van der Geer, Gerard; Oort, Frans, eds.) (Progress in Mathematics), Volume 195, Birkhäuser, 2001, pp. 441-471 | DOI | MR | Zbl
[38] Lifting abelian varieties with additional structures, Math. Z., Volume 242 (2002) no. 3, pp. 427-441 | MR | Zbl
[39] On reduction of Hilbert-Blumenthal varieties, Ann. Inst. Fourier, Volume 53 (2003) no. 7, pp. 2105-2154 | Numdam | MR | Zbl
[40] The isomorphism classes of abelian varieties of CM-type, J. Pure Appl. Algebra, Volume 187 (2004) no. 1-3, pp. 305-319 | MR | Zbl
[41] On the mass formula of supersingular abelian varieties with real multiplications, J. Aust. Math. Soc., Volume 78 (2005) no. 3, pp. 373-392 | MR | Zbl
[42] An exact geometric mass formula, Int. Math. Res. Not., Volume 2008 (2008) no. 11, rnn113, 11 pages | Zbl
[43] On finiteness of endomorphism rings of abelian varieties, Math. Res. Lett., Volume 17 (2010) no. 2, pp. 357-370 | MR | Zbl
[44] Simple mass formulas on Shimura varieties of PEL-type, Forum Math., Volume 22 (2010) no. 3, pp. 565-582 | MR | Zbl
[45] Embeddings of fields into simple algebras: generalizations and applications, J. Algebra, Volume 368 (2012), pp. 1-20 | MR | Zbl
[46] Isogenies of abelian varieties over fields of finite characteristics, Math. USSR, Sb., Volume 24 (1974) no. 3, pp. 451-461 | DOI | MR
[47] Cartiertheorie kommutativer formaler Gruppen. Unter Mitarb. von Harry Reimann, Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], 68, Teubner, 1984, 124 pages | Zbl
Cité par Sources :